高考模拟题复习试卷习题资料高考数学试卷理科附详细答案12768

合集下载

高考数学(全国卷)模拟试题(理科)试卷(含答案)

高考数学(全国卷)模拟试题(理科)试卷(含答案)

高考数学(全国卷)模拟试题(理科)试卷(含答案)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设集合M={x|x>-2},则下列选项正确的是A.{0}∈M B.Φ∈M C.{0}⊆M D.0 ⊆M2.已知复数1izi+=,其中i为虚数单位,则z=A.12B.23.已知向量(1,2)a =,(,2)b x=-,且a b⊥,则||a b+=A.5 B.4.如图是一名篮球运动员在最近5场比赛中所得分数的茎叶图,若该运动员在这5场比赛中的得分的中位数为12,则该运动员这5场比赛得分的平均数不可能为A.685B.695C.14 D.7155.《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现,书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为A.829尺 B.1629尺 C.3229尺 D.12尺6.一个棱锥的三视图如右图所示,则它的体积为A.12B.32C.1 D.137.已知函数()(0)2(0)α⎧≥⎪=⎨-<⎪⎩x xf xx x,且()()22-=f f则()4=fA.2 B.4 C.8 D.168.已知实数[]1,10x∈,执行如图所示的流程图,则输出的x不小于63的概率为A.49B.13C.25D.3109.若“1,22x⎡⎤∃∈⎢⎥⎣⎦,使得2210x xλ-+<成立”是假命题,则实数λ的取值范围为A.(-∞ B.⎡⎤⎣⎦ C.⎡⎤-⎣⎦ D.3λ=10.已知函数()x xf x e ae-=+为偶函数,若曲线()y f x=的一条切线的斜率为32,在切点的横坐标等于A.ln2 B.2ln2 C.2 D11.设BA,在圆122=+yx上运动,且3=AB,点P在直线01243=-+yx上运动,则+的最小值为A.3 B.4 C.517D.51912.设函数()f x在R上存在导函数()f x',对任意的实数x都有()()24f x x f x=--,当(),0x∈-∞时,()142f x x'+<.若()()3132f m f m m+≤-++,则实数m的取值范围是A.1,2⎡⎫-+∞⎪⎢⎣⎭ B.3,2⎡⎫-+∞⎪⎢⎣⎭ C.[)1,-+∞ D.[)2,-+∞二、填空题:本大题共4小题,每小题5分.13.已知),2(ππα∈,且55sin=α,则tan()4πα+=14.若实数,x y满足20240230x yx yy--≤⎧⎪+-≥⎨⎪-≤⎩,则yx的最大值是.15.若512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和2,则该展开式中的常数项为__________.16.对于函数()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,有下列4个命题:①任取[)12,0,x x ∈+∞,都有()()122f x f x -≤恒成立;②()()()*22f x kf x k k N =+∈,对于一切[)0,x ∈+∞恒成立;③函数()()ln 1y f x x =--有3个零点; ④对任意0x >,不等式()2f x x≤恒成立. 则其中所有真命题的序号是___________.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤 17.(本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,设(1,1)m =,(cos ,sin )n A A =-,记()f A m n =⋅.(1)求()f A 的取值范围;(2)若m 与n 的夹角为3π,3C π=,c =b 的值.18.(本小题满分12分)已知四棱柱1111D C B A ABCD -的底面是边长为2的菱形,且3π=∠BAD ,⊥1AA 平面ABCD ,11=AA ,设E 为CD 的中点(1)求证:⊥E D 1平面1BEC(2)点F 在线段11B A 上,且//AF 平面1BEC ,求平面ADF 和平面1BEC 所成锐角的余弦值.19.(本小题满分12分)“开门大吉”是某电视台推出的游戏益智节目.选手面对14-号4扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.正确回答每一扇门后,选手可自由选择带着奖金离开比赛,还可继续挑战后面的门以获得更多奖金.(奖金金额累加)但是一旦回答错误,奖金将清零,选手也会离开比赛.在一次场外调查中,发现参加比赛的选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否人数如图所示.(1)写出22⨯列联表:判断是否有90%的把握认为猜对歌曲名称与否与年龄有关? 说明你的理由.(下面的临界值表供参考)(2)若某选手能正确回答第一、二、三、四扇门的概率分别为45,34,23,13,正确回答一个问题后,选择继续回答下一个问题的概率是12,且各个问题回答正确与否互不影响.设该选手所获梦想基金总数为ξ,求ξ的分布列及数学期望.(参考公式()()()()()22n ad bc K a b c d a c b d -=++++其中n a b c d =+++)20.(本小题满分12分)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F ,短轴长为2,点M 为椭圆E 上一个动点,且||MF1. (1)求椭圆E 的方程; (2)若点M的坐标为(1,2,点,A B 为椭圆E 上异于点M 的不同两点,且直线1x =平分AMB ∠,求直线AB 的斜率.21.(本小题满分12分) 已知函数122)21ln()(+++=x ax x f (1)若0>a ,且)(x f 在),0(+∞上单调递增,求实数a 的取值范围(2)是否存在实数a ,使得函数)(x f 在),0(+∞上的最小值为1?若存在,求出实数a 的值;若不存在,请说明理由.请考生在22题,23题中任选一题作答,如果多做,则按所做的第一题计分。

高考理科数学模拟试题卷(附答案)

高考理科数学模拟试题卷(附答案)

高考理科数学模拟试题卷(附答案)注意事项:1. 本科考试分试題卷和答題卷,考生须在答題卷上作答.答题前,请在答題卷的密 封线内填写学校、班级、学号、姓名;2. 本试題卷分为第1卷(选择題)和第π卷(非选择題)两部分,共6页,全卷满 分150分,考试时间120分钟.参考公式:如果事件A ,B 互斥,那么 棱柱的体积公式()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高()()()P A B P A P B ⋅=⋅ 棱锥的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()()()1,0,1,2,,n kk kn n P k C p k k n -=-= 棱台的体积公式球的表面积公式 24S R π= ()1213V h S S =球的体积公式 343V R π= 其中12,S S 分别表示棱台的上底、下底面积,其中R 表示球的半径 h 表示棱台的高第I 卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的.3. 执行如图所示的程序框图,则输出的结果是A. OB. -14. 已知α,β是空间中两个不同平面,m , n 是空间中两条不 同直线,则下列命题中错误的是A. 若m//n m 丄α, 则n 丄αB. 若m//α α ⋂β, 则m//nC. 若m 丄α , m 丄β, 则α//βD. 若m 丄α, m ⊂ β 则 α 丄β5. 已知函数⎩⎨⎧>≤0),(0),(21x x f x x f 下列命题正确的是A. 若)(1x f 是增函数,)(2x f 是减函数,则)(x f 存在最大值B. 若)(x f 存在最大值,则)(1x f 是增函数,)(2x f 是减函数C. 若)(1x f ,)(2x f 均为减函数,则)(x f 是减函数D. 若)(x f 是减函数,则)(1x f ,)(2x f 均为减函数A.充分不必要条件B.必要不充分条件C. 充要条件D.既不充分也不必要条件7. 已知双曲线c: )0(12222>>=-b a by a x ,以右焦点F 为圆心,|OF|为半径的圆交双曲线两渐近线于点M 、N (异于原点O),若|MN|=a 32,则双曲线C 的离心率 是x sin 1xsin 1<9. 如图,给定由10个点(任意相邻两点距离为1)组成的 正三角形点阵,在其中任意取三个点,以这三个点为顶 点构成的正三角形的个数是A. 13B. 14C. 15D. 1710. 已知函数f(x)=x 2+bx+c,(b,c∈R),集合A = {x 丨f(x)=0}, B = {x|f(f(x)))= 0},若≠⋂BA 且存在x 0∈B,x 0∈A则实数b 的取值范围是A 0≠bB b<0或4≥bC 40<≤bD 44≥≤b b 或非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.14. 设(x-2)6=a 0+a 1(x+1)+a 2(x+1)2+…+a 6(x+1)6,则a 0+a 1+a 2+…+a 6 的值为15. 一盒中有6个小球,其中4个白球,2个黑球•从盒中一次任取3个球,若为黑球则放 回盒中,若为白球则涂黑后再放回盒中.此时盒中黑球个数X 的均值E(X) =__16. 若b a ,是两个非零向量,且]1,33[|,|||||∈+==λλb a b a ,则b 与b a -的夹角的17. 己知抛物线y 2=4x 的焦点为F,若点A, B 是该抛物线上的点,=∠AFB的中点M 三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步驟• 18. (本题满分14分)在ΔABC 中,a,b ,c 分别是角A ,B ,C 所对的边,且a=(I )求角B 的大小(II)若3=∆ABC S ,求b 的最小值.19. (本题满分14分)已知等差数列{a n }的公差不为零,且a 3 =5, a 1 , a 2.a 5 成等比数列 (I )求数列{a n }的通项公式:(II)若数列{b n }满足b 1+2b 2+4b 3+…+2n -1b n =a n 且数列{b n }的前n 项和T n20. (本题满分15分)EC 丄底面ABCD, FD 丄底面ABCD 且有E C =F D =2. (I )求证:AD 丄B F :(II )若线段EC 上一点M 在平面BDF 上的射影恰好是BF 的中点N ,试求二面角 B-MF-C 的余弦值.21 (本题满分15分)已知椭圆C: 1222=+y x 的左、右焦点分别为F 1,F 2, O 为原点.(I)如图①,点M 为椭圆C 上的一点,N 是MF 1的中点,且NF 2丄MF 1,求点M 到y 轴的距离;(II)如图②,直线l: :y=k + m 与椭圆C 上相交于P,G 两点,若在椭圆C 上存 在点R,使OPRQ 为平行四边形,求m 的取值范围.22. (本题满分14分) 已知函数x a x a x x f ln )12()22(21)(2+++-=(I )求f(x)的单调区间;(II)对任意的]2,1[,],25,23[21∈∈x x a ,恒有|211|)(|)(|121x x x f x f -≤-λ,求正实数λ的取值范围.三、解答题(本大题共5小题,第18-20题各14分,第21、22题各15分,共72分) 18.解:(Ⅰ)由正弦定理可得:C B C A cos sin sin 21sin +=,…2分 又因为)(C B A +-=π,所以)sin(sin C B A +=,…4分可得C B C C B C B cos sin sin 21sin cos cos sin +=+,…6分即21cos =B .所以3π=B …7分 (Ⅱ) 因为 3=∆ABC S ,所以 33sin 21=πac ,所以4=ac …10分 由余弦定理可知:ac ac ac ac c a b =-≥-+=2222…12分所以42≥b ,即2≥b ,所以b 的最小值为2.…14分19.解:(Ⅰ)在等差数列中,设公差为)0(≠d d ,由题⎪⎩⎪⎨⎧==532251a a a a ,∴⎪⎩⎪⎨⎧=++=+52)()4(12111d a d a d a a ,…3分解得:⎩⎨⎧==211d a .…4分 122)1(1)1(1-=-+=-+=∴n n d n a a n .…5分(Ⅱ)n n n a b b b b =++++-1321242 ①20.解:(Ⅰ)证明:∵DC BC ⊥,且2==CD BC ,∴2=BD 且45=∠=∠BDC CBD ; …1分又由DC AB //,可知45=∠=∠CBD DBA∵2=AD ,∴ADB ∆是等腰三角形,且45=∠=∠DBA DAB , ∴90=∠ADB ,即DB AD ⊥;…3分∵⊥FD 底面ABCD 于D ,⊂AD 平面ABCD ,∴DF AD ⊥, …4分 ∴⊥AD 平面DBF.又∵⊂BF 平面DBF ,∴可得BF AD ⊥. …6分 (Ⅱ)解:如图,以点C 为原点,直线CD 、CB 、CE 方向为x 、y 、z 轴建系. 可得)0,2,22(),2,0,2(),0,2,0(),0,0,2(A F B D , …8分 又∵ N 恰好为BF 的中点,∴ )1,22,22(N 设),0,0(0z M ,∴)1,22,22(0z MN -=.又∵⎪⎩⎪⎨⎧=⋅=⋅00DF MN BD MN ,∴可得10=z .故M 为线段CE 的中点. …11分 设平面BMF 的一个法向量为),,(1111z y x n =, 且)2,2,2(--=BF ,)1,2,0(-=BM ,由⎪⎩⎪⎨⎧=⋅=⋅0011n n 可得⎪⎩⎪⎨⎧=+-=--02022211111z y z y x , 取⎪⎩⎪⎨⎧===213111z y x 得)2,1,3(1=n .…13分又∵平面MFC 的一个法向量为)0,1,0(2=n , …14分∴63,cos 21=<n n .故所求二面角B-MF-C 的余弦值为63.…15分 21.解(Ⅰ))0,1(1-F ,…1分 设),(00y x M ,则1MF 的中点为)2,21(0y x N -, …2分∵21NF MF ⊥,∴021=⋅NF MF ,即0)2,23(),1(0000=-⋅+y x y x , …3分 ∴03220020=+--y x x (1) …4分 又有122020=+y x, (2)由(1)、(2)解得2220-=x (2220+=x 舍去) …5分 所以点M 到y 轴的距离为222-.…6分(Ⅱ)设),(11y x P ,),(22y x Q ,∵OPRQ 为平行四边形,∴R x x x =+21,R y y y =+21. …8分∵R 点在椭圆上,∴1)(2)(221221=+++y y x x ,即1]2)([2)(221221=++++m x x k x x ,…9分化简得,28)(8))(21(2212212=+++++m x x km x x k .…(1) …10分 由⎪⎩⎪⎨⎧+==+m kx y y x 1222得0224)21(222=-+++m km x x k . 由0>∆,得2212m k >+…(2), …11分 且221214k km x x +-=+.…12分代入(1)式,得282132)21()21(16222222222=++-++m k m k k m k k ,化简得22214k m +=,代入(2)式,得0≠m . …14分 又121422≥+=k m , ∴21-≤m 或21≥m .…15分22.解:(Ⅰ)x a a x x f 12)22()(+++-='=x x a x )1)(12(--- (0>x )令0)(='x f ,1,1221=+=x a x …1分① 0=a 时,0)1()(2≥-='x x x f ,所以)(x f 增区间是()+∞,0;② 0>a 时,112>+a ,所以)(x f 增区间是)1,0(与),12(+∞+a ,减区间是)12,1(+a③021<<-a 时,1120<+<a ,所以)(x f 增区间是)12,0(+a 与),1(+∞,减区间是)1,12(+a④21-≤a 时,012≤+a ,所以)(x f 增区间是),1(+∞,减区间是)1,0(…5分(Ⅰ)因为]25,23[∈a ,所以]6,4[)12(∈+a ,由(1)知)(x f 在]2,1[上为减函数. …6分 若21x x =,则原不等式恒成立,∴),0(∞+∈λ…7分第11页 若21x x ≠,不妨设2121≤<≤x x ,则)()(21x f x f >,2111x x >, 所以原不等式即为:)11()()(2121x x x f x f -≤-λ,即22111)(1)(x x f x x f λλ-≤-对任意的]25,23[∈a ,]2,1[,21∈x x 恒成立 令x x f x g λ-=)()(,所以对任意的]25,23[∈a ,]2,1[,21∈x x 有)()(21x g x g <恒成立,所以x x f x g λ-=)()(在闭区间]2,1[上为增函数 …9分所以0)(≥'x g 对任意的]25,23[∈a ,]2,1[∈x 恒成立。

高考数学模拟试卷(理科)【附答案】

高考数学模拟试卷(理科)【附答案】

高考数学模拟试卷(理科)【附答案】本试卷分第Ⅰ卷和第Ⅱ卷两部分.考试时间120分钟. 试卷总分为150分.请考生将所有试题的答案涂、写在答题纸上.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.在复平面内,复数ii4332-+-(是虚数单位)所对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2. 设集合}032|{2<--=x x x M ,{}22<=xx N ,则N C M R ⋂等于A .[]1,1-B .)0,1(-C .[)3,1D .)1,0(3.61(2)x x-的展开式中2x 的系数为A.240-B. 240C. 60-D. 60 4.“2πϕ=”是“函数()x x f cos =与函数()()ϕ+=x x g sin 的图像重合”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5. 设m 、n 为空间的两条不同的直线,α、β为空间的两个不同的平面,给出下列命题:①若m ∥α,m ∥β,则α∥β;②若m ⊥α,m ⊥β,则α∥β; ③若m ∥α,n ∥α,则m ∥n ;④若m ⊥α,n ⊥α,则m ∥n . 上述命题中,所有真命题的序号是A. ①②B. ③④C. ①③D. ②④6.数列{}n a 满足11=a , 11++=+n a a n n (*N n ∈),则201321111a a a +++ 等于 A. 20132012 B. 20134024 C. 10072013 D. 100710067. 在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是A . 403k ≤≤B . <0k 或4>3kC . 3443k ≤≤D . 0k ≤或4>3k8.对数函数x y a log =(10≠>a a 且)与二次函数()x x a y --=21在同一坐标系内的图象可能是9. 已知函数31,0()9,0x x f x xx x ⎧+>⎪=⎨⎪+≤⎩,若关于x 的方程()a x x f =+22有六个不同的实根,则实数a 的取值范围是A .(]2,8B .(]2,9C .()9,8D .(]8,910. 记集合{}8,6,4,2,0=P ,{}P a a a a a a m m Q ∈++==321321,,,10100,将集合Q 中的所有元素排成一个递增数列,则此数列第68项是 A .68 B .464 C .468 D .666第Ⅱ卷二、填空题:本大题有7小题,每小题4分,共28分.把答案填在答题卷的相应位置. 11. 若某程序框图如图所示,则该程序运行后输出的值是 ▲ 12. 如图是一个几何体的三视图,则该几何体的体积是 ▲13.等比数列{n a }的前n 项和为n S ,已知123,2,3S S S 成等差数列,则等比数列{n a }的公比为___▲ __14.若实数x 、y 满足⎪⎩⎪⎨⎧+-≥≥≥-b x y x y y x 02,且2z x y =+的最小值为3,则实数b 的值为__▲15.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“黄金搭档”.已知1F 、2F 是一对“黄金搭档”的焦点,P 是它们在第一象限的交点,当 6021=∠PF F 时,这一对“黄金搭档”中双曲线的离心率是 ▲16.已知实数0,0<<b a ,且1=ab ,那么ba b a ++22的最大值为▲17. 如图,边长为1的正方形ABCD 的顶点A ,D 分别在x 轴、y轴正半轴上移动,则OB OC ⋅的最大值是 ▲ (第17题图)三.解答题:本大题共5小题,满分72分.解答应写出文字说明,证明过程或演算步骤. 18. (本题满分14分)已知函数()21)cos sin 3(cos +-=x x x x f ωωω(0>ω)的周期为π2.(Ⅰ)求ω的值;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,且满足a c A b 32cos 2-=,求)(B f 的值.19. 某竞猜活动有4人参加,设计者给每位参与者1道填空题和3道选择题,答对一道填空题得2分,答对一道选择题得1分,答错得0分,若得分总数大于或等于4分可获得纪念品,假定参与者答对每道填空题的概率为21,答对每道选择题的概率为31,且每位参与者答题互不影响.(Ⅰ)求某位参与竞猜活动者得3分的概率;(Ⅱ)设参与者获得纪念品的人数为ξ,求随机变量ξ的分布列及数学期望.20.如图,在四边形ABCD 中,4==AD AB ,7==CD BC ,点E 为线段AD 上的一点.现将DCE ∆沿线段EC 翻折到PAC (点D 与点P 重合),使得平面PAC ⊥平面ABCE ,连接PA ,PB . (Ⅰ)证明:⊥BD 平面PAC ;(Ⅱ)若︒=∠60BAD ,且点E 为线段AD 的中点,求二面角C AB P --的大小.21.(本题满分15分) 已知点M 到定点()0,1F 的距离和它到定直线4:=x l 的距离的比是常数21,设点M 的轨迹为曲线C . (Ⅰ)求曲线C 的轨迹方程;(Ⅱ)已知曲线C 与x 轴的两交点为A 、B ,P 是曲线C 上异于A ,B 的动点,直线AP 与曲线C 在点B 处的切线交于点D ,当点P 运动时,试判断以BD 为直径的圆与直线PF 的位置关系,并加以证明.22. 已知函数xa x x f ln )()(2-=(其中a 为常数).(Ⅰ)当0=a 时,求函数的单调区间;(Ⅱ) 当10<<a 时,设函数)(x f 的3个极值点为321x x x ,,,且321x x x <<.证明:ex x 231>+.数学试卷(理科)参考答案二、填空题(4×7=28分) 11.16 12.3 13.31 14. 4915. 3 16. 1- 17. 2 三、解答题(共72分) 18.解:(Ⅰ)()2122cos 12sin 2321cos cos sin 32++-=+-=x x x x x x f ωωωωω x x ωω2cos 212sin 23-=⎪⎭⎫ ⎝⎛-=62s i n πωx 21=∴ω ——7分(Ⅱ)解法(一)a c A b 32cos 2-=a c bca cb b 3222222-=-+⋅⇒ 整理得ac b c a 3222=-+,故232cos 222=-+=ac b c a B 6,0ππ=∴<<B B00sin )6sin()(==-=∴πB B f ——14分解法(二)a c A b 32cos 2-=A C A B sin 3sin 2cos sin 2-=⇒A B A A B sin 3)sin(2cos sin 2-+=⇒0sin 3cos sin 2=-⇒A B A 0)3cos 2(sin =-⇒B A0sin ,0≠∴<<A A π 23c o s =∴B 又6,0ππ=∴<<B B00sin )6sin()(==-=∴πB B f ——14分19解:(Ⅰ)答对一道填空题且只答对一道选择题的概率为9231)32(21223=⨯⨯⨯C , 答错填空题且答对三道选择题的概率为541)31(213=⨯(对一个4分)∴某位参与竞猜活动者得3分的概率为541354192=+; ………………… 7分 (Ⅱ)由题意知随机变量ξ的取值有0,1,2,3,4.又某位参与竞猜活动者得4分的概率为9132)31(21223=⨯⨯⨯C 某位参与竞猜活动者得5分的概率为541)31(213=⨯ ∴参与者获得纪念品的概率为547……………………… 11分 ∴)547,4(~B ξ,分布列为kk k C k P -==44)5447()547()(ξ,4,3,2,1,0=k∴随机变量ξ的数学期望ξE =27145474=⨯. ……………………… 14分 20解:(Ⅰ)连接AC ,BD 交于点O ,在四边形ABCD 中,∵4==AD AB ,7==CD BC∴ADC ABC ∆≅∆,∴BAC DAC ∠=∠, ∴BD AC ⊥又∵平面PAC ⊥平面ABCE ,且平面PAC 平面ABCE =AC ∴⊥BD 平面PAC ……… 6分(Ⅱ)如图,以O 为原点,直线OA ,OB 分别为x 轴,y 轴,平面PAC 内过O 且垂直于直线AC 的直线为z 轴建立空间直角坐标系,可设点),0,(z x P 又)0,0,32(A ,)0,2,0(B ,)0,0,3(-C ,)0,1,3(-E ,且由2=PE ,7=PC 有⎩⎨⎧=++=++-7)3(41)3(2222z x z x ,解得332==z x ,∴)332,0,332(P ………… 9分 则有)332,0,334(-=AP ,设平面PAB 的法向量为),,(c b a n =, 由⎪⎩⎪⎨⎧=⋅=⋅0,即⎩⎨⎧==x y x z 32,故可取)2,3,1(= ……… 12分又易取得平面ABC 的法向量为)1,0,0(,并设二面角C AB P --的大小为θ,∴2281)2,3,1()1,0,0(cos =⋅⋅=θ,∴4πθ=∴二面角C AB P --的大小为4π. …………………14分 21.解:(Ⅰ)设点M ()y x ,,则据题意有()214122=-+-x y x ∴化简得22143x y += 故曲线C 的方程为22143x y +=,…………5分 (Ⅱ)如图由曲线C 方程知()()0,2,0,2B A -,在点B 处的切线方程为2=x .以BD 为直径的圆与直线PF 相切.证明如下:由题意可设直线AP 的方程为(2)y k x =+(0)k ≠.则点D 坐标为(2, 4)k ,BD 中点E 的坐标为(2, 2)k .由22(2),143y k x x y =+⎧⎪⎨+=⎪⎩得2222(34)1616120k x k x k +++-=.设点P 的坐标为00(,)x y ,则2021612234k x k--=+. 所以2026834k x k -=+,00212(2)34k y k x k =+=+. ……………………………7分 因为点F 坐标为(1, 0), 当12k =±时,点P 的坐标为3(1, )2±,点D 的坐标为(2, 2)±. 直线PF x ⊥轴,此时以BD 为直径的圆22(2)(1)1x y -+= 与直线PF 相切.当12k ≠±时,则直线PF 的斜率0204114PF y kk x k==--. 所以直线PF 的方程为24(1)14ky x k =--.点E 到直线PF 的距离d =322228142||14|14|k k k k k k +-==+-. 又因为k R BD 42== ,故以BD 为直径的圆与直线PF 相切.综上得,当直线AP 绕点A 转动时,以BD 为直径的圆与直线PF 相切.………15分 22解:(Ⅰ) xx x x f 2ln )1ln 2()('-= 令0)('=x f 可得e x =.列表如下:单调减区间为()1,0,e ,1;增区间为(+∞,e .------------5分(Ⅱ)由题,xx a x a x x f 2ln )1ln 2)(()('-+-=对于函数1ln 2)(-+=x a x x h ,有22)('x ax x h -= ∴函数)(x h 在)2,0(a 上单调递减,在),2(+∞a上单调递增∵函数)(x f 有3个极值点321x x x <<, 从而012ln2)2()(min <+==a a h x h ,所以ea 2<, 当10<<a 时,0ln 2)(<=a a h ,01)1(<-=a h ,∴ 函数)(x f 的递增区间有),(1a x 和),(3+∞x ,递减区间有),0(1x ,)1,(a ,),1(3x , 此时,函数)(x f 有3个极值点,且a x =2; ∴当10<<a 时,31,x x 是函数1ln 2)(-+=xax x h 的两个零点,————9分即有⎪⎪⎩⎪⎪⎨⎧=-+=-+01ln 201ln 23311x ax x ax ,消去a 有333111ln 2ln 2x x x x x x -=-令x x x x g -=ln 2)(,1ln 2)('+=x x g 有零点ex 1=,且311x ex <<∴函数x x x x g -=ln 2)(在)1,0(e上递减,在),1(+∞e上递增要证明 ex x 231>+⇔132x e x ->⇔)2()(13x e g x g ->()()31x g x g = ∴即证0)2()()2()(1111>--⇔->x eg x g x eg x g构造函数())2()(x e g x g x F --=,⎪⎪⎭⎫⎝⎛e F 1 =0 只需要证明]1,0(ex ∈单调递减即可.而()2)2ln(2ln 2+-+='x ex x F ,()0)2()22(2''>--=x ex x ex F ()x F '∴在]1,0(e 上单调递增, ()01=⎪⎪⎭⎫⎝⎛<'∴e F x F ∴当10<<a 时,ex x 231>+.————————15分。

高考数学模拟题复习试卷习题资料高考数学试卷理科附详细答案2

高考数学模拟题复习试卷习题资料高考数学试卷理科附详细答案2

高考数学模拟题复习试卷习题资料高考数学试卷(理科)附详细答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+B.18+C.21D.182.(5分)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)如图所示,程序框图(算法流程图)的输出结果是()A.34B.55C.78D.894.(5分)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被圆C截得的弦长为()A. B.2 C. D.25.(5分)x,y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1B.2或C.2或﹣1D.2或16.(5分)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f ()=()A. B. C.0 D.﹣7.(5分)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i•=()A.﹣2B.﹣2iC.2D.2i8.(5分)从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有()A.24对B.30对C.48对D.60对9.(5分)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8B.﹣1或5C.﹣1或﹣4D.﹣4或810.(5分)在平面直角坐标系xOy中.已知向量、,||=||=1,•=0,点Q满足=(+),曲线C={P|=cosθ+sinθ,0≤θ≤2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()A.1<r<R<3B.1<r<3≤RC.r≤1<R<3D.1<r<3<R二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置.11.(5分)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.12.(5分)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=.13.(5分)设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+anxn.若点Ai(i,ai)(i=0,1,2)的位置如图所示,则a=.14.(5分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为.15.(5分)已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记S=•+•+•+•+•,Smin表示S所有可能取值中的最小值.则下列命题正确的是(写出所有正确命题的编号).①S有5个不同的值;②若⊥,则Smin与||无关;③若∥,则Smin与||无关;④若||>4||,则Smin>0;⑤若||=2||,Smin=8||2,则与的夹角为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答早答题卡上的指定区域.16.(12分)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B. (Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.17.(12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;(Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望).18.(12分)设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.19.(13分)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.20.(13分)如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;(Ⅲ)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.21.(13分)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{an}满足a1>,an+1=an+an1﹣p.证明:an>an+1>.高考模拟题复习试卷习题资料高考数学试卷(理科)附详细答案参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+B.18+C.21D.18【分析】判断几何体的形状,结合三视图的数据,求出几何体的表面积.【解答】解:由三视图可知,几何体是正方体的棱长为2,截去两个正三棱锥,侧棱互相垂直,侧棱长为1,几何体的表面积为:S正方体﹣2S棱锥侧+2S棱锥底==21+.故选:A.【点评】本题考查三视图求解几何体的表面积,解题的关键是判断几何体的形状.2.(5分)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论. 【解答】解:∵x<0,∴x+1<1,当x+1>0时,ln(x+1)<0;∵ln(x+1)<0,∴0<x+1<1,∴﹣1<x<0,∴x<0,∴“x<0”是ln(x+1)<0的必要不充分条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.3.(5分)如图所示,程序框图(算法流程图)的输出结果是()A.34B.55C.78D.89【分析】写出前几次循环的结果,不满足判断框中的条件,退出循环,输出z的值.【解答】解:第一次循环得z=2,x=1,y=2;第二次循环得z=3,x=2,y=3;第三次循环得z=5,x=3,y=5;第四次循环得z=8,x=5,y=8;第五次循环得z=13,x=8,y=13;第六次循环得z=21,x=13,y=21;第七次循环得z=34,x=21,y=34;第八次循环得z=55,x=34,y=55;退出循环,输出55,故选:B.【点评】本题考查程序框图中的循环结构,常用的方法是写出前几次循环的结果找规律,属于一道基础题.4.(5分)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被圆C截得的弦长为()A. B.2 C. D.2【分析】先求出直线和圆的直角坐标方程,求出半径和弦心距,再利用弦长公式求得弦长. 【解答】解:直线l的参数方程是(t为参数),化为普通方程为 x﹣y﹣4=0;圆C的极坐标方程是ρ=4cosθ,即ρ2=4ρcosθ,化为直角坐标方程为x2+y2=4x,即(x﹣2)2+y2=4,表示以(2,0)为圆心、半径r等于2的圆.弦心距d==<r,∴弦长为2=2=2,故选:D.【点评】本题主要考查把参数方程化为普通方程的方法,把极坐标方程化为直角坐标方程的方法,点到直线的距离公式、弦长公式的应用,属于中档题.5.(5分)x,y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1B.2或C.2或﹣1D.2或1【分析】由题意作出已知条件的平面区域,将z=y﹣ax化为y=ax+z,z相当于直线y=ax+z 的纵截距,由几何意义可得.【解答】解:由题意作出约束条件,平面区域,将z=y﹣ax化为y=ax+z,z相当于直线y=ax+z的纵截距,由题意可得,y=ax+z与y=2x+2或与y=2﹣x平行,故a=2或﹣1;故选:C.【点评】本题考查了简单线性规划,作图要细致认真,注意目标函数的几何意义是解题的关键之一,属于中档题.6.(5分)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f ()=()A. B. C.0 D.﹣【分析】利用已知条件,逐步求解表达式的值即可.【解答】解:∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,∴f()=f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=sin+sin+sin==.故选:A.【点评】本题考查抽象函数的应用,函数值的求法,考查计算能力.7.(5分)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i•=()A.﹣2B.﹣2iC.2D.2i【分析】把z及代入+i•,然后直接利用复数代数形式的乘除运算化简求值.【解答】解:∵z=1+i,∴,∴+i•==.故选:C.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.8.(5分)从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有()A.24对B.30对C.48对D.60对【分析】利用正方体的面对角线形成的对数,减去不满足题意的对数即可得到结果.【解答】解:正方体的面对角线共有12条,两条为一对,共有=66条,同一面上的对角线不满足题意,对面的面对角线也不满足题意,一组平行平面共有6对不满足题意的直线对数,不满足题意的共有:3×6=18.从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有:66﹣18=48.故选:C.【点评】本题考查排列组合的综合应用,逆向思维是解题本题的关键.9.(5分)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8B.﹣1或5C.﹣1或﹣4D.﹣4或8【分析】分类讨论,利用f(x)=|x+1|+|2x+a|的最小值为3,建立方程,即可求出实数a 的值.【解答】解:<﹣1时,x<﹣,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>﹣1;﹣≤x≤﹣1,f(x)=﹣x﹣1+2x+a=x+a﹣1≥﹣1;x>﹣1,f(x)=x+1+2x+a=3x+a+1>a﹣2,∴﹣1=3或a﹣2=3,∴a=8或a=5,a=5时,﹣1<a﹣2,故舍去;≥﹣1时,x<﹣1,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>2﹣a;﹣1≤x≤﹣,f(x)=x+1﹣2x﹣a=﹣x﹣a+1≥﹣+1;x>﹣,f(x)=x+1+2x+a=3x+a+1>﹣+1,∴2﹣a=3或﹣+1=3,∴a=﹣1或a=﹣4,a=﹣1时,﹣+1<2﹣a,故舍去;综上,a=﹣4或8.故选:D.【点评】本题主要考查了函数的值域问题.解题过程采用了分类讨论的思想,属于中档题.10.(5分)在平面直角坐标系xOy中.已知向量、,||=||=1,•=0,点Q满足=(+),曲线C={P|=cosθ+sinθ,0≤θ≤2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()A.1<r<R<3B.1<r<3≤RC.r≤1<R<3D.1<r<3<R【分析】不妨令=(1,0),=(0,1),则P点的轨迹为单位圆,Ω={P|(0<r≤||≤R,r<R}表示的平面区域为:以Q点为圆心,内径为r,外径为R的圆环,若C∩Ω为两段分离的曲线,则单位圆与圆环的内外圆均相交,进而根据圆圆相交的充要条件得到答案.【解答】解:∵平面直角坐标系xOy中.已知向量、,||=||=1,•=0,不妨令=(1,0),=(0,1),则=(+)=(,),=cosθ+sinθ=(cosθ,sinθ),故P点的轨迹为单位圆,Ω={P|(0<r≤||≤R,r<R}表示的平面区域为:以Q点为圆心,内径为r,外径为R的圆环,若C∩Ω为两段分离的曲线,则单位圆与圆环的内外圆均相交,故|OQ|﹣1<r<R<|OQ|+1,∵|OQ|=2,故1<r<R<3,故选:A.【点评】本题考查的知识点是向量在几何中的应用,其中根据已知分析出P的轨迹及Ω={P|(0<r≤||≤R,r<R}表示的平面区域,是解答的关键.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置.11.(5分)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,可得所得图象对应的函数解析式为y=sin(2x+﹣2φ),再根据所得图象关于y轴对称可得﹣2φ=kπ+,k∈z,由此求得φ的最小正值.【解答】解:将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象对应的函数解析式为y=sin[2(x﹣φ)+]=sin(2x+﹣2φ)关于y轴对称,则﹣2φ=kπ+,k∈z,即φ=﹣﹣,故φ的最小正值为,故答案为:.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于中档题.12.(5分)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q= 1 .【分析】设出等差数列的公差,由a1+1,a3+3,a5+5构成公比为q的等比数列列式求出公差,则由化简得答案.【解答】解:设等差数列{an}的公差为d,由a1+1,a3+3,a5+5构成等比数列,得:,整理得:,即+5a1+a1+4d.化简得:(d+1)2=0,即d=﹣1.∴q==.故答案为:1.【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.13.(5分)设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+anxn.若点Ai(i,ai)(i=0,1,2)的位置如图所示,则a= 3 .【分析】求出(1+)n的展开式的通项为,由图知,a0=1,a1=3,a2=4,列出方程组,求出a的值.【解答】解:(1+)n的展开式的通项为,由图知,a0=1,a1=3,a2=4,∴,,,,a2﹣3a=0,解得a=3,故答案为:3.【点评】本题考查解决二项式的特定项问题,关键是求出展开式的通项,属于一道中档题.14.(5分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为 x2+=1 . 【分析】求出B(﹣c,﹣b2),代入椭圆方程,结合1=b2+c2,即可求出椭圆的方程. 【解答】解:由题意,F1(﹣c,0),F2(c,0),AF2⊥x轴,∴|AF2|=b2,∴A点坐标为(c,b2),设B(x,y),则∵|AF1|=3|F1B|,∴(﹣c﹣c,﹣b2)=3(x+c,y)∴B(﹣c,﹣b2),代入椭圆方程可得,∵1=b2+c2,∴b2=,c2=,∴x2+=1.故答案为:x2+=1.【点评】本题考查椭圆的方程与性质,考查学生的计算能力,属于中档题.15.(5分)已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记S=•+•+•+•+•,Smin表示S所有可能取值中的最小值.则下列命题正确的是②④(写出所有正确命题的编号).①S有5个不同的值;②若⊥,则Smin与||无关;③若∥,则Smin与||无关;④若||>4||,则Smin>0;⑤若||=2||,Smin=8||2,则与的夹角为.【分析】依题意,可求得S有3种结果:S1=++++,S2=+•+•++,S3=•+•+•+•+,可判断①错误;进一步分析有S1﹣S2=S2﹣S3=+﹣2•≥+﹣2||•||=≥0,即S 中最小为S3;再对②③④⑤逐一分析即可得答案.【解答】解:∵xi,yi(i=1,2,3,4,5)均由2个和3个排列而成,∴S=xiyi可能情况有三种:①S=2+3;②S=+2•+2;③S=4•+.S有3种结果:S1=++++,S2=+•+•++,S3=•+•+•+•+,故①错误;∵S1﹣S2=S2﹣S3=+﹣2•≥+﹣2||•||=≥0,∴S中最小为S3;若⊥,则Smin=S3=,与||无关,故②正确;③若∥,则Smin=S3=4•+,与||有关,故③错误;④若||>4||,则Smin=S3=4||•||cosθ+>﹣4||•||+>﹣+=0,故④正确;⑤若||=2||,Smin=S3=8||2cosθ+4=8,∴2cosθ=1,∴θ=,即与的夹角为.综上所述,命题正确的是②④,故答案为:②④.【点评】本题考查命题的真假判断与应用,着重考查平面向量的数量积的综合应用,考查推理、分析与运算的综合应用,属于难题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答早答题卡上的指定区域.16.(12分)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B. (Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.【分析】(Ⅰ)利用正弦定理,可得a=6cosB,再利用余弦定理,即可求a的值;(Ⅱ)求出sinA,cosA,即可求sin(A+)的值.【解答】解:(Ⅰ)∵A=2B,,b=3,∴a=6cosB,∴a=6,∴a=2;(Ⅱ)∵a=6cosB,∴cosB=,∴sinB=,∴sinA=sin2B=,cosA=cos2B=2cos2B﹣1=﹣,∴sin(A+)=(sinA+cosA)=.【点评】本题考查余弦定理、考查正弦定理,考查二倍角公式,考查学生的计算能力,属于中档题.17.(12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;(Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望).【分析】(1)根据概率的乘法公式,求出对应的概率,即可得到结论.(2)利用离散型随机变量分别求出对应的概率,即可求X的分布列;以及均值.【解答】解:用A表示甲在4局以内(含4局)赢得比赛的是事件,Ak表示第k局甲获胜,Bk表示第k局乙获胜,则P(Ak)=,P(Bk)=,k=1,2,3,4,5(Ⅰ)P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4)=()2+×()2+××()2=.(Ⅱ)X的可能取值为2,3,4,5.P(X=2)=P(A1A2)+P(B1B2)=,P(X=3)=P(B1A2A3)+P(A1B2B3)=,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=,P(X=5)=P(A1B2A3B4A5)+P(B1A2B3A4B5)+P(B1A2B3A4A5)+P(A1B2A3B4B5)==,或者P(X=5)=1﹣P(X=2)﹣P(X=3)﹣P(X=4)=,故分布列为:X 2 3 4 5PE(X)=2×+3×+4×+5×=.【点评】本题主要考查概率的计算,以及离散型分布列的计算,以及利用期望的计算,考查学生的计算能力.18.(12分)设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.【分析】(Ⅰ)利用导数判断函数的单调性即可;(Ⅱ)利用(Ⅰ)的结论,讨论两根与1的大小关系,判断函数在[0,1]时的单调性,得出取最值时的x的取值.【解答】解:(Ⅰ)f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x2,由f′(x)=0,得x1=,x2=,x1<x2,∴由f′(x)<0得x<,x>;由f′(x)>0得<x<;故f(x)在(﹣∞,)和(,+∞)单调递减,在(,)上单调递增;(Ⅱ)∵a>0,∴x1<0,x2>0,∵x∈[0,1],当时,即a≥4①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在[0,1]上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在[0,x2]单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,∴当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处取得最小值;当1<a<4时,f(x)在x=0处取得最小值.【点评】本题主要考查利用导数研究函数的单调性及最值的知识,考查学生分类讨论思想的运用能力,属中档题.19.(13分)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.【分析】(Ⅰ)由题意设出直线l1和l2的方程,然后分别和两抛物线联立求得交点坐标,得到的坐标,然后由向量共线得答案;(Ⅱ)结合(Ⅰ)可知△A1B1C1与△A2B2C2的三边平行,进一步得到两三角形相似,由相似三角形的面积比等于相似比的平方得答案.【解答】(Ⅰ)证明:由题意可知,l1和l2的斜率存在且不为0,设l1:y=k1x,l2:y=k2x.联立,解得.联立,解得.联立,解得.联立,解得.∴,.,∴A1B1∥A2B2;(Ⅱ)解:由(Ⅰ)知A1B1∥A2B2,同(Ⅰ)可证B1C1∥B2C2,A1C1∥A2C2.∴△A1B1C1∽△A2B2C2,因此,又,∴.故.【点评】本题是直线与圆锥曲线的综合题,考查了向量共线的坐标表示,训练了三角形的相似比与面积比的关系,考查了学生的计算能力,是压轴题.20.(13分)如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;(Ⅲ)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.【分析】(Ⅰ)证明平面QBC∥平面A1D1DA,可得△QBC∽△A1AD,即可证明Q为BB1的中点;(Ⅱ)设BC=a,则AD=2a,则==,VQ﹣ABCD==ahd,利用V棱柱=ahd,即可求出此四棱柱被平面α所分成上、下两部分的体积之比;(Ⅲ)△ADC中,作AE⊥DC,垂足为E,连接A1E,则DE⊥平面AEA1,DE⊥A1E,可得∠AEA1为平面α与底面ABCD所成二面角,求出S△ADC=4,AE=4,可得tan∠AEA1==1,即可求平面α与底面ABCD所成二面角的大小.【解答】(Ⅰ)证明:∵四棱柱ABCD﹣A1B1C1D1中,四边形ABCD为梯形,AD∥BC,∴平面QBC∥平面A1D1DA,∴平面A1CD与面QBC、平面A1D1DA的交线平行,∴QC∥A1D∴△QBC∽△A1AD,∴=,∴Q为BB1的中点;(Ⅱ)解:连接QA,QD,设AA1=h,梯形ABCD的高为d,四棱柱被平面α所分成上、下两部分的体积为V1,V2,设BC=a,则AD=2a,∴==,VQ﹣ABCD==ahd,∴V2=,∵V棱柱=ahd,∴V1=ahd,∴四棱柱被平面α所分成上、下两部分的体积之比;(Ⅲ)解:在△ADC中,作AE⊥DC,垂足为E,连接A1E,则DE⊥平面AEA1,∴DE⊥A1E,∴∠AEA1为平面α与底面ABCD所成二面角的平面角,∵BC∥AD,AD=2BC,∴S△ADC=2S△ABC,∵梯形ABCD的面积为6,DC=2,∴S△ADC=4,AE=4,∴tan∠AEA1==1,∴∠AEA1=,∴平面α与底面ABCD所成二面角的大小为.【点评】本题考查面面平行的性质,考查体积的计算,考查面面角,考查学生分析解决问题的能力,属于中档题.21.(13分)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{an}满足a1>,an+1=an+an1﹣p.证明:an>an+1>.【分析】第(Ⅰ)问中,可构造函数f(x)=(1+x)p﹣(1+px),求导数后利用函数的单调性求解;对第(Ⅱ)问,从an+1着手,由an+1=an+an1﹣p,将求证式进行等价转化后即可解决,用相同的方式将an>an+1进行转换,设法利用已证结论证明.【解答】证明:(Ⅰ)令f(x)=(1+x)p﹣(1+px),则f′(x)=p(1+x)p﹣1﹣p=p[(1+x)p﹣1﹣1].①当﹣1<x<0时,0<1+x<1,由p>1知p﹣1>0,∴(1+x)p﹣1<(1+x)0=1,∴(1+x)p﹣1﹣1<0,即f′(x)<0,∴f(x)在(﹣1,0]上为减函数,∴f(x)>f(0)=(1+0)p﹣(1+p×0)=0,即(1+x)p﹣(1+px)>0,∴(1+x)p>1+px.②当x>0时,有1+x>1,得(1+x)p﹣1>(1+x)0=1,∴f′(x)>0,∴f(x)在[0,+∞)上为增函数,∴f(x)>f(0)=0,∴(1+x)p>1+px.综合①、②知,当x>﹣1且x≠0时,都有(1+x)p>1+px,得证.(Ⅱ)先证an+1>.∵an+1=an+an1﹣p,∴只需证an+an1﹣p>,将写成p﹣1个相加,上式左边=,当且仅当,即时,上式取“=”号,当n=1时,由题设知,∴上式“=”号不成立,∴an+an1﹣p>,即an+1>.再证an>an+1.只需证an>an+an1﹣p,化简、整理得anp>c,只需证an>c.由前知an+1>成立,即从数列{an}的第2项开始成立,又n=1时,由题设知成立,∴对n∈N*成立,∴an>an+1.综上知,an>an+1>,原不等式得证.【点评】本题是一道压轴题,考查的知识众多,涉及到函数、数列、不等式,利用的方法有分析法与综合法等,综合性很强,难度较大.高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=15.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.327.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c <010.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f (2)D.f(2)<f(0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前n项和等于.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)设n∈N*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{xn}的通项公式;(Ⅱ)记Tn=x12x32…x2n﹣12,证明:Tn≥.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM 的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先化简复数,再得出点的坐标,即可得出结论.【解答】解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.【点评】本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+1【分析】利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.【解答】解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选:A.【点评】本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.3.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用指数函数的单调性,结合充分必要条件的定义,即可判断.【解答】解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1【分析】对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.【解答】解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选:C.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【分析】利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选:D.【点评】本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.32【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.【解答】解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.【点评】本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2【分析】根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.【解答】解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥【分析】由题意,知道,,根据已知三角形为等边三角形解之.【解答】解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,∴的方向应该为的方向.所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选:D.【点评】本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关。

高考数学(理科)模拟考试卷(附参考答案与解析)

高考数学(理科)模拟考试卷(附参考答案与解析)

高考数学(理科)模拟考试卷(附参考答案与解析)一、单选题(本大题共12小题,共60.0分。

在每小题列出的选项中,选出符合题目的一项)1. 若复数z满足iz=4+3i,则复数z在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 已知集合A={(x,y)|x2+y2=1}和B={(x,y)|y=x},则A∩B中元素的个数为( )A. 3B. 2C. 1D. 03. 已知向量a⃗,b⃗⃗满足|a⃗|=1,|b⃗⃗|=√ 3和|a⃗⃗−2b⃗⃗|=3,则a⃗⃗⋅(a⃗⃗+b⃗⃗)=( )A. −2B. −1C. 1D. 24. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如16=3+13.在不超过16的素数中,随机选取两个不同的数,其和等于16的概率是( )A. 15B. 215C. 115D. 255. 的展开式中x3y3的系数为40,则实数a的值为( )A. 4B. 2C. 1D. 126. 设椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1和F2,离心率为√ 22,P是C上一点,且F1P⊥F2P.若△PF1F2的面积为2,则a=( )A. 1B. 2C. √ 2D. 47. 在△ABC中cosC=23,AC=4和BC=3则cos A2=( )A. √ 306B. √ 33C. 13D. 568. 如图,四边形ABCD为正方形,ED⊥平面ABCD,FB//ED和AB=ED=2FB=2,则三棱锥F−ACE 的体积为( )A. 23B. 43C. 2D. √ 39. 在正方体AC1中,点M为平面ABB1A1内的一动点,d1是点M到平面ADD1A1的距离,d2是点M到直线BC的距离,且d1=λd2(λ>0)(λ为常数),则点M的轨迹不可能是( )A. 圆B. 椭圆C. 双曲线D. 抛物线10. 已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于x=1对称.若f(1)=3,则f(2)+f(3)+⋯+f(50)=( )A. 3B. 2C. 0D. 5011. 设A,B,C,D是同一个半径为4的球的球面上四点,AB=AC=2√ 3和BC=6,则三棱锥D−ABC 体积的最大值为( )A. 3√ 3B. 6√ 3C. 12√ 3D. 18√ 312. 已知a∈R,设函数若关于x的不等式f(x)≥0在R上恒成立则a 的取值范围为( )A. [0,e2] B. [0,2] C. [0,1] D. [0,e]二、填空题(本大题共4小题,共20.0分)13. 已知等差数列{a n}前9项的和为27,且a10=8,则a15=______ .14.15. 在直线l:y=−2上取一点D作抛物线C:x2=4y的切线,切点分别为A,B,直线AB与圆E:x2+ y2−4x−2018=0交于M,N两点,当|MN|最小时,则D的横坐标是______ .16. 已知函数f(x)=sin(ωx+φ)(ω>0),下述四个结论:①若φ=π5,且f(x)在[0,2π]有且仅有5个零点,则f(x)在(0,2π)有且仅有3个极大值点;②若φ=π4,且f(x)在[0,2π]有且仅有4个零点,则f(x)在[0,2π]有且仅有2个极大值点; ③若φ=π5,且f(x)在[0,2π]有且仅有5个零点,则f(x)在(0,π10)上单调递增; ④若φ=π3,且f(x)在(0,π)有且仅有2个零点和3个极值点,则ω的范围是(136,83). 其中所有正确结论的编号是______ .三、解答题(本大题共7小题,共82.0分。

高考理科数学模拟试题含答案及解析5套).pptx

高考理科数学模拟试题含答案及解析5套).pptx

AF 4 15.抛物线 y2 4x 的焦点为 F ,过 F 的直线与抛物线交于 A , B 两点,且满足 BF ,
点 O 为原点,则 △AOF 的面积为

f x 2 3 sin xcosx 2cos2 x0
16.已知函数
22
2
的周期为
2π 3
,当
x
0,π3
时,函
数 g x f x m 恰有两个不同的零点,则实数m 的取值范围是
第Ⅰ卷(选择题 共 60 分)
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1.已知a , b 都是实数,那么“ 2a 2b ”是“ a2 b2 ”的(

A.充分不必要条件 B.必要不充分条件 C.充要条件 条件
2.抛物线 x 2 py2 ( p 0) 的焦点坐标为( )
的距离相等,则
1 2
y1
y2
1 2
,即
y 1
y 2 1
.有
2x1 2x2 1 .由基本不等式 得: 2x1 2x2 ≥2 2x1 2x2 ,整理得 2x1x2 ≤ 1 ,解得
4
x1 x2 2 .(因为 x1 x2 ,等号取不到).故选 B.
10、【答案】C
学海无涯
【解析】如图所示,该四面体的四个顶点为长方体的四个顶点,设长、宽、高分
19、某高校在 2017 年自主招生考试成绩中随机抽取 100 名学生的笔试成绩,按成绩共分为
五组,得到如下的频率分布表:

号分
组频
数频

第一组 [145,155)
5
0.05
第二组 [155,165)

高考模拟题复习试卷习题资料高考数学试卷理科附详细答案101500

高考模拟题复习试卷习题资料高考数学试卷理科附详细答案101500

高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.102.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数=.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10【分析】利用二项展开式的通项公式求出(1+x)6的第r+1项,令x的指数为2求出展开式中x2的系数.然后求解即可.【解答】解:(1+x)6展开式中通项Tr+1=C6rxr,令r=2可得,T3=C62x2=15x2,∴(1+x)6展开式中x2项的系数为15,在x(1+x)6的展开式中,含x3项的系数为:15.故选:C.【点评】本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.2.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}【分析】计算集合A中x的取值范围,再由交集的概念,计算可得.【解答】解:A={x|﹣1≤x≤2},B=Z,∴A∩B={﹣1,0,1,2}.故选:A.【点评】本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分.3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度【分析】根据 y=sin(2x+1)=sin2(x+),利用函数y=Asin(ωx+φ)的图象变换规律,得【解答】解:∵y=sin(2x+1)=sin2(x+),∴把y=sin2x的图象上所有的点向左平行移动个单位长度,即可得到函数y=sin(2x+1)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<【分析】利用特例法,判断选项即可.【解答】解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,,∴A、B不正确;,=﹣,∴C不正确,D正确.解法二:∵c<d<0,∴﹣c>﹣d>0,∵a>b>0,∴﹣ac>﹣bd,∴,∴.故选:D.【点评】本题考查不等式比较大小,特值法有效,导数计算正确.5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为A.0B.1C.2D.3【分析】算法的功能是求可行域内,目标函数S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,得出最大值.【解答】解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.【点评】本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.6.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种【分析】分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.【解答】解:最左端排甲,共有=120种,最左端只排乙,最右端不能排甲,有=96种,根据加法原理可得,共有120+96=216种.故选:B.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.2【分析】由已知求出向量的坐标,再根据与的夹角等于与的夹角,代入夹角公式,构造关于m的方程,解方程可得答案.【解答】解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D.【点评】本题考查的知识点是数量积表示两个向量的夹角,难度中档.8.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]【分析】由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.再利用正方体的性质和直角三角形的边角关系即可得出.【解答】解:由题意可得:直线OP于平面A1BD所成的角α的取值范围是∪.不妨取AB=2.在Rt△AOA1中,==.sin∠C1OA1=sin(π﹣2∠AOA1)=sin2∠AOA1=2sin∠AOA1cos∠AOA1=,=1.∴sinα的取值范围是.故选:B.【点评】本题考查了正方体的性质和直角三角形的边角关系、线面角的求法,考查了推理能力,属于中档题.9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②【分析】根据已知中函数的解析式,结合对数的运算性质,分别判断三个结论的真假,最后综合判断结果,可得答案.【解答】解:∵f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1),∴f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣f(x),即①正确;f()=ln(1+)﹣ln(1﹣)=ln()﹣ln()=ln ()=ln[()2]=2ln()=2[ln(1+x)﹣ln(1﹣x)]=2f(x),故②正确;当x∈[0,1)时,|f(x)|≥2|x|⇔f(x)﹣2x≥0,令g(x)=f(x)﹣2x=ln(1+x)﹣ln(1﹣x)﹣2x(x∈[0,1))∵g′(x)=+﹣2=≥0,∴g(x)在[0,1)单调递增,g(x)=f(x)﹣2x≥g (0)=0,又f(x)≥2x,又f(x)与y=2x为奇函数,所以|f(x)|≥2|x|成立,故③正确;故正确的命题有①②③,故选:A.【点评】本题以命题的真假判断为载体,考查了对数的运算性质,代入法求函数的解析式等知识点,难度中档.10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.【分析】可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.【解答】解:设直线AB的方程为:x=ty+m,点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),由⇒y2﹣ty﹣m=0,根据韦达定理有y1•y2=﹣m,∵•=2,∴x1•x2+y1•y2=2,结合及,得,∵点A,B位于x轴的两侧,∴y1•y2=﹣2,故m=2.不妨令点A在x轴上方,则y1>0,又,∴S△ABO+S△AFO═×2×(y1﹣y2)+×y1,=.当且仅当,即时,取“=”号,∴△ABO与△AFO面积之和的最小值是3,故选B.【点评】求解本题时,应考虑以下几个要点:1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.3、利用基本不等式时,应注意“一正,二定,三相等”.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数= ﹣2i .【分析】利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.【解答】解:复数===﹣2i,故答案为:﹣2i.【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()= 1 .【分析】由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.【解答】解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于 60 m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)【分析】过A点作AD垂直于CB的延长线,垂足为D,分别在Rt△ACD、Rt△ABD中利用三角函数的定义,算出CD、BD的长,从而可得BC,即为河流在B、C两地的宽度.【解答】解:过A点作AD垂直于CB的延长线,垂足为D,则Rt△ACD中,∠C=30°,AD=46m,AB=,根据正弦定理,,得BC===60m.故答案为:60m.【点评】本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是 5 .【分析】先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.【解答】解:由题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5【点评】本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有①③④.(写出所有真命题的序号)【分析】根据题中的新定义,结合函数值域的概念,可判断出命题①②③是否正确,再利用导数研究命题④中函数的值域,可得到其真假情况,从而得到本题的结论.【解答】解:(1)对于命题①,若对任意的b∈R,都∃a∈D使得f(a)=b,则f(x)的值域必为R.反之,f(x)的值域为R,则对任意的b∈R,都∃a∈D使得f(a)=b,故①是真命题;(2)对于命题②,若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f (x)无最大值,无最小值,故②是假命题;(3)对于命题③,若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g(x)≤M.故f (x)+g(x)∈(﹣∞,+∞).则f(x)+g(x)∉B,故③是真命题;(4)对于命题④,∵﹣≤≤,当a>0或a<0时,aln(x+2)∈(﹣∞,+∞),f(x)均无最大值,若要使f(x)有最大值,则a=0,此时f(x)=,f(x)∈B,故④是真命题.故答案为①③④.【点评】本题考查了函数值域的概念、基本不等式、充要条件,还考查了新定义概念的应用和极限思想.本题计算量较大,也有一定的思维难度,属于难题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.【分析】(1)令2kπ﹣≤3x+≤2kπ+,k∈z,求得x的范围,可得函数的增区间. (2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα 的值.【解答】解:(1)∵函数f(x)=sin(3x+),令2kπ﹣≤3x+≤2kπ+,k∈Z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k∈Z. (2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(c os2α﹣sin2α),∴sinαcos+cosαsin=(cosαcos﹣sinαsin)(cosα﹣sinα)(cosα+sinα)即(sinα+cosα)=•(cosα﹣sinα)2(cosα+sinα),又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,tanα=﹣1,sinα=,cosα=﹣,此时cosα﹣sinα=﹣.当sinα+cosα≠0时,此时cosα﹣sinα=﹣.综上所述:cosα﹣sinα=﹣或﹣.【点评】本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.【分析】(1)设每盘游戏获得的分数为X,求出对应的概率,即可求X的分布列;(2)求出有一盘出现音乐的概率,独立重复试验的概率公式即可得到结论.(3)计算出随机变量的期望,根据统计与概率的知识进行分析即可.【解答】解:(1)X可能取值有﹣200,10,20,100.则P(X=﹣200)=,P(X=10)==P(X=20)==,P(X=100)==,故分布列为:X ﹣200 10 20 100P由(1)知,每盘游戏出现音乐的概率是p=+=,则至少有一盘出现音乐的概率p=1﹣.由(1)知,每盘游戏获得的分数为X的数学期望是E(X)=(﹣200)×+10×+20××100=﹣=.这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,入最初的分数相比,分数没有增加反而会减少.【点评】本题主要考查概率的计算,以及离散型分布列的计算,以及利用期望的计算,考查学生的计算能力.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB 的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.【分析】(1)用线面垂直的性质和反证法推出结论,(2)先建空间直角坐标系,再求平面的法向量,即可求出二面角A﹣NP﹣M的余弦值. 【解答】解:(1)由三棱锥A﹣BCD及其侧视图、俯视图可知,在三棱锥A﹣BCD中:平面ABD⊥平面CBD,AB=AD=BD=CD=CB=2设O为BD的中点,连接OA,OC于是OA⊥BD,OC⊥BD 所以BD⊥平面OAC⇒BD⊥AC因为M,N分别为线段AD,AB的中点,所以MN∥BD,MN⊥NP,故BD⊥NP假设P不是线段BC的中点,则直线NP与直线AC是平面ABC内相交直线从而BD⊥平面ABC,这与∠DBC=60°矛盾,所以P为线段BC的中点(2)以O为坐标原点,OB,OC,OA分别为x,y,z轴建立空间直角坐标系,则A(0,0,),M(,O,),N(,0,),P(,,0)于是,,设平面ANP和平面NPM的法向量分别为和由,则,设z1=1,则由,则,设z2=1,则cos===所以二面角A﹣NP﹣M的余弦值【点评】本题考查线线的位置关系,考查二面角知识的应用,解题的关键是掌握用向量的方法求二面角大小的步骤,属于中档题.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.【分析】(1)由于点(an,bn)在函数f(x)=2x的图象上,可得,又等差数列{an}的公差为d,利用等差数列的通项公式可得=2d.由于点(a8,4b7)在函数f(x)的图象上,可得=b8,进而得到=4=2d,解得 d.再利用等差数列的前n项和公式即可得出.(2)利用导数的几何意义可得函数f(x)的图象在点(a2,b2)处的切线方程,即可解得a2.进而得到an,bn.再利用“错位相减法”即可得出.【解答】解:(1)∵点(an,bn)在函数f(x)=2x的图象上,∴,又等差数列{an}的公差为d,∴==2d,∵点(a8,4b7)在函数f(x)的图象上,∴=b8,∴=4=2d,解得d=2.又a1=﹣2,∴Sn==﹣2n+=n2﹣3n.(2)由f(x)=2x,∴f′(x)=2xln2,∴函数f(x)的图象在点(a2,b2)处的切线方程为,又,令y=0可得x=,∴,解得a2=2.∴d=a2﹣a1=2﹣1=1.∴an=a1+(n﹣1)d=1+(n﹣1)×1=n,∴bn=2n.∴.∴Tn=+…++,∴2Tn=1+++…+,两式相减得Tn=1++…+﹣=﹣==.【点评】本题综合考查了指数函数的运算性质、导数的几何意义、等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“错位相减法”,属于难题.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.【分析】(1)求出f(x)的导数得g(x),再求出g(x)的导数,对它进行讨论,从而判断g(x)的单调性,求出g(x)的最小值;(2)利用等价转换,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,所以g(x)在(0,1)上应有两个不同的零点.【解答】解:∵f(x)=ex﹣ax2﹣bx﹣1,∴g(x)=f′(x)=ex﹣2ax﹣b,又g′(x)=ex﹣2a,x∈[0,1],∴1≤ex≤e,∴①当时,则2a≤1,g′(x)=ex﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=ex﹣2a<0,当ln(2a)<x<1时,g′(x)=ex﹣2a>0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=ex﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x)在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f(x)在区间(0,1)内至少有三个单调区间”这一要求.若,则gmin(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则=,∴.由>0⇒x<∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,==<0,即gmin(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.【点评】本题考查了,利用导数求函数的单调区间,分类讨论思想,等价转换思想,函数的零点等知识点.是一道导数的综合题,难度较大.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.【分析】第(1)问中,由正三角形底边与高的关系,a2=b2+c2及焦距2c=4建立方程组求得a2,b2;第(2)问中,先设点的坐标及直线PQ的方程,利用两点间距离公式及弦长公式将表示出来,由取最小值时的条件获得等量关系,从而确定点T的坐标.【解答】解:(1)依题意有解得所以椭圆C的标准方程为+=1.(2)设T(﹣3,t),P(x1,y1),Q(x2,y2),PQ的中点为N(x0,y0),①证明:由F(﹣2,0),可设直线PQ的方程为x=my﹣2,则PQ的斜率.由⇒(m2+3)y2﹣4my﹣2=0,所以,于是,从而,即,则直线ON的斜率,又由PQ⊥TF知,直线TF的斜率,得t=m.从而,即kOT=kON,所以O,N,T三点共线,从而OT平分线段PQ,故得证.②由两点间距离公式得,由弦长公式得==,所以,令,则(当且仅当x2=2时,取“=”号),所以当最小时,由x2=2=m2+1,得m=1或m=﹣1,此时点T的坐标为(﹣3,1)或(﹣3,﹣1).【点评】本题属相交弦问题,应注意考虑这几个方面:1、设交点坐标,设直线方程;2、联立直线与椭圆方程,消去y或x,得到一个关于x或y一元二次方程,利用韦达定理;3、利用基本不等式或函数的单调性探求最值问题.高考数学高三模拟考试试卷压轴题高三阶段测试(二)数学(满分:150分 考试时间:150分钟 ) 请将答案填写在答题卡上,写在试卷上的答案无效。

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)高考理科数学模拟试卷(含答案)本试卷共分为选择题和非选择题两部分,第Ⅰ卷(选择题)在1至2页,第Ⅱ卷(非选择题)在3至4页,共4页,满分150分,考试时间为120分钟。

注意事项:1.答题前,请务必填写自己的姓名和考籍号。

2.答选择题时,请使用2B铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,请使用橡皮擦擦干净后再选涂其他答案标号。

3.答非选择题时,请使用0.5毫米黑色签字笔,在答题卡规定位置上书写答案。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,请只将答题卡交回。

第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={-1.0.1.2.3.4},B={y|y=x,x∈A},则A2B=A){0.1.2}B){0.1.4}C){-1.0.1.2}D){-1.0.1.4}2.已知复数z=1/(1+i),则|z|=A)2B)1C)2D)23.设函数f(x)为奇函数,当x>0时,f(x)=x-2,则f(f(1))=A)-1B)-2C)1D)24.已知单位向量e1,e2的夹角为π/2,则e1-2e2=A)3B)7C)3D)75.已知双曲线2x^2-y^2=1(a>0,b>0)的渐近线方程为y=±3x,则双曲线的离心率是A)10B)10/10C)10D)3/96.在等比数列{an}中,a1>0,则“a1<a4”是“a3<a5”的A)充分不必要条件B)必要不充分条件C)充要条件D)既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是A)i≤6?B)i≤5?C)i≤4?D)i≤3?8.已知a、b为两条不同直线,α、β、γ为三个不同平面,则下列命题中正确的是①若α//β,α//γ,则β//γ;②若a//α,a//β,则α//β;③若α⊥γ,β⊥γ,则α⊥β;④若a⊥α,XXXα,则a//b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>97.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||29.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁UA.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁UA={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.故选:C.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即6<c≤9,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=xa(x≥0),g(x)=logax的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:此时答案D满足要求,当a>1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:无满足要求的答案,综上:故选D,故选:D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||2【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选:A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【分析】根据记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,分别求出I1,I2,I3与1的关系,继而得到答案【解答】解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 6 .【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的i 的值.【解答】解:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.故答案为:6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[].【分析】由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.【解答】解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 60 种(用数字作答).【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.故答案为:60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是(﹣∞,].【分析】画出函数f(x)的图象,由 f(f(a))≤2,可得 f(a)≥﹣2,数形结合求得实数a的取值范围.【解答】解:∵函数f(x)=,它的图象如图所示:由 f(f(a))≤2,可得 f(a)≥﹣2.当a<0时,f(a)=a2+a=(a+)2﹣≥﹣2恒成立;当a≥0时,f(a)=﹣a2≥﹣2,即a2≤2,解得0≤a≤,则实数a的取值范围是a≤,故答案为:(﹣∞,].【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P (m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)【分析】过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,设BP′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°=(20﹣x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.若P′在CB的延长线上,PP′=CP′tan30°=(20+x),在直角△ABP′中,A P′=,∴tanθ=•,令y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.【分析】(1)利用倍角公式、两角和差的正弦公式可得,由a≠b得,A≠B,又A+B∈(0,π),可得,即可得出.(2)利用正弦定理可得a,利用两角和差的正弦公式可得sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由a≠b得,A≠B,又A+B∈(0,π),得,即,∴;(2)由,利用正弦定理可得,得,由a<c,得A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{an}的第三项的值,结合首项的值,求出通项an,然后现利用条件求出通项bn;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵a1a2a3…an=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{an}为等比数列,且a1=2,∴{an}的公比为q,则=4,由题意知an>0,∴q>0,∴q=2.∴(n∈N*).又由a1a2a3…an=(n∈N*)得:,,∴bn=n(n+1)(n∈N*).(Ⅱ)(i)∵cn===.∴Sn=c1+c2+c3+…+cn====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,cn<0,综上,对任意n∈N*恒有S4≥Sn,故k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.【分析】(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=;在Rt△AED中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,则[f(x)+b]2≤4对x∈[﹣1,1]恒成立,转化为﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.【解答】解:(Ⅰ)∵f(x)=x3+3|x﹣a|=,∴f′(x)=,①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,∴M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,∴M(a)﹣m(a)=8;②﹣1<a<1时,x∈(a,1),f(x)=x3+3x﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,∴M(a)=max{f(1),f(﹣1)},m(a)=f(a)=a3,∵f(1)﹣f(﹣1)=﹣6a+2,∴﹣1<a≤时,M(a)﹣m(a)=﹣a3﹣3a+4;<a<1时,M(a)﹣m(a)=﹣a3+3a+2;③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,∴M(a)=f(﹣1)=2+3a,m(a)=f(1)=﹣2+3a,∴M(a)﹣m(a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,由(Ⅰ)知,①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;②﹣1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=﹣2,∴﹣2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣<3a+b≤0;④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是﹣2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.【分析】(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点P到直线l1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,此时点P的横坐标为﹣,代入y=kx+m得点P的纵坐标为﹣k•+m=,∴点P的坐标为(﹣,),又点P在第一象限,故m>0,故m=,故点P的坐标为P(,).(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得:d=,因为a2k2+≥2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.高考数学高三模拟试卷试题压轴押题高三上学期期中试卷理数试题一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数x x f y +=)(是偶函数,且1)2(=f ,则=-)2(f ( ▲)A .2B . 3C . 4D . 52.已知:11,:(2)(6)0p m x m q x x -<<+--<,且q 是p 的必要不充分条件,则m 的取值范围是( ▲ )A .35m << B. 35m ≤≤ C .53m m ><或 D. 53m m ≥≤或3.已知m 为一条直线,βα,为两个不同的平面,则下列说法正确的是( ▲ )A.若ββαα//,//,//m m 则B.若,m αβα⊥⊥,则m β⊥C.若ββαα⊥⊥m m 则,,//D. 若ββαα⊥⊥m m 则,//,4.函数())cos 3(sin sin 21x x x x f +-=的图象向左平移3π个单位得函数()x g 的图象,则函数()x g 的解析式是 ( ▲ )A . ()⎪⎭⎫ ⎝⎛-=22sin 2πx x g B .()x x g 2cos 2= C .()⎪⎭⎫ ⎝⎛+=322cos 2πx x g D .()()2sin 2g x x π=+ 5.若x ,y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z =y -x 的最小值为-4,则k 的值为( ▲ )A .-2B .12-C .12D .2 6.在ABC ∆所在平面上有三点M N P 、、,满足MA MB MC AB ++=,NA NB NC BC ++=,PA PB PC CA ++=,则MNP ∆的面积与ABC ∆的面积比为( ▲ )A.12B. 13C. 14D. 157.设双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,离心率为e ,过2F 的直线与双曲线的右支交于B A ,两点,若AB F 1∆是以A 为直角顶点的等腰直角三角形,则=2e ( ▲ )A.221+B. 224-C.225-D.223+8.设{}(),(()())min (),()(),(()())f x f xg x f x g x g x f x g x ≤⎧=⎨>⎩.若2()f x x px q =++的图象经过两点(,0),(,0)αβ,且存在整数n ,使得1n n αβ<<<+成立,则 ( ▲ )A .{}1min (),(1)4f n f n +>B .{}1min (),(1)4f n f n +< C .{}1min (),(1)4f n f n += D .{}1min (),(1)4f n f n +≥ 二、填空题:本大题共7小题,912题:每小题6分,1315题:每小题4分,共36分.9.已知全集为R ,集合{}{}221,680x A x B x x x =≥=-+≤,则A B =▲.R A C B =▲.()R C A B =▲.10.已知等差数列{}n a ,n S 是数列{}n a 的前n 项和,且满足46310,39a S S ==+,则数列{}n a 的首项1a =____▲___ ,通项n a =___▲___.11.某空间几何体的三视图如图所示(单位:cm),则该几何体的体积V =▲ cm3,表面积S =▲ cm2.12.已知函数()()61477x a x x f x ax -⎧-+≤=⎨>⎩;(1)当21=a 时, ()x f 的值域为▲, (2)若()x f 是(,)-∞+∞上的减函数,则实数a 的取值范围是▲.13.已知平面向量(),αβαβ≠满足3α=且α与βα-150︒的夹角为,则()1m m αβ+-的取值范围是 _▲ .14.已知实数x 、y 、z 满足0x y z ++=,2221x y z ++=,则x 的最大值为▲ .15.三棱柱111ABC A B C -的底是边长为1的正三角形,高11AA =,在AB 上取一点P ,设11PA C ∆与面111A B C 所成的二面角为α,11PB C ∆与面111A B C 所成的二面角为β,则tan()αβ+的最小值是▲ .三、解答题(共5小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本题满分15分)在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,且1)cos(32cos ++=C B A .(Ⅰ)求角A 的大小;(Ⅱ)若81cos cos -=C B ,且ABC ∆的面积为32,求a .17.(本题满分15分)如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,三角形ACD 是正三角形,且AD=DE=2AB ,F 是CD 的中点.(Ⅰ)求证:平面CBE ⊥平面CDE ;(Ⅱ)求二面角C —BE —F 的余弦值. 18. (本题满分15分)平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>右焦点的直线30x y +-=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求椭圆M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ACBD 的对角线CD AB ⊥,求四边形ACBD 面积的最大值.19.(本题满分15分)已知函数2()1,()|1|f x x g x a x =-=-.(Ⅰ)若当x ∈R 时,不等式()()f x g x ≥恒成立,求实数a 的取值范围;(Ⅱ)求函数()|()|()h x f x g x =+在区间[2,2]-上的最大值.20.(本题满分14分)已知数列{}n a 满足:10a =,21221,,12,,2n n n n a n n a a -+⎧⎪⎪=⎨++⎪⎪⎩为偶数为奇数,2,3,4,.n =C FDABE(Ⅰ)求567,,a a a 的值; (Ⅱ)设212n n n a b -=,试求数列{}n b 的通项公式;(Ⅲ)对于任意的正整数n ,试讨论并证明n a 与1n a +的大小关系. 高考一轮复习微课视频手机观看地址: http://xkw.so/wksp。

相关文档
最新文档