关于舵机的控制

合集下载

舵机(servo motor)的控制

舵机(servo motor)的控制

舵机(servo motor)的控制基于单片机16f877a和proteus的仿真舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。

(注意:如果你控制的舵机在不停的抖动,其中一个原因就是你给的脉冲有杂波,这点很重要。

舵机是一个物理器件,它的转动需要时间的,因此,程序中占空比的值变化不能太快,不然舵机跟不上程序的响应时间。

)一、舵机的结构我们选的舵机型号是TowerPro MG995,实物如图:它有三条线棕色、红色、黄色分别是GND、 V+ 、 S(信号)。

如下图:二、舵机的单片机控制原理1、我们得先了解舵机的工作原理:控制信号由舵机的信号通道进入信号调制芯片,获得直流偏置电压。

它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。

最后,电压差的正负输出到电机驱动芯片决定电机的正反转。

当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。

它的控制要求如下图:2、由上可知舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。

我们用pic单片机的定时器1模块产生PWM信号,得到控制电机的占空比,也就如上图的占空比信号,周期是20Ms.下面我们来看看怎样产生上图的占空比,单片机的定时器1模块最大可以产生174ms的延时,也就是可以产生最大174ms的中断。

怎样设置Timer1来产生上述占空比的中断,可以参考具体资料书。

当系统中只需要实现一个舵机的控制,采用的控制方式是改变单片机的一个定时器中断的初值,将20ms分为两次中断执行,一次短定时中断和一次长定时中断。

这样既节省了硬件电路,也减少了软件开销,控制系统工作效率和控制精度都很高。

具体的设计过程:例如想让舵机转向左极限的角度,它的正脉冲为2ms,则负脉冲为20ms-2ms=18ms,所以开始时在控制口发送高电平,然后设置定时器在2ms 后发生中断,中断发生后,在中断程序里将控制口改为低电平,并将中断时间改为18ms,再过18ms进入下一次定时中断,再将控制口改为高电平,并将定时器初值改为2ms,等待下次中断到来,如此往复实现PWM信号输出到舵机。

舵机工作原理与控制方法

舵机工作原理与控制方法

舵机工作原理与控制方法舵机是一种用于控制机械装置的电机,它可以通过控制信号进行位置或角度的精确控制。

在舵机的工作原理和控制方法中,主要涉及到电机、反馈、控制电路和控制信号四个方面。

一、舵机的工作原理舵机的核心部件是一种称为可变电容的设备,它可以根据控制信号的波形来改变电容的值。

舵机可分为模拟式和数字式两种类型。

以下是模拟式舵机的工作原理:1.内部结构:模拟式舵机由电机、测速电路、可变电容和驱动电路组成。

2.基准电压:舵机工作时,系统会提供一个用于参考的基准电压。

3.控制信号:通过控制信号的波形的上升沿和下降沿来确定舵机的角度。

4.反馈:舵机内部的测速电路用于检测当前位置,从而实现位置的精确控制。

5.驱动电路:根据测速电路的反馈信号来控制电机的转动方向和速度,从而实现角度的调整。

二、舵机的控制方法舵机的控制方法一般采用脉冲宽度调制(PWM)信号来实现位置或角度的控制。

以下是舵机的两种常见控制方法:1.脉宽控制(PWM):舵机的控制信号是通过控制信号的脉冲宽度来实现的。

通常情况下,舵机的控制信号由一系列周期为20毫秒(ms)的脉冲组成,脉冲的高电平部分的宽度决定了舵机的位置或角度。

典型的舵机控制信号范围是1ms到2ms,其中1ms对应一个极限位置,2ms对应另一个极限位置,1.5ms对应中立位置。

2.串行总线(如I2C或串行通信):一些舵机还支持通过串行总线进行控制,这些舵机通常具有内置的电路来解码接收到的串行信号,并驱动电机转动到相应的位置。

这种控制方法可以实现多个舵机的同时控制,并且可以在不同的控制器之间进行通信。

三、舵机的控制电路与控制信号1.控制电路:舵机的控制电路通常由微控制器(如Arduino)、驱动电路和电源组成。

微控制器用于生成控制信号,驱动电路用于放大和处理控制信号,电源则为舵机提供所需的电能。

2.控制信号的生成:控制信号可以通过软件或硬件生成。

用于舵机的软件库通常提供一个函数来方便地生成适当的控制信号。

舵机的控制方式和工作原理介绍

舵机的控制方式和工作原理介绍

舵机的控制方式和工作原理介绍舵机是一种常见的电动执行元件,广泛应用于机器人、遥控车辆、模型飞机等领域。

它通过电信号控制来改变输出轴的角度,实现精准的位置控制。

本文将介绍舵机的控制方式和工作原理。

一、舵机的结构和工作原理舵机的基本结构包括电机、减速装置、控制电路以及输出轴和舵盘。

电机驱动输出轴,减速装置减速并转动输出轴,而控制电路则根据输入信号来控制电机的转动或停止。

舵机的主要工作原理是通过PWM(脉宽调制)信号来控制。

PWM信号是一种周期性的方波信号,通过调整占空比即高电平的时间来控制舵机的位置。

通常情况下,舵机所需的控制信号频率为50Hz,即每秒50个周期,而高电平的脉宽则决定了输出轴的角度。

二、舵机的控制方式舵机的控制方式主要有模拟控制和数字控制两种。

1. 模拟控制模拟控制是指通过改变输入信号电压的大小,来控制舵机输出的角度。

传统的舵机多采用模拟控制方式。

在模拟控制中,通常将输入信号电压的范围设置在0V至5V之间,其中2.5V对应于舵机的中立位置(通常为90度)。

通过改变输入信号电压的大小,可以使舵机在90度以内左右摆动。

2. 数字控制数字控制是指通过数字信号(如脉宽调制信号)来控制舵机的位置。

数字控制方式多用于微控制器等数字系统中。

在数字控制中,舵机通过接收来自微控制器的PWM信号来转动到相应位置。

微控制器根据需要生成脉宽在0.5ms至2.5ms之间变化的PWM信号,通过改变脉宽的占空比,舵机可以在0度至180度的范围内进行精确的位置控制。

三、舵机的工作原理舵机的工作原理是利用直流电机的转动来驱动输出轴的运动。

当舵机接收到控制信号后,控制电路将信号转换为电机驱动所需的功率。

电机驱动输出轴旋转至对应的角度,实现精准的位置控制。

在舵机工作过程中,减速装置的作用非常重要。

减速装置可以将电机产生的高速旋转转换为较低速度的输出轴旋转,提供更大的扭矩输出。

这样可以保证舵机的运动平稳且具有较大的力量。

四、舵机的应用领域舵机以其精准的位置控制和力矩输出,广泛应用于各种领域。

舵机如何控制

舵机如何控制

舵机如何控制舵机是一种常用的控制设备,广泛应用于机械臂、无人机、机器人、汽车、飞机等领域。

本论文将从舵机的基本原理、控制方式、应用场景以及未来发展等四个章节,介绍舵机的控制原理和技术。

第一章:舵机的基本原理舵机是一种能够根据控制信号精确控制角度的电机。

其基本原理是利用电机驱动机械结构,通过变换电机转动角度实现舵机臂的旋转。

舵机内部包含电机、减速器、编码器和控制电路等组件。

当接收到控制信号时,控制电路将信号转换为电机驱动信号,进而驱动电机旋转,通过减速器和编码器的组合,将电机的旋转转化为舵机臂的升降或旋转运动。

第二章:舵机的控制方式舵机的控制方式主要分为PWM控制和串行总线控制两种。

PWM控制是通过控制信号的脉宽来控制舵机转动角度。

一般而言,舵机的转动角度与控制信号脉宽成正比,通过改变脉宽的长度,可以调整舵机的转动角度。

而串行总线控制是通过先将舵机的参数设置发送到舵机内部,然后通过发送指令控制舵机的旋转角度。

这种控制方式相对更加灵活,可以实现更精确的控制。

第三章:舵机的应用场景舵机在各个领域都有广泛的应用。

在机械臂领域,舵机可以控制机械臂的各个关节实现精确的运动。

在无人机领域,舵机可以控制飞行控制面和螺旋桨等部件,实现无人机的姿态调整和飞行控制。

在机器人领域,舵机可以控制机器人的头部、手臂和腿部等部件,实现机器人的多样化动作。

在汽车领域,舵机可以控制转向系统,实现车辆的转向和平稳行驶。

第四章:舵机的未来发展随着科技的不断进步,舵机在未来将会有更多的应用和发展空间。

一方面,舵机的控制精度将得到进一步提高,可以满足更高要求的应用场景。

另一方面,舵机的体积和成本也将进一步减小,更适用于小型设备和个人消费品。

此外,舵机还将与其他技术相结合,例如人工智能、图像识别等,实现更智能化的控制和应用。

综上所述,舵机是一种基于电机驱动的控制设备,通过电机和机械结构的相互配合,实现舵机的精确控制。

舵机的控制方式主要有PWM控制和串行总线控制两种,其应用场景广泛,包括机械臂、无人机、机器人和汽车等领域。

舵机控制方法

舵机控制方法

舵机控制方法舵机是机械系统中重要的组成部分,它是用来控制机械系统运动方向或者改变机械系统状态的装置。

由于舵机多种不同的用途,所以控制方法形式也有不同。

舵机控制方法主要分为两类:模拟信号控制和数字信号控制。

模拟信号控制的原理是把舵机的运动方向和运动速度表示为模拟信号,以及把模拟信号作为舵机输入控制舵机的运动方向和运动速度。

模拟信号控制的优点是控制方法简单,控制精度高,灵敏度强。

但是模拟信号控制系统存在受限于传感器精度,需要把握控制环境变化等缺陷。

数字信号控制系统是采用数字信号来控制舵机的位置和运动方向以及运动速度,它可以分辨出每一个舵角。

数字信号控制首先把模拟量转换为数字信号,然后把这些数字信号作为舵机输入,再把舵机输出传送出去,从而控制舵机的运动方向和运动速度。

数字信号控制也可以根据实际需要实时修改控制精度,调节控制参数,并能够实现自动调节与控制。

随着舵机控制方法的发展,舵机控制方向和运动速度的精度和准确性不断提升。

借助新的技术,舵机控制已成为机械系统中重要的一部分,对于机械系统的控制起到了至关重要的作用。

只有合理的舵机控制方法,才能达到所需要的机械系统控制效果。

因此,舵机控制方法的研究集中在控制精度、系统可靠性、运动可靠性、操纵可靠性等方面。

通过功率电路,控制电路和传感器等系统设计和多种控制算法,可以提高舵机控制的性能。

目前,人们已经研究出了多种控制方法,如状态反馈控制、模糊控制、神经网络控制等,他们都能够提升机械系统的精度和运动可靠性。

以上就是关于舵机控制方法的介绍,舵机控制装置在很多方面都发挥着重要作用,其重要性不言而喻。

在未来,舵机控制系统必将得到更广泛的应用,搭建更先进、更安全、更可靠的机械系统。

控制舵机方法

控制舵机方法

控制舵机方法
舵机的控制方法详解如下:
舵机,是一种常用于模型制作和机器人控制的电机,可以精确地控制输出角度和速度。

在许多实际应用中,控制舵机是至关重要的一步。

那么,舵机的控制方式是什么呢?
1.PWM控制方式
PWM控制方式是最常见的一种控制舵机的方法。

PWM是指脉冲宽度调制,即在一定时间内,通过改变脉冲的宽度来控制舵机的角度。

信号源是通过微控制器,单片机或其他控制芯片来生成的。

通过这种方式,可以控制舵机的位置、速度和方向。

2.RC信号控制方式
RC信号控制方式也被广泛应用于舵机控制中。

这种方式通过接收来自遥控器等RC信号源的信号来控制舵机的运行。

通常,RC信号的频率为20ms,脉宽在1-2ms范围内,其中1.5ms表示舵机的中心位置。

通过改变脉宽,可以控制舵机的运行。

3.数字信号控制方式
数字信号控制方式是一种先进的控制方式,可以实现更高级别的控制。

这种方式使用电子设备(如Arduino或RaspberryPi)来生成数字信号,用于控制舵机的转向、角度和速度。

数字信号控制方式通常使用标准的PWM信号进行控制,但与传统的PWM控制方式相比,数字信号控制方式可以更精确地控制微小的脉宽变化。

综上所述,控制舵机的方法有很多种,包括PWM控制方式、RC信号控制方式和数字信号控制方式。

选择适当的控制方式可以使舵机的运行更加稳定和精确,提高机器人和模型的整体性能。

舵机怎么控制

舵机怎么控制

舵机怎么控制舵机的控制是机器人控制中非常重要的一部分。

舵机可以通过向机器人的连接部件施加力矩,从而控制其运动和姿态。

本论文将分为四个章节,分别介绍舵机的工作原理、舵机的控制方式、舵机的应用和未来的趋势。

第一章:舵机的工作原理舵机是一种通过转动轴来控制输出角度的电动装置。

它由电机、减速器和控制电路组成。

当电机转动时,减速器将输出转矩传递给连接部件,使其移动到所需的位置。

舵机的工作原理基于反馈控制系统,其中控制电路通过传感器准确测量当前位置,并根据设定值产生控制信号,使舵机转动到精确的角度。

第二章:舵机的控制方式舵机的控制方式主要有两种:开环和闭环控制。

开环控制是指通过简单的控制信号来直接控制舵机。

这种控制方式简单易行,但可控性较差,难以精确控制舵机的输出角度。

闭环控制是指通过反馈信号来实时调整控制信号,使舵机精确转动到所需的位置。

闭环控制具有较高的控制精度,但也更加复杂,需要使用传感器来获取反馈信号。

第三章:舵机的应用舵机广泛应用于机器人、航空航天、航海、汽车和工业自动化等领域。

在机器人领域,舵机用于控制机器人的关节运动,使其具备更加精确和灵活的动作能力。

在航空航天领域,舵机用于控制飞行器的姿态和稳定性,确保飞行器在空中的平稳飞行。

在航海领域,舵机用于控制船舶的航向,使船舶能够准确地按照预定航线行驶。

在汽车领域,舵机用于控制汽车的转向,使驾驶人能够轻松操作车辆。

在工业自动化领域,舵机用于控制机械臂和其他运动装置的运动,实现精确的运动控制。

第四章:舵机的未来趋势随着技术的发展,舵机的控制将更加精确和智能化。

传感器技术的不断进步将使得舵机能够获得更加准确的反馈信号。

此外,人工智能和机器学习算法的应用也将提高舵机的控制精度和适应性。

未来,舵机有望成为机器人控制系统中更加重要的一部分,为机器人带来更高的运动和操作能力。

总结:舵机是机器人控制中不可或缺的一部分。

本论文从舵机的工作原理、控制方式、应用和未来的趋势等四个方面进行了介绍。

舵机及舵机的精确控制

舵机及舵机的精确控制

使用传统单片机控制舵机的方案也有很多,多是利用定时器和中断的方式来完成控制的,这样的方式控制1个舵机还是相当有效的,但是随着舵机数量的增加,也许控制起来就没有那么方便而且可以达到约2微秒的脉宽控制精度了。听说AVR也有控制32个舵机的试验板,不过精度能不能达到2微秒可能还是要泰克才知道了。其实测试起来很简单,你只需要将其控制信号与示波器连接,然后让试验板输出的舵机控制信号以2微秒的宽度递增。
set0 s_motor1_drv
;
按这样写下去,一路PC写7个这样的伺服也一点不紧张的,因为PWM的周期是20毫秒,而最大脉宽才2.5毫秒,7*2.5=17.5毫秒。写完了所有的脉冲后又做什么,跳回再等待下一个20毫秒有效的信号量。而20毫秒的信号量从哪里来,因为多核心,当然可以随便拿个工作频率低点的CPU来产生啦。这样一来,一颗14PIN的FPPA ,PDK80C02-SOP14就可以通过无线或者红外来精确控制7路舵机。当然你想控制40路左右的驱动都没有问题,因为我们的最大封装就有40几个IO口。
舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。目前在高档遥控玩具,如航模,包括飞机模型,潜艇模型;遥控机器人中已经使用得比较普遍。舵机是一种俗称,其实是一种伺服马达。
还是看看具体的实物比较过瘾一点:
2. 其工作原理是:
控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。当然我们可以不用去了解它的具体工作原理,知道它的控制原理就够了。就象我们使用晶体管一样,知道可以拿它来做开关管或放大管就行了,至于管内的电子具体怎么流动是可以完全不用去考虑的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子科技大学:(清晰明了,代码看不懂)其实在车速不快的情况下只用车前40cm内的黑线偏差就可以让赛车沿黑线行驶,问题是在赛车高速行驶时需要对前方更远的赛道信息进行预判,例如控制赛车入弯前减速、使赛车走最优路径等。

因此我们使用距离车前第21 行、22 行、23 行的黑线平均位置计算赛车离黑线的偏差控制舵机拐向,用更远端的黑线来进行赛道预判。

计算相邻两段黑线的斜率还可以判断出小S 弯,让赛车在小S 弯直冲。

如图5.5.3.1 所示,Mid_Erro 为赛车当前的方向偏差,用于控制舵机当前时刻的转向。

Top_Erro 为图像最远端离中线的偏差,用于进行赛车前方赛道预判,Top_Erro 越大,减速越大如图5.5. 3.2 所示,只要计算相隔S_Row 行的黑线的相对斜率Up_Erro 和Down_Erro ,如果Up_Erro 和Down_Erro 方向相反而且大于预设的阈值就可以判定出小S 弯,让输出的偏移量Erro 缩小,减小舵机的转向,使小车减小抖动。

桂林理工:D_zhongxinDJ_chu+(D_Kp=++xiu_D_Kp)(errordd_error)/10-*error/10D_Kd*其中,D_zhongxin是车模前轮摆正时的参数,为1460;D_Kp是舵机PD控制的P值;xiu_D_Kp 是舵机P值的修正值;error是当前图像的黑线中心的偏差;D_Kd是舵机PD控制中的D值;dd_error是上次图像黑线中心的偏差。

DJ_chu是输出给舵机的PWM值。

军械工程:斜率做赛道判断(同桂林)void Direction_Control(void){Control_Row = Good_Road_End-1;if(Control_Row_Far == 1) //40行控制{//Control_Row = Good_Road_End-1;}if(Control_Row_Middle == 1) //35行控制{if(Control_Row>34) Control_Row=Control_Row-5;}if(Control_Row_Near == 1) //30行控制{if(Control_Row>29) Control_Row=Control_Row-10;}Level_Offset = Black_Center[Control_Row] - 30; //偏差if(Level_Offset > 0) //左转参数{K1 = L_KH - Control_Row*Control_Row/L_KW;K2 = 2;}if(Level_Offset < 0) //右转参数{K1 = R_KH - Control_Row*Control_Row/R_KW;K2 = 2;}Steer_Value[0] = Straight_Value + K1*Level_Offset + K2* Slope ;两变量控制if(Steer_Value[0] > Left_Limit) Steer_Value[0] = Left_Limit;if(Steer_Value[0] < Right_Limit) Steer_Value[0] = Right_Limit;if(Bad_Field_Flag) Steer_Value[0] = Steer_Value[1]; //如果为无效场,舵机值不变PWMDTY67 = Steer_Value[0];Steer_Value[1] = Steer_Value[0];}上海交大(清晰明了,代码复杂)5.5.1 舵机顶层控制量选定简单沿线行驶策略的目标是控制舵机使得赛车尽可能沿着导引线前进。

所以舵机顶层控制量选用的是某一行黑线的中心位置,控制行的选取与速度进行线性耦合。

5.5.2 舵机顶层控制量修正对于S 弯道的最佳行驶路线是沿着中心线行驶,这样可以大大提高赛车速度,缩短行驶时间。

如何能做到这一点呢?一般的想法是将S 弯和普通弯道、直道区分开来。

这就要进行模式识别与决策。

但是,识别存在着出错的可能,万一识别出错,小车将会很容易冲出赛道。

而且,使用判断并分开进行单独控制的方法,与采用统一的方法进行S 道直冲、普通弯道切弯相比,显得比较丑陋。

所以我们最后采用的是较为简洁、优美、统一的方法,通过对顶层控制量的修正,来一并完成这几项任务。

修正使用的信息是控制行之上的黑线位置的加权平均值。

陕西理工: d0=(int)((4500-route_ps[a0])/scale);U_PD=(int)(center+Kp_1*d0);Scale:舵机参数route_ps[a0]?西安交通:rudder=(rudder_kp*err[0]+kd/2*(err[0]-err[1])*10000l)/10000l;err[0]:相邻三行平均位置中山大学:边线双曲率看不懂:复杂大连理工:最小二乘优化路径,以斜率和截距判断打脚。

截距不懂?无代码,复杂杭电:我们用的舵机打角控制比较简单,只根据光电式编码器反馈来的脉冲数转化为速度再用这个值乘上舵机反应滞后时间得出打角行位置,然后根据这个打角行位置与图像中心位置的偏差来计算出舵机的打角值。

(动态单行)主流三种:单点A加A与远点B斜率多点平均加权(似乎也算了远近处偏差;华科说多点平均加权,但代码中有远近处偏差分量,西北工业与东秦同华科,北科代码未见,权值如何定?)单点平均(电子科大,交大,这两个队代码超复杂。

杭电也是)我们选择第35 行作为主要的控制行,把这一行黑线的位置与图像中心位置的差作为偏差进行PID 控制。

另外用第50 行和第37 行的差即空间上的偏差变化量作为辅助控制量,目的是充分利用摄像头在前瞻方面的优势,提前判断赛道走势。

PD 控制式如公式4:PWMDTY 45 = K P *error + K D1 *Ec1 + K D2 *Ec2 公式4其中error 为控制行黑线位置偏离中心位置的值, 1 Ec 为时间上的偏差变化量,即error 的变化量, 2 Ec 为空间上的偏差变化量。

变参数主要体现在当识别出赛道为直道或小S 时,选用较小的PD 参数,让小车舵机输出小转角,基本实现沿直线前进。

而当为其它赛道类型是则选用较大的PD 参数,实现及时转弯和内切。

另外B 型车舵机左右不对称的客观因素在调车过程中也是不容忽视的,为此需先算出PWM 输出,判断小车转向左或是右,然后调用不同的PD 参数。

参数加权则是两个控制量之间的权重分配。

要配合着PD 参数在调车过程中一起调。

/****************************************************************//*** 函数名rudder_control***//*** 功能:根据控制点偏离中心位置实施PID 控制***//*** 日期:20100627 ***//****************************************************************/void rudder_control(void){static int cha=0,cha2=0,cha3=0;int last_cha=0;unsigned char r_i=0;unsigned int pwm_cal=0;byte s_high=0;byte s_low=0;last_cha=cha;cha=location[control_point]-centre_location;if(lie_end_flag){第五届全国大学生智能汽车邀请赛技术报告XXIVlie_end_flag=0;if(lie_end_hang<20){if(last_cha>=0)cha=-50;elsecha=50;}}else if(invalid_c_first){invalid_c_first=0;if(last_cha>=0)cha=-50;elsecha=50;}if(cha>=0){//右拐angle.kp=65;angle.kd=7;angle.kd1=2;}else {//左拐angle.kp=60 ;angle.kd=9;angle.kd1=4;}if(location[lie_end_hang]>80) {if(lie_end_hang>30) {angle.kp+=55;}else if(lie_end_hang>=20) {angle.kp+=65;}}else if(location[lie_end_hang]<20){附录XXVif(lie_end_hang>30) {angle.kp+=55;}else if(lie_end_hang>=20) {angle.kp+=60;}}if(s_flag==1){if(road_type==2) angle.kp-=10;}cha=-cha;cha2=cha-last_cha;cha3=location[37]-location[50];pwm_cal=angle.kp*cha/20+angle.kd*cha2+angle.kd1*cha3+centre_pwm; if(pwm_cal>2300) pwm_cal=2300;else if(pwm_cal<500) pwm_cal=500;PWMDTY45=pwm_cal;。

相关文档
最新文档