2018-2019学年安徽省合肥市庐阳区七年级(上)期末数学试卷解析版

合集下载

2018-2019学度安徽初一数学上年末考试重点试卷(A)含解析.doc.doc

2018-2019学度安徽初一数学上年末考试重点试卷(A)含解析.doc.doc

2018-2019学度安徽初一数学上年末考试重点试卷(A)含解析 七年级数学〔考试时间:120分钟 试卷总分值:150分〕本卷须知1、本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2、回答第一卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3、回答第二卷时,将答案写在答题卡上。

写在本试卷上无效。

4、考试结束后,将本试卷和答题卡一并交回。

5、考试范围:沪科版七上第1~5章。

第一卷【一】选择题〔本大题共10小题,每题4分,总分值40分〕1、-3的相反数是A 、3B 、-3C 、13D 、-132、计算 223a a -+ 的结果为A 、22aB 、22a - C 、24a D 、24a - 3、月球的半径约为1738000米、这一数据用科学记数法表示为A 、60.173810⨯B 、6173.810⨯ C 、61.73810⨯ D 、71.73810⨯ 4、以下四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程、其中可用公理“两点之间,线段最短”来解释的现象有A 、①②B 、①③C 、②④D 、③④5、实数a 、b 在数轴上的位置如下图,那么化简||a b a -+的结果为A、2a b+B、b-C、2a b--D、b6、当a=2与a=﹣2时,代数式a4﹣2a2+3的两个值A、互为倒数B、互为相反数C、相等D、既不相等也不互为相反数7、为了搞活经济,某商场将一种商品A按标价9折出售,仍获利润10%,假设商品A标价为33元,那么商品进货价为A、 31元B、 30、2元C、 29、7元D、 27元8、某校开展以“了解传统习俗,弘扬民族文化”为主题的实践活动、实践小组就“是否知道端午节的由来”A、被调查的学生共有50人B、被调查的学生中“知道”的人数为32人C、图中“记不清”对应的圆心角为60°D、全校“知道”的人数约占全校总人数的64%9、在直线AB上任取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是A、60°B、120°C、60°或90°D、60°或120°10、如下图,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是A、3元,3、5元B、3、5元,3元C、4元,4、5元D、4、5元,4元第二卷【二】填空题〔本大题共4小题,每题5分,总分值20分〕11、假设227m x y+-与33nx y-是同类项,那么m n-=__________、12、∠α的补角比∠α的余角的3倍大10°,那么∠α=__________、13、关于x,y 的二元一次方程组23, 21x y k x y +=⎧⎨+=-⎩的解互为相反数,那么k 的值是__________、14、A 、B 、C 三点在同一条直线上,M 、N 分别为线段AB 、BC 的中点,且AB=60,BC=40,那么MN 的长为__________、21·世纪*教育网21世纪教育网版权所有【三】〔本大题共2小题,每题8分,总分值16分〕15、计算:〔1〕()311823(2)-÷-+⨯-; 〔2〕117313()( 4.8)128424-+-⨯-;〔3〕48°39′+67°33′、16、先化简,再求值:()()3232279234x x x x x x ----+,其中1x =-、【四】〔本大题共2小题,每题8分,总分值16分〕17、解方程〔组〕:〔1〕2953x x -=+;〔2〕5731164x x --+=; 〔3〕35528x y x y -=⎧⎨-=⎩、 18、如图,直线AB 、CD 相交于点O ,OF 平分∠AOE ,OF ⊥CD ,垂足为O 、〔1〕假设∠AOE=120°,求∠BOD 的度数;〔2〕写出图中所有与∠AOD 互补的角:、【五】〔本大题共2小题,每题10分,总分值20分〕19、某自行车厂计划一周生产自行车1400辆,平均每天计划生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入、下表是某周的生产情况:〔超过每天计划生产数记为正、不足每天计划生产数记为负〕:2星期一 二 三 四 五 六 日 增减+5 ﹣2 ﹣4 +13 ﹣10 +14 ﹣9 〔1〕该厂星期三生产自行车_________辆;〔2〕产量最多的一天比产量最少的一天多生产自行车________辆;〔3〕该厂本周实际每天平均生产多少辆自行车?20、某校在开展“校园献爱心”活动中,共筹款4500元捐赠给西部山区学校男、女两种款式书包共70个,男款书包的单价为60元/个,女款书包的单价70元/个、那么捐赠的两种书包各多少个?六、〔此题总分值12分〕21、某商场对一种新售的手机进行市场问卷调查,其中一个项目是让每个人按A〔不喜欢〕、B〔比较喜欢〕、C〔喜欢〕、D〔非常喜欢〕四个等级对该手机进行评价,图①和图②是该商场采集数据后,绘制的两幅不完整的统计图,请你根据以上统计图提供的信息,回答以下问题:〔1〕本次调查的人数为_____人、〔2〕图①中,D等级所占圆心角的度数为_____;〔3〕请在图②中补全条形统计图、七、〔此题总分值12分〕22、为给同学们创造更好的读书条件,学校准备新建一个长度为L的长廊,并准备用假设干块带有花纹和没有花纹的两种规格、大小相同的正方形地面砖搭配在一起,按如下图的规律拼成图案铺满长廊,每个小正方形地面砖的边长均为0、6m、…第1个图案第2个图案第n个图案〔1〕按图示规律,第1个图案的长度L1=m;第2个图案的长度L2=m、〔2〕请用代数式表示带有花纹的地面砖块数n与走廊的长度Ln之间的关系、〔3〕当走廊的长度L为36、6m时,请计算出所需带有花纹图案的瓷砖的块数、八、〔此题总分值14分〕23、:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨、某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物、根据以上信息,解答以下问题:〔1〕1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?〔2〕请你帮该物流公司设计租车方案、。

七年级上册合肥数学期末试卷测试卷(含答案解析)

七年级上册合肥数学期末试卷测试卷(含答案解析)

七年级上册合肥数学期末试卷测试卷(含答案解析)一、选择题1.3-的倒数是( )A .3B .13C .13-D .3-2.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( ) A .B .C .D .3.下列各项中,是同类项的是( ) A .xy -与2yxB .2ab 与2abcC .2x y 与2x zD .2a b 与2ab4.如图①,一种长方形餐桌的四周可坐6人用餐,现把若千张这样的餐桌按如图②方式进行拼接.那么需要_________张餐桌拼在一起可坐78人用餐( )A .13B .15C .17D .195.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( ) A .AC =BCB .AB =2ACC .AC +BC =ABD .12BC AB =6.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a7.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x--=,整理得36x = 8.如图,若AB ,CD 相交于点O ,过点O 作OE CD ⊥,则下列结论不正确的是A .1∠与2∠互为余角B .3∠与2∠互为余角C .3∠与AOD ∠互为补角 D .EOD ∠与BOC ∠是对顶角 9.下列运算正确的是( ) A .332(2)-=- B .22(3)3-=- C .323233-⨯=-⨯ D .2332-=-10.在 3.14、 227、 0、π、1.6这 5个数中,无理数的个数有( ) A .1 个B .2 个C .3 个D .4 个11.2019年12月15开始投入使用的盐城铁路综合客运枢纽,建筑总面积的为324000平方米,数据324000用科学记数法可表示为( ) A .33.2410⨯B .43.2410⨯C .53.2410⨯D .63.2410⨯12.如图是一个正方体的展开图,折好以后与“学”相对面上的字是( )A .祝B .同C .快D .乐13.下列各图中,是四棱柱的侧面展开图的是( ) A .B .C .D .14.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )A .B .C .D .15.下列说法中正确的有( ) ①经过两点有且只有一条直线; ②连接两点的线段叫两点的距离; ③两点之间的所有连线中,垂线段最短; ④过直线外一点有且只有一条直线与已知直线平行. A .0个B .1个C .2个D .3个二、填空题16.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上由左至右第1个数是1,第2个数是13,第3个数是41,…,依此规律,第5个数是______.17.计算: x(x-2y) =______________ 18.单项式-4x 2y 的次数是__.19.若规定这样一种运算法则a ※b=a 2+2ab ,例如3※(-2) = 32+ 2× 3×(-2) =-3 ,则 (-2) ※3 的值为_______________. 20.12-的相反数是_________. 21.在墙上固定一根木棒时,至少需要两根钉子,这其中所体现的“基本事实”是______. 22.请写出一个系数是-2,次数是3的单项式:________________. 23.比较大小:227-__________3-. 24.如图,点C 在直线AB 上,(A C 、、B 三点在一条直线上,)若CE CD ⊥,已知150∠=︒,则2∠=________°25.32-的相反数是_________; 三、解答题26.作图题:如图,已知平面上四点,,,A B C D .(1)画直线AD ;(2)画射线BC ,与直线AD 相交于O ; (3)连结,AC BD 相交于点F .27.如图,OC 是一条射线,OD 、OE 分别是AOC ∠和BOC ∠的平分线.(1)如图①,当80AOB ∠=︒时,则DOE ∠的度数为________________;(2)如图②,当射线OC 在AOB ∠内绕O 点旋转时,∠BOE 、EOD ∠、DOA ∠三角之间有怎样的数量关系?并说明理由;(3)当射线OC 在AOB ∠外如图③所示位置时,(2)中三个角:∠BOE 、EOD ∠、DOA ∠之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC 在AOB ∠外如图④所示位置时,∠BOE 、EOD ∠、DOA ∠之间数量关系是____________. 28.解方程(1)610129x x -=+;(2)21232x x x +--=-.29. a ※b 是新规定的这样一种运算法则:a ※b=a 2+2ab ,例如3※(-2)=32+2×3×(-2)=-3 (1)试求(-2)※3的值 (2)若1※x=3,求x 的值 (3)若(-2)※x=-2+x ,求x 的值. 30.如图,点P 是∠AOB 的边OB 上的一点. (1)过点P 画OB 的垂线,交OA 于点C ; (2)过点P 画OA 的垂线,垂足为H ;(3)线段PH 的长度是点P 到______的距离,______是点C 到直线OB 的距离,线段PC 、PH 、OC 这三条线段大小关系是______(用“<”号连接).31.计算(1)48(2)(4)-+÷-⨯-(2)21513146326⎛⎫⎛⎫--+++- ⎪ ⎪⎝⎭⎝⎭32.如图,直线AB,CD 交于点O ,OE 平分COB ∠,OF 是EOD ∠的角平分线.(1)说明: 2AOD COE ∠=∠;(2)若50AOC ∠=︒,求EOF ∠的度数; (3)若15BOF =︒∠,求AOC ∠的度数. 33.如图,点A ,B 在长方形的边上.(1)用圆规和无刻度的直尺在长方形的内部作∠ABC =∠ABO ;(保留作图痕迹,不写作法)(2)在(1)的条件下,若BE是∠CBD的角平分线,探索AB与BE的位置关系,并说明理由.四、压轴题34.[ 问题提出 ]一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有个面,因此一面涂色的共有个;两面涂色的:在棱上,每个棱上有2个,正方体共有条棱,因此两面涂色的共有个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有个顶点,因此三面涂色的共有个…[ 问题解决 ]一个边长为ncm(n⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个;两面涂色的:在棱上,共有______个;三面涂色的:在顶点处,共______个。

2018-2019学年安徽省七年级数学(上)期末模拟试题

2018-2019学年安徽省七年级数学(上)期末模拟试题

2018-2019学年安徽省七年级数学(上)期末模拟试题一.选择题(共12小题,满分36分,每小题3分)1.﹣3的倒数是()A.3B.C.﹣D.﹣32.下列式子错误的个数是()①|+3|=3 ②﹣|﹣4|=4 ③﹣23=﹣6 ④|a|>0A.4个B.3个C.2个D.1个3.下列图形中,主视图为图①的是()A.B.C.D.4.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人5.∠1的对顶角是∠2,∠2的邻补角是∠3,若∠3=45°,则∠1的度数是()A.45°B.90°C.135°D.45°或135°6.已知a+b=4,c﹣d=3,则(b+c)﹣(d﹣a)的值等()A.1B.﹣1C.7D.﹣77.时钟显示为8:30时,时针与分针所夹的角是()A.90°B.120°C.75°D.84°8.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元9.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>010.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3B.∠1=180°﹣∠3C.∠1=90°+∠3D.以上都不对11.按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3B.x=﹣4,y=﹣2C.x=2,y=4D.x=4,y=2 12.如图,是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点,第三行有4个点,第四行有8个点,….那么这个三角点阵中前n行的点数之和可能是()A.510B.511C.512D.513二.填空题(共6小题,满分24分,每小题4分)13.计算:x2y﹣3yx2=.14.已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,则线段AM的长为.15.计算89°15′﹣35°21′=.16.已知有理数x,y满足|3x﹣6|+(y﹣2)2=0,则x y的值是.17.一个两位数,十位数字为a,个位数字为b,这个两位数可以表示为.18.将一副三角板如图放置,若∠AOD=20°,则∠BOC的大小为.三.解答题(共5小题,满分40分)19.(6分)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.20.为了加快新农村建设,国务院决定:凡农民购买家电和摩托车享受政府13%的补贴(凭购物发票到乡镇财政所按13%领取补贴).农民李伯伯家购买了一台彩电和一辆摩托车共花去6000元,且该辆摩托车的单价比所买彩电的单价的2倍还多600(1(2)求李伯伯家所买的摩托车与彩电的单价各是多少元?21.某工程交由甲、乙两个工程队来完成,已知甲工程队单独完成需要60天,乙工程队单独完成需要40天(1)若甲工程队先做30天后,剩余由乙工程队来完成,还需要用时天(2)若甲工程队先做20天,乙工程队再参加,两个工程队一起来完成剩余的工程,求共需多少天完成该工程任务?22.如图,直线AB,CD相交于O点,OM平分∠AOB.(1)若∠1=∠2,求∠NOD的度数;(2)若∠BOC=4∠1,求∠AOC与∠MOD的度数.23.(10分)某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?2018-2019学年安徽省七年级数学(上)期末模拟试题参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【分析】根据绝对值性质和有理数乘方运算法则逐一计算即可判断.【解答】解:①|+3|=3,正确;②﹣|﹣4|=﹣4,错误;③﹣23=﹣8,错误;④|a|≥0,错误;故选:B.【点评】本题主要考查有理数的乘方和绝对值,解题的关键是掌握绝对值的性质和有理数乘方的运算法则.3.【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.【解答】解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.【点评】此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.4.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.5.【分析】根据对顶角相等,易得∠1=∠2,∠2的邻补角是∠3,则∠2+∠3=180°,进而计算可得答案.【解答】解:∠1的对顶角是∠2,故∠1=∠2,∠2的邻补角是∠3,则∠2+∠3=180°,若∠3=45°,则∠1=∠2=135°;故选:C.【点评】本题考查对顶角的性质以及邻补角的定义与性质,是一个需要熟记的内容.6.【分析】原式去括号整理后,将已知的等式代入计算即可求出值.【解答】解:∵a+b=4,c﹣d=3,∴原式=b+c﹣d+a=(a+b)+(c﹣d)=3+4=7,故选:C.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.7.【分析】由于钟面被分成12大格,每格为30°,而8点30分时,钟面上时针指向数字8与9的中间,分针指向数字6,则它们所夹的角为2×30°+×30°.【解答】解:8点30分时,钟面上时针指向数字8与9的中间,分针指向数字6,所以时针与分针所成的角等于2×30°+×30°=75°.故选:C.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.8.【分析】设两件衣服的进价分别为x、y元,根据利润=销售收入﹣进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.9.【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.10.【分析】根据∠1与∠2互补,∠2与∠3互余,先把∠1、∠3都用∠2来表示,再进行运算.【解答】解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:C.【点评】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.11.【分析】根据运算程序,结合输出结果确定的值即可.【解答】解:A、x=3、y=3时,输出结果为32+2×3=15,不符合题意;B、x=﹣4、y=﹣2时,输出结果为(﹣4)2﹣2×(﹣2)=20,不符合题意;C、x=2、y=4时,输出结果为22+2×4=12,符合题意;D、x=4、y=2时,输出结果为42+2×2=20,不符合题意;故选:C.【点评】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.12.【分析】首先由题意可知这个三角点阵中的数,从第2行起,每一行与它的前一行的数之比等于2,即点阵中的数成等比数列,第n行有2n﹣1个点.根据等比数列的求和公式得出这个三角点阵中前n行的点数之和为2n﹣1,又29=512,由此得出答案.【解答】解:∵一个三角点阵,从上向下数有无数多行,其中第一行有1个点,1=20;第二行有2个点,2=21;第三行有4个点,4=22;第四行有8个点,8=23;…∴第n行有2n﹣1个点,∴这个三角点阵中前n行的点数之和为:=2n﹣1,又∵29=512,∴29﹣1=511.故选:B.【点评】本题考查了规律型:图形的变化类,根据前面四行的点数特点,得出这个点阵中的数成等比数列,从而根据等比数列的求和公式得出这个三角点阵中前n行的点数之和为2n﹣1,是解题的关键.二.填空题(共6小题,满分24分,每小题4分)13.【分析】根据合并同类项的法则,系数相加作为系数,字母和字母的指数不变进行合并.【解答】解:x2y﹣3yx2=﹣2yx2.故答案为:﹣2yx2.【点评】本题考查同类项的定义,合并同类项时把系数相加减,字母与字母的指数不变.14.【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上.【解答】解:①当点C在线段AB的延长线上时,此时AC=AB+BC=12cm,∵M是线段AC的中点,则AM=AC=6cm;②当点C在线段AB上时,AC=AB﹣BC=4cm,∵M是线段AC的中点,则AM=AC=2cm.故答案为6cm或2cm.【点评】本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.15.【分析】直接利用度分秒转换运算法则计算得出答案.【解答】解:89°15′﹣35°21′=88°75′﹣35°21′=53°54′.故答案为:53°54′.【点评】此题主要考查了度分秒的换算,正确掌握运算法则是解题关键.16.【分析】先根据非负数的性质得出x,y的值,再代入计算可得.【解答】解:∵|3x﹣6|+(y﹣2)2=0,∴3x﹣6=0且y﹣2=0,则x=2,y=4,所以x y=24=16,故答案为:16【点评】本题主要考查非负数的性质,解题的关键是掌握任意一个数的偶次方和绝对值都是非负数,当这些非负数的和等于零时,他们都等于零.17.【分析】用十位上的数字乘以10,加上个位上的数字,即可列出这个两位数.【解答】解:∵十位数字为a,个位数字为b,∴这个两位数可以表示为10a+b.故答案为:10a+b【点评】此题考查了代数式的列法,以及两位数的表示方法,数字的表示方法要牢记.两位数字的表示方法:十位数字×10+个位数字.18.【分析】先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.【解答】解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案为:160°.【点评】本题考查了度、分、秒之间的换算,余角的应用,解此题的关键是求出∠COA和∠BOD的度数,注意:已知∠A,则∠A的余角=90°﹣∠A.三.解答题(共5小题,满分40分)19.【分析】将代数式去括号,合并同类项,从而将整式化为最简形式,然后把x、y的值代入即可.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x2+3x2y2+3y2=﹣x2+y2;当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.【点评】本题主要考查了整式的加减运算.整式的加减运算实际上就是去括号、合并同类项.20.【分析】(1)直接利用凡农民购买家电和摩托车享受政府13%的补贴即可得出答案;(2)根据题意表示出彩电和摩托车的单价进而得出答案.【解答】解:(1)根据题意可得:6000×13%=780答:李伯伯可以从政府领到补贴780元;(2)设彩电的单价为x元/台,则摩托车的单价为:(2x+600)元,x+2x+600=60003x=5400解得:x=18002x+600=2×1800+600=4200,答:彩电与摩托车的单价分别为1800元/台、4200元/【点评】此题主要考查了一元一次方程的应用,正确得出等量关系是解题关键.21.【分析】(1)总的工作量是“1”,甲的工作效率是,乙的工作效率是,根据题意,利用甲的工作量+乙的工作量=1列出方程并解答;(2)设共需x天完成该工程任务,根据“甲的工作量+乙的工作量=1”列出方程并解答.【解答】解:(1)设剩余由乙工程队来完成,还需要用时x天,依题意得:+=1解得x=20.即剩余由乙工程队来完成,还需要用时20天故答案是:20;(2)设共需x天完成该工程任务,根据题意得+=1解得x=36答:共需36天完成该工程任务.【点评】考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.【分析】(1)根据角平分线的性质可得∠1+∠AOC=90°,再利用等量代换可得∠2+∠AOC=90°,利用邻补角互补可得答案;(2)根据条件可得90°+∠1=4∠1,进而可得求出∠1=30°,从而可得∠AOC 的度数,再利用邻补角互补可得∠MOD的度数.【解答】解:(1)∵OM平分∠AOB,∴∠1+∠AOC=90°,∵∠1=∠2,∴∠2+∠AOC=90°,∴∠NOD=180°﹣90°=90°;(2)∵∠BOC=4∠1,∴90°+∠1=4∠1,∴∠1=30°,∴∠AOC=90°﹣30°=60°,∠MON=180°﹣30°=150°.【点评】此题主要考查了角平分线和邻补角,关键是掌握邻补角互补.23.【分析】(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论;(3)设第二次乙种商品是按原价打y折销售,根据总利润=单件利润×销售数量,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据总利润=单件利润×销售数量列式计算;(3)找准等量关系,正确列出一元一次方程.。

2018-2019学年七年级数学上册第一学期期末试卷及答案含有详细解析

2018-2019学年七年级数学上册第一学期期末试卷及答案含有详细解析

2018~2019学年七年级数学上册第一学期期末试卷一、选择题1、若( )﹣(﹣2)=3,则括号内的数是( )A .﹣1B .1C .5D .﹣5 2、下列所有数中,最大的数是( )A .—4B .0C .—1D .3 3、若|m -3|+(n +2) 2=0,则m +2n 的值为( ).A .-4B .- 1C .0D .4 4、雨滴滴下来形成雨丝属于下列哪个选项的实际应用( )A .点动成线B .线动成面C .面动成体D .以上都不对 5、下列各组数中,互为相反数的是( )A .3与B .(﹣1)2与1C .﹣14与(﹣1)2D .2与|﹣2|6、的倒数是( )A .3B .C .-D .﹣3 7、下图中哪个图形经过折叠后可以围成一个棱柱( )A .B .C .D .8、代数式a 2﹣b1的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 的平方与b 的差的倒数 C .a 的平方与b 的倒数的差 D .a 与b 的差的平方的倒数 9、如图所示的立体图形是由几个小正方体组成的一个几何体,这个几何体从上面看到的形状图是( )……○…………○……A.B.C.D.10、下列各组代数式中,是同类项的共有()(1)32与23(2)﹣5mn与(3)﹣2m2n3与3n3m2(4)3x2y3与3x3y2A.1 组B.2 组C.3 组D.4 组二、填空题11、地球上陆地的面积约为149000000平方千米,把数据149000000用科学记数法表示为。

12、小明今年m岁,5年前小明_____岁。

13、中,底数是_____,指数是_____。

14、一个正方体的六个面上分别标有1、2、3、4、5、6,根据图中从各个方向看到的数字,解答下面的问题:“?”处的数字是_____。

三、计算15、计算:(1)(﹣32)﹣(﹣27)﹣(﹣72)﹣87 (2)16、求代数式的值(1)6x+2x2﹣3x+x2+1,其中 x=﹣5;(2)2(a2b+ab2)﹣2(a2b﹣1)﹣2ab2﹣2,其中 a=﹣2,b=2。

合肥市七年级上册数学期末试卷及答案-百度文库

合肥市七年级上册数学期末试卷及答案-百度文库

合肥市七年级上册数学期末试卷及答案-百度文库一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.若34(0)x y y =≠,则( ) A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 3.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .22C .2D .324.下列分式中,与2x yx y---的值相等的是() A .2x yy x +-B .2x yx y+-C .2x yx y--D .2x yy x-+ 5.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°6.方程3x +2=8的解是( ) A .3B .103C .2D .127.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33°8.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱 9.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .3(a ﹣b )2 B .(3a ﹣b )2 C .3a ﹣b 2 D .(a ﹣3b )2 10.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=111.下列各数中,比73-小的数是( ) A .3- B .2-C .0D .1-12.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题13.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________.14.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____. 159________16.写出一个比4大的无理数:____________.17.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.18.﹣213的倒数为_____,﹣213的相反数是_____. 19.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____. 20.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 21.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.22.用“>”或“<”填空:13_____35;223-_____﹣3.23.已知7635a ∠=︒',则a ∠的补角为______°______′.24.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、解答题25.教材中的探究:如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法.(1)图2中A 、B 两点表示的数分别为 , ;(2)请你参照上面的方法,把长为5,宽为1的长方形进行裁剪,拼成一个正方形. ①在图3中画出裁剪线,并在图4位置画出所拼正方形的示意图. ②在数轴上分别标出表示数5以及5﹣3的点,(图中标出必要线段长) 26.先化简,再求值:22111(83)3()223x xy x xy y ---+,其中2x =-,1y =. 27.已知方程313752x x -=+与关于 x 的方程3a -8=2(x +a)-a 的解相同. (1)求 a 的值;(2)若 a 、b 在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求(a + b - c )2018的值. 28.化简求值:()()2222533x y xy xyx y --+,其中1x =,12y. 29.计算:()()320192413-÷--⨯-30.已知数轴上两点A B 、对应的数分别是6,8-,M N P 、、为数轴上三个动点,点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,点P 从原点出发速度为每秒1个单位.()1若点M 向右运动,同时点N 向左运动,求多长时间点M 与点N 相距54个单位? ()2若点M N P 、、同时都向右运动,求多长时间点P 到点,M N 的距离相等?四、压轴题31.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.32.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE . (1)如图①,当∠BOC=70°时,求∠DOE 的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数. (3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.33.如图,已知线段AB=12cm ,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若AC=4cm ,求DE 的长;(2)试利用“字母代替数”的方法,说明不论AC 取何值(不超过12cm ),DE 的长不变; (3)知识迁移:如图②,已知∠AOB=α,过点O 画射线OC ,使∠AOB:∠BOC=3:1若OD 、OE 分别平分∠AOC 和∠BOC ,试探究∠DOE 与∠AOB 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A 【解析】 【分析】依据线段AB 长度为a ,可得AB=AC+CD+DB=a ,依据CD 长度为b ,可得AD+CB=a+b ,进而得出所有线段的长度和. 【详解】∵线段AB 长度为a , ∴AB=AC+CD+DB=a , 又∵CD 长度为b , ∴AD+CB=a+b ,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b , 故选A . 【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.2.D解析:D 【解析】 【分析】根据选项进行一一排除即可得出正确答案. 【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错; B 中、8-6y=0x ,可得出43x y =,故B 错;C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y=,交叉相乘得到34x y =,故D 对. 故答案为:D. 【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.3.C解析:C 【解析】 【分析】把64代入转换器,根据要求计算,得到输出的数值即可. 【详解】,是有理数, ∴继续转换,,是有理数, ∴继续转换,∵2,是无理数,∴输出, 故选:C. 【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.4.A解析:A 【解析】 【分析】根据分式的基本性质即可求出答案. 【详解】 解:原式=22x y x yx y y x++-=--, 故选:A . 【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.5.A解析:A 【解析】 【分析】延长CD 交直线a 于E .由∠ADC =∠AED +∠DAE ,判断出∠ADC >70°即可解决问题.【详解】解:延长CD 交直线a 于E .∵a ∥b , ∴∠AED =∠DCF , ∵AB ∥CD ,∴∠DCF =∠ABC =70°, ∴∠AED =70°∵∠ADC =∠AED +∠DAE , ∴∠ADC >70°, 故选A . 【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.C解析:C 【解析】 【分析】移项、合并后,化系数为1,即可解方程. 【详解】解:移项、合并得,36x =, 化系数为1得:2x =, 故选:C . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.7.A解析:A 【解析】 【分析】首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果. 【详解】 解:OB 平分AOC ∠,18AOB ∠=︒, 236AOC AOB ∴∠=∠=︒,又84AOD ∠=︒,843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.故选:A . 【点睛】本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.8.A解析:A 【解析】试题分析:根据四棱锥的侧面展开图得出答案. 试题解析:如图所示:这个几何体是四棱锥. 故选A.考点:几何体的展开图.9.B解析:B 【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b -.故选B.10.A解析:A 【解析】解:A ,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A ; B ,同号相加,取相同的符号,并把绝对值相加,-1-1=-2; C ,底数为-1,一个负数的偶次方应为正数(-1)2=1;D ,底数为1,1的平方的相反数应为-1;即-12=-1,故选A .11.A解析:A 【解析】 【分析】先根据正数都大于0,负数都小于0,可排除C ,再根据两个负数,绝对值大的反而小进行判断即可. 【详解】解:根据两个负数,绝对值大的反而小可知-3<73-. 故选:A . 【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.12.A解析:A 【解析】 【分析】根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案. 【详解】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4, 长方体的容积是4×2×1=8, 故选:A . 【点睛】本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.二、填空题 13.-1; 【解析】解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.解析:-1; 【解析】解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.14.【解析】 【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C 运算”的结果. 【详解】 解:由题意可得, 当n =26时,第一次输出的结果为:13解析:【解析】 【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C 运算”的结果. 【详解】 解:由题意可得, 当n =26时,第一次输出的结果为:13, 第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.15.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】,3;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.16.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.17.【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦ 故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键.18.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣213的倒数为﹣37,﹣213的相反数是213.【点睛】本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键.19.-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.20.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.21.110【解析】【分析】由角平分线的定义求得∠BOC =80°,则∠AOB =∠BOC+∠AOC =110°.【详解】解:∵OE 是∠COB 的平分线,∠BOE =40°,∴∠BOC =80°,∴∠A解析:110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠AOB=∠BOC+∠AOC=80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.22.<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:<;>﹣3.故答解析:<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:13<35;223>﹣3.故答案为:<、>.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.23.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.24.6【解析】如图,∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=6cm.故答案为:6.三、解答题25.(1)12122)①详见解析;②详见解析【解析】【分析】(1)依据点A 21,点A 在原点左侧,即可得到点A 表示的实数为12B 到原点的距离为:12B 在原点右侧,即可得到点A 表示的实数为12(2)依据所拼正方形的面积为55 (3)依据(2553的点.【详解】解:(1)由图可得,点A 21,点A 在原点左侧,∴点A 表示的实数为12由图可得,点B 到原点的距离为:12+,点B 在原点右侧,∴点B 表示的实数为12+,故答案为:12-,12+;(2)如图所示:(3)表示数5以及5﹣3的点如图所示:【点睛】本题主要考查了实数与数轴,任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.26.2x y -,3.【解析】【分析】先去括号,再根据合并同类项法则合并出最简结果,把x 、y 的值代入求值即可.【详解】原式222334322x xy x xy y x y =--+-=- 将2x =-,1y =代入得:原式2(2)13=--=【点睛】 本题考查整式的加减——化简求值,熟练掌握合并同类项法则是解题关键.27.(1)4a =-;(2)1.【解析】【分析】(1)先求出方程313752x x -=+的解x=-8,再代入方程3a -8=2(x +a)-a 求出a 的值即可; (2)根据数a ,b 在数轴上的位置特点,可知a ,b 互为相反数,即a+b=0,再由倒数的定义可知xy=1,把它们代入所求代数式(a+b-c )2018,根据运算法则即可得出结果.【详解】(1)313752x x -=+解得8x =-,再将8x =-代入()382a x a a -=+-,解得4a =-,(2)∵a ,b 互为相反数,∴a+b=0,∵c 是倒数等于本身的数,∴c=±1;∴()()20182018011a b c +-=±= 【点睛】本题主要考查了相反数、倒数的定义和性质及有理数的加法运算.注意,数轴上,在原点两侧,并且到原点的位置相等的点表示的两个数一定互为相反数.28.22126x y xy -,152-. 【解析】【分析】根据整式的运算法则,将代数式进行化简,然后将字母的值代入求取结果即可.【详解】原式=222215-53x y xy xy x y -- =22126x y xy -.当x =1,y =-12时, 原式=2211121--61-22⨯⨯⨯⨯()() =15-2. 【点睛】 本题考查了整式的化简求值,解决本题的关键是正确理解题意,熟练掌握整式运算的法则,注意在合并同类项时找准同类项.29.1【解析】【分析】根据有理数的乘方、绝对值、有理数的乘除法和加减法可以解答本题.【详解】解:()()3201924132(3)1-÷--⨯-=---= 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.30.(1)5秒;(2)72秒或13秒 【解析】【分析】(1)设经过x 秒点M 与点N 相距54个单位,由点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,得出2x+6x+14=54求出即可;(2)首先设经过t 秒点P 到点M ,N 的距离相等,得出(2t+6)-t=(6t-8)-t 或(2t+6)-t=t-(6t-8),进而求出即可.【详解】解:(1)设经过x 秒点M 与点N 相距54个单位.依题意可列方程为:2x+6x+14=54,解方程,得x=5.∴经过5秒点M 与点N 相距54个单位.(2)设经过t 秒点P 到点M ,N 的距离相等.(2t+6)-t=(6t-8)-t 或(2t+6)-t=t-(6t-8),t+6=5t-8或t+6=8-5t72t =或13t = ∴经过72秒或13秒点P 到点,M N 的距离相等 【点睛】 此题主要考查了数轴、一元一次方程的应用,根据已知点运动速度得出以及距离之间的关系得出等式是解题关键.四、压轴题31.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.32.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=45°;(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC ,∠COE=12∠BOC , ∴∠DOE=∠COD ﹣∠COE=12(∠AOC ﹣∠BOC )=45°; 如图4所示,∵OD 、OE 分别平分∠AOC 和∠BOC , ∴∠COD=12∠AOC ,∠COE=12∠BOC , ∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC )=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.33.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=12(AC+BC )=12AB=2a cm ,即可推出结论, (3)分两种情况,OC 在∠AOB 内部和外部结果都是∠DOE=12∠AOB 试题解析:(1))∵AB=12cm ,∴AC=4cm ,∴BC=8cm ,∵点D 、E 分别是AC 和BC 的中点,∴CD=2cm ,CE=4cm ,∴DE=6cm;(2) 设AC=acm ,∵点D、E分别是AC和BC的中点,∴DE=CD+CE=12(AC+BC)=12AB=6cm,∴不论AC取何值(不超过12cm),DE的长不变;(3)①当OC在∠AOB内部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠NOC=12∠BOC,∠COM=12∠COA.∵∠CON+∠COM=∠MON,∴∠MON=12(∠BOC+∠AOC)=12α;②当OC在∠AOB外部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12(∠AOB+∠BOC),∠CON=12∠BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC-∠CON=12(AOB+∠BOC)-12∠BOC=12∠AOB=12α.【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。

2018-2019学年度第一学期七年级期末数学试卷及答案

2018-2019学年度第一学期七年级期末数学试卷及答案

2018-2019第一学期七年级数学期末试卷及答案姓名__________ 分数______一、选择题(每小题3分,共30分) 1.一个数的相反数是2,这个数是( ) A .12 B .12- C .2 D .-2 2.如果四个有理数的积是负数,那么其中负因数有( )个 A .3 B .1 C .0或2 D .1或33.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( ) A .0. 34×108 B .3. 4×106 C .34×106 D .3. 4×107 4.关于x 的方程3x + 2m + 1 = x -3m -2的解为x = 0,则m 的值为( ) A .35-B .15-C .15D .255.某种商品每件的进价为190元,按标价的九折销售时,利润率为15. 2%。

设这种商品的标价为每件x 元,依题意列方程正确的是( )A .1900.91900.152x -=⨯B .0.91900.152x =⨯C .0.91901900.152x -=⨯D .0.1521900.9x =⨯6.足球比赛计分规则是:胜一场得3分,平一场得1分,负一场得0分。

今年武汉黄鹤楼队经过26轮激战,以42分获“中超”联赛第五名,其中负6场,那么胜场数为( ) A .9 B .10 C .11 D .127.下图是一个由6个相同的小立方体组成的几何体,从上面看得到的平面图形是( )A .B .C .D . 8.下面等式成立的是( )A .83. 5°= 83°50′B .37°12′36″=37. 48°C .24°24′24″= 24. 44°D .41. 25°= 41°15′9.某校为了解360名七年级学生体重情况,从中抽取了60名学生进行检测。

七年级上册合肥数学期末试卷测试卷(含答案解析)

七年级上册合肥数学期末试卷测试卷(含答案解析)

七年级上册合肥数学期末试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CEA中,∴△ABD≌△CEA(AAS),∴S△ABD=S△CEA,设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,∴S△ABC= BC•h=12,S△ACF= CF•h,∵BC=2CF,∴S△ACF=6,∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,∴△ABD与△CEF的面积之和为6.【解析】【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,由AAS证得△ADB≌△CEA,则AE=BD,AD=CE,即可得出结论;(2)由∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA即可得出答案;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ACF即可得出结果.2.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,(1)如图2中A′落在ED′上,求∠FEG的度数;(2)如图3中∠A′ED′=50°,求∠FEG的度数;(3)如图4中∠FEG=85°,请直接写出∠A′ED′的度数;(4)若∠A′ED'=n°,直接写出∠FEG的度数(用含n的代数式表示).【答案】(1)解:由翻折知△EAF≌△EA′F,△EDG≌△ED′G,∴∠A′EF=∠AEA′,∠D′EG=∠DED′,∵∠AEA′+∠DED′=180°,∴∠FEG=∠A′EF+∠D′EG=(∠AEA′+∠DED′)=90°;(2)解:由(1)知∠A′EF=∠AEA′,∠D′EG=∠DED′,∵∠A′ED′=50°,∴∠AEA′+∠DED′=130°,∴∠A′EF+∠D′EG= ×(∠AEA′+∠DED′)=65°,∴∠FEG=∠A′ED′+∠A′EF+∠D′EG=115°;(3)解:∵∠FEG=85°,∴∠AEF+∠DEG=95°,∴∠A′EF+∠D′EG=95°,则∠A′ED′=∠A′EF+∠D′EG﹣∠FEG=95°﹣85°=10°;(4)解:如图3,∵∠A′ED′=n°,∴∠AEA′+∠DED′=180°﹣∠A′ED′=(180﹣n)°,∵2∠A′EF=∠AEA′,2∠D′EG=∠DED′,∴∠A′EF+∠D′EG=,∴∠FEG=∠A′EF+∠D′EG+∠A′ED′= +n°=;见图4,∵∠AEA′+∠DED′﹣∠A′ED′=180°,∠A′ED′=n°,∴∠AEA′+∠DED′=180°+n°,∵2∠A′EF=∠AEA′,2∠D′EG=∠DED′,∴∠A′EF+∠D′EG=,∴∠FEG=∠A′EF+∠D′EG﹣∠A′ED′=﹣n°=;综上,∠FEG的度数为或 .【解析】【分析】(1)由翻折性质知△EAF≌△EA′F,△EDG≌△ED′G,据此得∠A′EF=∠AEA′,∠D′EG=∠DED′,结合∠AEA′+∠DED′=180°可得答案;(2)由∠A′ED′=50°知∠AEA′+∠DED′=130°,据此得∠A′EF+∠D′EG= ×(∠AEA′+∠DED′)=65°,根据∠FEG=∠A′ED′+∠A′EF+∠D′EG可得答案;(3)由∠FEG=85°知∠A′EF+∠D′EG=95°,根据∠A′ED′=∠A′EF+∠D′EG﹣∠FEG可得答案;(4)分别结合图3和图4两种情况,先表示出∠A′EF+∠D′EG的度数,再分别根据∠FEG=∠A′EF+∠D′EG+∠A′ED′和∠FEG=∠A′EF+∠D′EG﹣∠A′ED′求解可得.3.以直线上点为端点作射线,使,将直角的直角顶点放在点处.(1)若直角的边在射线上(图①),求的度数;(2)将直角绕点按逆时针方向转动,使得所在射线平分(图②),说明所在射线是的平分线;(3)将直角绕点按逆时针方向转动到某个位置时,恰好使得(图③),求的度数.【答案】(1)解:∵,又∵,∴ .(2)解:∵平分,∴,∵,∴,,∴,∴所在直线是的平分线.(3)解:设,则,∵,,①若∠COD在∠BOC的外部,∴,解得x=10,∴∠COD=10°,∴∠BOD=60°+10°=70°;②若∠COD在∠BOC的内部,,解得x=30,∴∠COD=30°,∴∠BOD=60°-30°=30°;即或,∴或 .【解析】【分析】(1)代入∠BOE=∠COE+∠COB求出即可;(2)求出∠AOE=∠COE,根据∠DOE=90°求出∠AOE+∠DOB=90°,∠COE+∠COD=90°,推出∠COD=∠DOB,即可得出答案;(3)要分情况讨论,一种是∠COD在∠BOC的内部,另一种是∠COD在∠BOC的外部,再根据平角等于180°可通过列方程求出即可.4.已知将一副三角板(直角三角板OAB和直角三角板OCD∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=60°)(1)如图1摆放,点O,A,C在一直线上,则∠BOD的度数是多少?(2)如图2,将直角三角板OCD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是多少?(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点Q任意转动,∠M0N的度数是否发生变化?如果不变,求其值;如果变化,说明理由。

七年级(上)期末数学试卷(含解析)

七年级(上)期末数学试卷(含解析)

七年级(上)期末数学试卷一、远择题(本大题共10小題,没小题4分,满分40分)1.(4分)2019的相反数是()A.2019B.﹣2019C.D.﹣2.(4分)下说法正确的是()A.0是单项式B.﹣a的系数是1C.m3+是三次两项式D.3a3b与ab3是同类项3.(4分)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.;B.C.D.4.(4分)2018年合肥市共有30293名考生参加中考,为了了解这30293名考生的数学成绩,从中抽取了1000名生的数学成绩进行统计分析,以下说法中,错误的是()A.这种调查采用了抽样调查的方式B.30293名考生是总体C.从中抽取的1000名考生的数学成绩是总体的一个样本D.样本容量是10005.(4分)由四舍五入得到的近似数88.35万.精确到()A.十分位B.百分位C.百位D.十位6.(4分)如图,数轴上A,B,C三点所表示的数分别为a,b,c.下列判断正确的是()A.a﹣b>0B.|b|>|c|C.a﹣c<0D.|a|﹣b>0 7.(4分)多项式x2﹣3kxy+6xy﹣8化简后不含xy项,则k等于()A.2B.﹣2C.0D.38.(4分)已知和都是方程mx+ny=8的解,则m、n的值分别为()A.1,﹣4B.﹣1,4C.﹣1,﹣4D.1,49.(4分)如果∠α和∠β互余,则下列表示∠β的补角的式子中:①180°﹣∠β,②90°+∠α,③2∠α+∠β,④2∠β+∠α,其中正确的有()A.①②③B.①②③④C.①②④D.①②10.(4分)如图,有四个大小相同的小长方形和两个大小相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是()A.3b﹣2a B.C.D.二、空题(本大题共4小题,每小题5分,满分20分)11.(5分)太阳的半径大约为696000千米,将696000用科学记数表示为.12.(5分)比较大小:﹣2018﹣2019(填“>”或“<“)13.(5分)如图,将一副三角板叠在一起,使它们的直角顶点重合于O点,且∠AOB=155°,则∠COD=.14.(5分)将一些相同的圆点按如图示的规律摆放:第1个图形有3个圆点,第2个形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,第15个图形有个圆点.三、(本大题共2小题,每小题12分,满分24分)15.(12分)让算:(1)(2)16.(12分)解方程(组):(1)(2)四、(本六題共2小題,每小题8分,満分16分)17.(8分)先化简,再求值:2(3y2﹣x3y)﹣3(2y2﹣x2y﹣x3y)﹣4x2y,其中x=﹣,y =2.18.(8分)某水泥仓库一周7天内进出水泥的吨数如下(“+”表示过库,“﹣“表示出库):+30、﹣25、﹣30、+28、﹣29、﹣16、﹣15.(1)经过这7天,仓库里的水泥是増多还是减少了?増多或减少了多少吨?(2)如果进仓库的水泥装卸费是毎吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费?(用含a、b的代式表示).五、(本大题共2小题,每小题8分,满分16分)19.(8分)作图与计算(1)已知:∠α,∠AOB求作:在图2中,以OA为一边,在∠AOB的内部作∠AOC=∠α(要求:直尺和圆规作图,不写作法,保留作图痕迹.)(2)过点O分别引射线OA、OB、OC,且∠AOB=65°,∠BOC=30°,求∠AOC的度数.20.(8分)有一列数,按一定的规律排成1、﹣2、4、﹣8、16、﹣32…(1)设这列数中的一个数为a,则它后面的第1个数是,第2个数是.(2)你能从中抽出相邻的三张卡片,且这些卡片上的数字之和为93吗?若能,写出这三个数,若不能,说明理由.六、(本题满分10分)21.(10分)为庆祝建党97周年,某校组织了以“党在我心中”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种,现从中随机抽取部分作品,对其份数及成绩进行整理,制成如下两幅不完整的統计图,如图所示.根据以上信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共930份,请估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?七、(本题满分12分)22.(12分)某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)(1)该商场第1次购进A、B两种商品各多少件?(2)商场第2次以原价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?八、(本题满分12分)23.(12分)如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“2倍点”.(1)线段的中点这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15m,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动.点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=s时,点Q恰好是线段AP的“2倍点”.(请直接写出答案)参考答案与试题解析一、远择题(本大题共10小題,没小题4分,满分40分)1.【解答】解:2019的相反数是﹣2019.故选:B.2.【解答】解:(B)﹣a的系数为﹣1,故B错误;(C)m3+不是三次两项式,故C错误;(D)3a3b与ab3不是同类项,故D错误;故选:A.3.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.4.【解答】解:A.这种调查采用了抽样调查的方式,此说法正确;B.30293名考生的数学成绩是总体,此选项说法错误;C.从中抽取的1000名考生的数学成绩是总体的一个样本,此选项说法正确;D.样本容量是1000,此选项说法正确;故选:B.5.【解答】解:由四舍五入得到的近似数88.35万,精确到百位,故选:C.6.【解答】解:由数轴得,b>a>c,∴a﹣b<0,a﹣c>0,故选项A,C错误,不符合题意,由数轴得,|c|>|a|>|b|,故选项C错误,不符合题意,故选:D.7.【解答】解:∵多项式x2﹣3kxy+6xy﹣8化简后不含xy项,∴﹣3k+6=0,解得:k=2.故选:A.8.【解答】解:把和代入方程得:,解得:,故选:D.9.【解答】解:因为∠α和∠β互余,所以表示∠β的补角的式子:①180°﹣∠β,正确;②90°+∠α,正确;③2∠α+∠β,正确;④2∠β+∠α,错误;故选:A.10.【解答】解:设小长方形的长为x,宽为y,根据题意得:a+y﹣x=b+x﹣y,即2x﹣2y=a﹣b,整理得:x﹣y=,则小长方形的长与宽的差是,故选:B.二、空题(本大题共4小题,每小题5分,满分20分)11.【解答】解:将696000用科学记数法表示为6.96×105.故答案为:6.96×105.12.【解答】解:﹣2018>﹣2019.故答案为:>.13.【解答】解:∵△AOC△BOD是一副直角三角板,∴∠AOC+∠DOB=180°,∴∠AOB+∠COD=∠DOB+∠AOD+∠COD=∠DOB+∠AOC=90°+90°=180°,∵∠AOB=155°,∴∠COD=180°﹣∠AOB=180°﹣155°=25°,故答案为:25°14.【解答】解:设第n个图形有a n个圆点(n为正整数).观察图形,可知:a1=12+2=3,a2=22+3=7,a3=32+4=13,a4=42+5=21,…,∴a n=n2+(n+1)(n为正整数),∴a15=152+16=241.故答案为:241.三、(本大题共2小题,每小题12分,满分24分)15.【解答】解:(1)原式=16÷(﹣8)+×4=﹣2+=﹣;(2)原式=﹣45﹣25+70=0.16.【解答】解:(1)3(3﹣x)﹣2(2x+1)=6,9﹣3x﹣4x﹣2=6,﹣3x﹣4x=6﹣9+2,﹣7x=﹣1,x=;(2),①﹣②×3,得:﹣11y=﹣22,解得y=2,将y=2代入②,得:x+6=7,解得:x=1,∴方程组的解为.四、(本六題共2小題,每小题8分,満分16分)17.【解答】解:原式=6y2﹣2x3y﹣6y2+3x2y+3x3y﹣4x2y =x3y﹣x2y,当x=﹣,y=2时,原式=(﹣)3×2﹣(﹣)2×2=﹣×2﹣×2=﹣﹣=﹣.18.【解答】解(1)∵+30﹣25﹣30+28﹣29﹣16﹣15=﹣57∴经过这7天,仓库里的水泥减少了57吨.(2)由题意得:进库的总装卸费为:[(+30)+(+28)]•a=58a出库的总装卸费为:[|﹣25|+|﹣30|+|﹣29|+|﹣16|+|﹣15|]•b=115b ∴这7天要付(58a+115b)元装卸费.五、(本大题共2小题,每小题8分,满分16分)19.【解答】解:(1)如图所示,∠AOC即为所求;(2)当OC在∠AOB的内部时,∠AOC=∠AOB﹣∠BOC=65°﹣30°=35°;当OC在∠AOB的外部时,∠AOC=∠AOB+∠BOC=65°+30°=95°;综上,∠AOC的度数为35°或95°.20.【解答】解:(1)设这列数中的一个数为a,则它后面的第1个数是﹣2a,第2个数是﹣2•(﹣2a)=4a.故答案为﹣2a,4a;(2)不可能从中抽出相邻的三张卡片,且这些卡片上的数字之和为93.理由如下:设所求三个数中的第一个数为x,则第二个数为﹣2x,第三个数为4x,根据题意,得x﹣2x+4x=93,解得x=31.因为原数列中除1以外都是偶数,而31是奇数,所以不可能.六、(本题满分10分)21.【解答】解:(1)12÷10%=120(份),即本次抽取了120份作品.80分的份数=120﹣6﹣24﹣36﹣12=42(份),它所占的百分比=×100%=35%.60分的作品所占的百分比=×100%=5%;补全图形如下:(2)930×(30%+10%)=900×40%=372(份);七、(本题满分12分)22.【解答】解:(1)设第1次购进A商品x件,B商品y件.根据题意得:,解得:.答:商场第1次购进A商品200件,B商品150件.(2)设B商品打m折出售.根据题意得:200×(1350﹣1200)+150×2×(1200×﹣1000)=54000,解得:m=9.答:B种商品打9折销售的.八、(本题满分12分)23.【解答】解:(1)如图1若点C是AB中点时,有AB=2AC=BC成立,满足“2倍点”定义,所以所以线段的中点是这条线段的“2倍点”故答案为“是”.(2)当点C是线段AB的“2倍点”时,可能有BC=2AC、AC=2BC、AB=2AC=2BC 三种情况,于是①BC=2AC时,AC=AB=×15=5;②AC=2BC时,AC=AB=×15=10;③AB=2AC=2BC时,AC=AB=×15=7.5故当点C是线段AB的“2倍点”时.AC的长为5cm、10cm或7.5cm.(3)如图2由题意知,AB=20cm,当P到达B点时,Q恰好到达AB的中点∴PQ≤AQ,于是当点Q恰好是线段AP的“2倍点”时,可分AQ=2PQ或AP=2AQ=2PQ两种情况分类讨论①AQ=2PQ时,即AQ=2(AP﹣AQ),得方程20﹣t=2[2t﹣(20﹣t)],解得t=;②AP=2AQ=2PQ时,得方程2t=2(20﹣t),解得t=10∴当t=s或10s时,点Q恰好是线段AP的“2倍点”.故答案为或10.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年安徽省合肥市庐阳区七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,满分40分.每小题都给出AB、C、D四个选项,其中只有一个是正确的.)1.(4分)﹣3的相反数是()A.B.C.3D.﹣32.(4分)下列各式中计算正确的是()A.2x+3y=5xy B.2x4﹣x4=1C.x2+x4=x6D.2x4﹣5x4=﹣3x43.(4分)马拉松(Marathon)是国际上非常普及的一项长跑比赛项目,全程距离26英里385码,折合为42195米,用科学记数法表示42195为()A.4.2195×102B.4.2195×103C.4.2195×104D.42.195×1034.(4分)如图是一个常见的道路警示反光锥实物图,与它类似的几何图形是()A.长方体B.正方体C.球D.圆锥5.(4分)某校为了了解七年级同学参与各类实践活动次数的情况,从七年级700名学生中随机抽取了70名学生进行调查,在这次调查中,样本是()A.700名学生B.70名学生C.所抽取的70名学生参与各类实践活动次数D.每一名学生参与各类实践活动次数6.(4分)已知a﹣b=5,c+d=2,则(b+c)﹣(a﹣d)的值是()A.﹣3B.3C.﹣7D.77.(4分)只用一副三角板(一块的三个角是90°,60°,30°;还有一块的三个角是90°,45°,45°);不能借助三角板画出来的角度是()A.30°B.75°C.105°D.125°8.(4分)已知A,B,C,D四点,任意三点都不在同一直线上,以其中的任意两点为端点的线段的数量是()A.5B.6C.7D.89.(4分)如图A、O、E三点在同一条直线上,∠AOB=∠COD=90°,观察图形后有以下四个结论,其中正确的结论是()A.∠BOC=∠AOC=∠BODB.图中小于平角的角有6个C.∠BOC与∠AOD互补D.∠BOD和∠AOC互余10.(4分)某项工程,甲单独完成要45天,乙单独完成要30天.开始时由甲先单独做,从第10日起,乙加入同甲合做,求甲、乙两人合做多少天能完成全部工程.设甲、乙合做x天完成全部工程,则符合题意的方程是()A.B.C.D.二、填空题(本大题共5小题,每小题5分,满分25分)11.(5分)将一根细木条固定在墙上,至少需要两根钉子,理由:.12.(5分)用四舍五入法得到的近似数8.8×103,精确到位.13.(5分)不少植物叶子在茎上的排布很有规律,从茎的顶端沿茎向下看,相邻两片叶子间的夹角是137°28′,则137°28′的补角度数为.14.(5分)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?设城中有x户人家,则可以列得方程为.15.(5分)在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是.三、解答题(本大题共8小题,满分90分)16.(6分)计算题:﹣22+3×(﹣2)3﹣(﹣6)÷(﹣)217.(12分)(1)解方程(2)解方程组18.(10分)先化简,再求值:3x3y﹣[2xy﹣2(xy﹣x2y)+xy],其中x=3,y=﹣.19.(10分)已知:多项式A=2x2﹣xy,B=x2+xy﹣6,求:(1)4A﹣B;(2)当x=1,y=﹣2时,4A﹣B的值.20.(12分)某商场出售茶壶和茶杯,茶壶毎只15元,茶杯每只3元,商店规定购一只茶壶赠一只茶杯,某人共付款171元,得茶壶、茶杯共30只(含赠品在内),则此人购得茶壶多少只?21.(12分)小敏为了解本市的空气质量情况,从市环保局随机抽取了若干天的空气质量情况作为标本进行统计,绘制成如图所示的条形统计图和扇形统计图(部分信息为给出)请你根据图中提供的信息,解答下列问题:(1)本次调查中共抽取了多少天的空气质量情况作为标本?(2)求轻微污染天数并补全条形统计图;(3)请你估计该市这一年(365天)空气质量达到“优”和“良”的总天数.22.(14分)在数轴上有M、N两点,M点表示的数分别为m,N点表示的数是n(n>m),则线段MN的长(点M到点N的距离)可表示为MN=n﹣m,请用上面材料中的知识解答下面的问题:一个点从数轴上的原点O开始,先向左移动3cm到达A点,再向右移动2cm到达B点,然后向右移动4cm到达C点,用1cm 表示1个单位长度.(1)请你在数轴上表示出A、B、C三点的位置,并直接写出线段AC的长度.(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?(3)若将点A向右移动xcm,请用代数式表示移动后的点所表示的数.(4)若点P以从点A向原点O移动,同时点Q以与点P相同的速度从原点O向点C移动,试探索:PQ 的长是否会发生改变?如果不变,请求出PQ的长.如果改变,请说明理由.23.(14分)甲从A地出发步行到B地,乙同时从B地步行出发至A地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a千米/小时,乙刚出发的速度为b千米/小时.(1)A、B两地的距离可以表示为千米(用含a,b的代数式表示);(2)甲从A到B所用的时间是:小时(用含a,b的代数式表示);乙从B到A所用的时间是:小时(用含a,b的代数式表示).(3)若当甲到达B地后立刻按原路向A返行,当乙到达A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB两地的距离为多少?2018-2019学年安徽省合肥市庐阳区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分.每小题都给出AB、C、D四个选项,其中只有一个是正确的.)1.【解答】解:(﹣3)+3=0.故选:C.2.【解答】解:2x和3y不是同类项,不能合并,因此2x+3y=5xy不正确;2x4﹣x4根据合并同类项法则其结果为x4,因此B选项不正确;x2+x4不是同类项,不能合并,是一个多项式,因此选项C不正确;根据合并同类项法则,2x4﹣5x4=﹣3x4,正确;故选:D.3.【解答】解:42195=4.2195×104,故选:C.4.【解答】解:与常见的道路警示反光锥实物图类似的几何图形是圆锥,故选:D.5.【解答】解:在这次调查中,样本是所抽取的70名学生参与各类实践活动次数;故选:C.6.【解答】解:∵a﹣b=5,c+d=2,∴原式=b+c﹣a+d=﹣(a﹣b)+(c+d)=﹣5+2=﹣3,故选:A.7.【解答】解:A、30°的角,用三角板可直接画出;B、75°的角,45°+30°=75°;C、105°的角,45°+60°=105°;D、125°的角,三角板中角的度数无法拼出.故选:D.8.【解答】解:如图所示,有四个点,且每三点都不在同一直线上,每两点连一条线段,则可以连6条线段;故选:B.9.【解答】解:∵∠AOB=∠COD=90°,∴∠BOE=90°,∴∠BOC=∠DOE,∵∠DOE与∠AOD互补,∴∠BOC与∠AOD互补,故选项C正确;图中小于平角的角有∠DOE,∠BOE,∠COE,∠BOD,∠COD,∠AOD,∠BOC,∠AOB,∠AOC共9个.故选项B不合题意.故选:C.10.【解答】解:设甲、乙合做x天完成全部工程,依题意,得:+=1.故选:A.二、填空题(本大题共5小题,每小题5分,满分25分)11.【解答】解:在墙上固定一根木条至少需要两根钉子,依据的数学道理是两点确定一条直线.故答案为:两点确定一条直线.12.【解答】解:8.8×103精确到百位.故答案为百.13.【解答】解:137°28′的补角度数为180°﹣137°28′=42°32′.故答案为:42°32′.14.【解答】解:设城中有x户人家,依题意,得:x+x=100.故答案为:x+x=100.15.【解答】解:当OC、OD在直线AB同侧时,如图:∵OC⊥OD,∠AOC=30°;∴∠BOD=180°﹣∠COD﹣∠AOC=180°﹣90°﹣30°=60°;当OC、OD在直线AB异侧时,如图:∵OC⊥OD,∠AOC=30°;∴∠BOD=180°﹣∠AOD=180°﹣(∠DOC﹣∠AOC)=180°﹣(90°﹣30°)=120°.三、解答题(本大题共8小题,满分90分)16.【解答】解:原式=﹣4﹣24+54=26.17.【解答】解:(1)去分母、去括号得,8x﹣4﹣9x+3=24,移项、合并同类项得,﹣x=25,系数化为1得,x=﹣25;(2)②﹣①×3,得﹣13x=13,∴x=﹣1,把x=﹣1代入②,得y=﹣1.∴原方程组的解为.18.【解答】解:原式=3x3y﹣2xy+2xy﹣3x2y﹣xy=3x3y﹣3x2y﹣xy,当x=3,y=﹣时,原式=﹣27+9+1=﹣17.19.【解答】解:(1)∵多项式A=2x2﹣xy,B=x2+xy﹣6,∴4A﹣B=4(2x2﹣xy)﹣(x2+xy﹣6)=8x2﹣4xy﹣x2﹣xy+6=7x2﹣5xy+6(2)∵由(1)知,4A﹣B=7x2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=2320.【解答】解:设买茶壶x只,依题意得:15x+3(30﹣2x)=171,解得:x=9答:此人购得茶壶9只.21.【解答】解:(1)抽查的总天数是:32÷64%=50(天)(2)空气质量是轻度污染的天数是:50﹣8﹣32﹣3﹣1﹣1=5天,扇形统计图中表示优的圆心角度数是×360°=57.6°.;(3)∵样本中优和良的天数分别为:8,32,∴一年(365天)达到优和良的总天数为:×365=292(天).22.【解答】解:(1)如图所示:AC=3﹣(﹣3)=3+3=6(cm).故线段AC的长度为6cm;(2)设D表示的数为a,∵AD=4,∴|﹣3﹣a|=4,解得:a=﹣7或1.∴点D表示的数为﹣7或1;(3)将点A向右移动xcm,则移动后的点表示的数为﹣3+x;(4)PQ的长不会发生改变,PQ的长=0﹣(﹣3)=3(cm).故PQ的长为3cm.23.【解答】解:(1)A、B两地的距离可以表示为2(a+b)千米.故答案为:2(a+b).(2)甲从A到B所用的时间为(2+)小时,乙从B到A所用的时间为(2+)小时.故答案为:(2+);(2+).(3)设AB两地的距离为S千米,3小时36分钟=小时.依题意,得:,令x=a+b,则原方程变形为,解得:.答:AB两地的距离为36千米.。

相关文档
最新文档