高二数学必修二知识点归纳.doc

合集下载

高二数学必修二知识点归纳与总结

高二数学必修二知识点归纳与总结

高二数学必修二知识点归纳与总结一、代数部分1. 一元二次方程与根的关系在高二数学中,我们学习了一元二次方程及其根的性质。

一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b和c为实数且a≠0。

根据一元二次方程的判别式Δ=b^2-4ac的值,我们可以判断方程的根的情况。

- 当Δ>0时,方程有两个不相等的实根。

- 当Δ=0时,方程有两个相等的实根。

- 当Δ<0时,方程无实根。

另外,我们还学习了一元二次方程的因式分解方法、配方法和求解方法。

2. 等差数列与等差数列的求和等差数列是指一个数列中,从第二项起,每一项与它的前一项之差都相等的数列。

我们求等差数列的通项公式时,可以利用首项和公差来表示。

例如,对于等差数列an = a1 + (n-1)d,其中a1表示首项,d表示公差,n表示项数,我们可以利用公式an = a1 + (n-1)d来求得等差数列的任意一项。

在数列的求和部分,我们学习了等差数列求和的公式Sn = (n/2)(a1 + an),其中n表示项数,a1表示首项,an表示末项,Sn表示前n项的和。

3. 等比数列与等比数列的求和等比数列是指一个数列中,从第二项起,每一项与它的前一项之比都相等的数列。

求等比数列的通项公式时,我们可以利用首项和公比来表示。

例如,对于等比数列an = a1 * r^(n-1),其中a1表示首项,r 表示公比,n表示项数,我们可以利用公式an = a1 * r^(n-1)来求得等比数列的任意一项。

在数列的求和部分,我们学习了等比数列求和的公式Sn = (a1 * (1 - r^n))/(1 - r),其中a1表示首项,r表示公比,n表示项数,Sn表示前n 项的和。

二、解析几何部分1. 平面直角坐标系与点、线的表示解析几何中的平面直角坐标系是由两条互相垂直的坐标轴组成的。

我们可以用点的坐标表示平面上的点,其中x坐标表示点在x轴上的投影,y坐标表示点在y轴上的投影。

高二数学知识点总结大全(必修二)

高二数学知识点总结大全(必修二)

高二数学知识点总结大全(必修二)第1章空间几何体11 。

1柱、锥、台、球的结构特征1。

2空间几何体的三视图和直观图11 三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下22 画三视图的原则:长对齐、高对齐、宽相等33直观图:斜二测画法44斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3)。

画法要写好.5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1。

3 空间几何体的表面积与体积(一)空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和2 圆柱的表面积3 圆锥的表面积4 圆台的表面积5 球的表面积(二)空间几何体的体积1柱体的体积2锥体的体积3台体的体积4球体的体积第二章直线与平面的位置关系2。

1空间点、直线、平面之间的位置关系2.1。

11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等.3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A∈LB∈L =〉 L αA∈αB∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A、B、C三点不共线 =〉有且只有一个平面α,使A∈α、B∈α、C∈α.公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P∈α∩β =〉α∩β=L,且P∈L公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系D CBAαLA·αC·B·A·αP·αLβ1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

高二数学必修二知识点总结整理

高二数学必修二知识点总结整理

高二数学必修二知识点总结整理一、数列与多项式1. 等比数列:其公比均相等的数列被称为等比数列。

等比数列是一类特殊的等差数列,其公差为0,即该数列中任意相邻的两项的比值都是个常数,这个常数叫做公比,称该数列为等比数列。

2. 等差数列:若一组数对相邻的两项之差均相等,则这组数叫做一等差数列,记作Sn = a1, a2, a3, … an,其中a1为数列的第一项;an项为数列的最后一项,d为数列的公差。

3. 多项式:多项式指由常数或变数的乘积、相加构成的形式而又不是等号的拮抗式,其系数最大的变数的指数称为这个多项式的阶数,多项式的问题记作P(x) = a0 + a1x + a2x2 + … + anxn,其中a0,a1,… ,an都是常数,x是变数,n是阶数。

二、函数与图象1. 函数:函数定义为一种从一个或多个输入变量到一个或多个输出变量之间的一种关系,函数是一种事物存在的方式。

若把一个变量(或数)作为函数的参数时,得到的另一变量(或数)称作函数的值。

用f(x)表示函数的通用符号,表示x的函数值是f(x)。

2. 运算: 函数的值的运算就是x的代换,其运算结果取决于x的取值,因此要区分x 的取值范围。

3. 图象:图象是一类函数图像,把函数表达式转化为图像,让人们更容易看懂函数的信息,可以把函数中的变量作为水平轴,把函数函数值作为垂直轴,将形成一条曲线,这条曲线就是函数f(x)的图象。

三、二次函数1. 二次函数定义:若一个函数中只含自变量的平方项,就称函数为二次函数。

一般的,形如y = ax2 + b的函数都可以被称为二次函数。

2. 二次函数的概念:二次函数是以一元二次方程式为概念的函数,常常用来模拟一些物理变化过程,例如重力和磁场的影响,物理变化的运动曲线,和财务计算等概念。

3. 二次函数的图象:二次函数一般会描绘出一个一抛物线,当抛物线的 a 值小于 0 时,抛物线上方为凹,a 值大于 0 时,抛物线上方为凸若抛物线两个焦点在 x 轴上,则它表示为 y=ax2,若两个焦点不在 x 轴上,则可以表示为 y = ax2 + b。

高二数学必修二知识点

高二数学必修二知识点

高二数学必修二知识点数学作为一门基础学科,对于学生的学习和发展起着非常重要的作用。

高二数学必修二是高中数学的重要组成部分,包含了一些重要的知识点。

接下来我们来了解一下这些知识点。

一、函数的概念和性质函数是数学中一个非常重要的概念,广泛应用于各个领域。

函数可以理解为一种映射关系,将一个自变量对应到一个因变量上。

在高二数学必修二中,我们需要学习函数的定义和性质,例如函数的定义域、值域、单调性等。

二、三角函数及其应用三角函数是高中数学中一个重要的内容,包括正弦函数、余弦函数、正切函数等。

我们需要学习三角函数的定义、性质以及它们在实际问题中的应用。

例如在解决三角形的边长和角度等问题时,三角函数是不可或缺的工具。

三、二次函数和一元二次方程二次函数是高中数学中一个非常重要且常见的函数形式。

在高二数学必修二中,我们需要学习二次函数的图像、性质以及与一元二次方程的关系。

通过研究二次函数的特点,我们可以解决一元二次方程的求解问题,这在实际应用中有着重要的意义。

四、排列与组合排列与组合是数学中一个经典的组合数学问题。

在高二数学必修二中,我们需要学习排列与组合的基本概念以及解题方法。

排列与组合与现实生活密切相关,广泛应用于统计学、概率论等领域。

五、数列与数学归纳法数列是数字按顺序排列而成的一串数,包括等差数列、等比数列等。

在高二数学必修二中,我们需要学习数列及其通项公式的求解,进而掌握数列的性质和应用。

数学归纳法是解决数学问题的常用方法,需要我们掌握其基本思想和应用技巧。

六、概率与统计概率与统计是数学中非常实用和重要的一部分。

在高二数学必修二中,我们需要学习概率的基本定义和性质,了解概率的运算法则和应用。

同时,我们还需要学习统计学中的基本概念和统计数据的处理方法,例如频数、频率、均值、标准差等。

总而言之,高二数学必修二涵盖了很多重要的数学知识点,如函数、三角函数、二次函数、排列与组合、数列与数学归纳法以及概率与统计等。

高二数学知识点整理必修二

高二数学知识点整理必修二

高二数学知识点整理必修二1.高二数学知识点整理必修二篇一函数的奇偶性①函数的定义域关于原点对称是函数具有奇偶性的必要条件;②是奇函数;③是偶函数;④奇函数在原点有定义,则;⑤在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;⑥若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;1、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=—f(x),那么f(x)为奇函数;2、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=f(x),那么f(x)为偶函数;3、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;4、一般地,对于函数y=f(x),定义域内每一个自变量x 都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。

5、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;6、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称)。

2.高二数学知识点整理必修二篇二数列(1)数列的概念和简单表示法了解数列的概念和几种简单的表示方法(列表、图象、通项公式).了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列理解等差数列、等比数列的概念.掌握等差数列、等比数列的通项公式与前项和公式.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.了解等差数列与一次函数、等比数列与指数函数的关系.3.高二数学知识点整理必修二篇三两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+ cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)辅助角公式:Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中sint=B/(A2+B2)^(1/2)cost=A/(A2+B2)^(1/2)tant=B/AAsinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)tan(2α)=2tanα/[1-tan2(α)]三倍角公式:sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)tan(3α)=tana·tan(π/3+a)·tan(π/3-a)4.高二数学知识点整理必修二篇四二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角5.高二数学知识点整理必修二篇五空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)。

高二必修二数学知识点总结

高二必修二数学知识点总结

高二必修二数学知识点总结高二必修二数学主要包括以下几个知识点:一、平面向量和解析几何1. 平面向量的定义和性质,平面向量的加减法和数量积。

2. 平面向量的数量积的性质和运算定律。

3. 平面向量的夹角和垂直关系,等腰三角形和平行四边形等几何应用。

4. 平面向量的叉积及其几何应用。

5. 直线方程的一般式、斜截式和点斜式。

6. 圆的一般方程、标准方程、参数方程和切线方程。

二、三角函数1. 弧度制和角度制的互相转化。

2. 各三角函数的定义和性质。

3. 三角函数的图像及其变换。

4. 三角函数的和、差、积与商的公式及其应用。

5. 三角函数的反函数与反三角函数。

三、数列与数学归纳法1. 数列基本概念,通项公式和递推公式。

2. 常数列和特殊数列,等差数列和等比数列。

3. 数列极限的概念和性质。

4. 数列极限的运算法则和计算方法。

5. 数学归纳法及其应用。

四、函数与方程1. 一次函数和二次函数的基本性质和图像。

2. 一次函数和二次函数的最值和增减性。

3. 二次函数的判别式和根的性质。

4. 一次函数和二次函数的应用问题。

5. 指数函数、对数函数和幂函数的性质和图像。

6. 指数函数、对数函数和幂函数的运算法则。

7. 指数函数、对数函数和幂函数的应用问题。

8. 解一元二次方程和一元二次不等式的方法。

五、立体几何1. 空间向量及其运算定律。

2. 空间中两点间的距离和线段的中点坐标。

3. 空间中点到直线的距离和直线的方向向量。

4. 空间中两直线的位置关系和两平面的位置关系。

5. 空间直线与平面的位置关系和平面与平面的位置关系。

6. 空间图形的投影和旋转。

六、概率与统计1. 概率的基本概念和性质。

2. 随机事件和样本空间的概念。

3. 概率计算中的加法规则和乘法规则。

4. 条件概率和贝叶斯定理。

5. 排列和组合的基本概念和计算方法。

6. 随机变量的基本概念和性质。

7. 离散型随机变量的分布律和分布函数。

8. 连续型随机变量的密度函数和分布函数。

数学高二必修2知识点总结

数学高二必修2知识点总结

数学高二必修2知识点总结高二数学必修2是数学学习的重要阶段,其中包含了多个重要而深入的数学知识点。

本文将对高二数学必修2的知识点进行总结,帮助同学们复习和巩固相关知识。

一. 二次函数1. 二次函数的定义和性质二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。

二次函数的图像为抛物线,其开口方向由a的正负决定。

2. 二次函数的图像特征- 当a>0时,抛物线开口朝上,最低点坐标为(-b/2a, -(△-4ac)/4a) - 当a<0时,抛物线开口朝下,最高点坐标为(-b/2a, -(△-4ac)/4a)其中△ = b^2-4ac 为二次函数的判别式,根据△的值可判断二次函数的图像与x轴的交点情况。

3. 二次函数的性质- 零点和因式分解:当二次函数图像与x轴相交时,对应的x值即为二次函数的零点。

二次函数也可根据因式分解的方法进行求解。

- 对称轴和对称性:二次函数的对称轴为x = -b/2a,图像关于对称轴对称。

- 单调性和极值点:当a>0时,二次函数是开口朝上的抛物线,函数在对称轴两侧单调递增;当a<0时,二次函数是开口朝下的抛物线,函数在对称轴两侧单调递减。

- 最值和最值点:当a>0时,二次函数有最小值,最小值即为最低点的纵坐标;当a<0时,二次函数有最大值,最大值即为最高点的纵坐标。

二. 平面向量1. 平面向量的定义和表示平面向量是具有大小和方向的量,并可用有序数对表示。

常用的表示方法有向量符号、坐标表示和使用始点与终点的表示形式。

2. 平面向量的基本运算平面向量的基本运算包括加法、数乘和减法。

- 加法:平面向量的加法满足三角形法则,即两个向量相加的结果是以它们为边的一个三角形的对角线。

- 数乘:数与向量的乘积,结果是将向量的长度等比例扩大或缩小。

- 减法:向量的减法可看作是加法的逆运算,即将减数取负后与被减数相加。

3. 平面向量的数量积平面向量的数量积又称为点积或内积,结果是一个实数。

人教版高二数学必修二知识点讲解

人教版高二数学必修二知识点讲解

人教版高二数学必修二知识点讲解
人教版高二数学必修二主要包括以下知识点:
1.数列和数列的极限:包括等差数列、等比数列、等差数列的前n项和、等比数列的前n项和、通项公式等内容。

同时,还要了解数列的极限概念,以及数列极限的性质和计算方法。

2.函数的概念和性质:包括函数的定义、函数的性质和图像、函数的分类、函数的运算,以及函数的图像变换等内容。

3.三角函数的知识:包括三角函数的定义、三角函数的基本性质、三角函数的图像、三角函数的逆函数,以及三角函数的复合函数等。

4.三角函数的应用:包括解三角函数方程和不等式、解三角形、用三角函数表示复合运动等内容。

5.平面向量的运算:包括向量的概念、向量的加法、减法、数量乘法、点乘、向量的模、向量的夹角、向量的共线性和垂直等内容。

6.平面向量的坐标表示和空间向量:包括向量的坐标表示、向量的共线性和垂直、点到直线的距离,以及空间中向量的概念、向量的共线性和垂直等。

7.空间中的平面和直线:包括平面的点法式方程、平面的一般方程、平面的交线,以及直线的方向向量、直线的参数方程、直线的点向式和直线的位置关系等。

8.解析几何中的应用:包括平面的相关应用,如平面与平面的位置关系、平面与直线的位置关系;直线与直线的位置关系、直线与平面的位置关系等。

以上是人教版高二数学必修二的主要知识点,希望对你有帮助。

如有其他问题,请继续提问。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017高二数学必修二知识点总结高二数学必修二知识点:空间几何体11 .1柱、锥、台、球的结构特征1. 2空间几何体的三视图和直观图11 三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下22 画三视图的原则:长对齐、高对齐、宽相等33直观图:斜二测画法44斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积(一)空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和2 圆柱的表面积3 圆锥的表面积4 圆台的表面积5 球的表面积(二)空间几何体的体积1柱体的体积2锥体的体积3台体的体积4球体的体积高二数学必修二知识点:直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母、、等表示,如平面、平面等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A LB L= LAB公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A、B、C三点不共线= 有且只有一个平面,使A 、B 、C 。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P = =L,且P L公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:共面直线相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a、b、c是三条直线a∥bc∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:①a 与b 所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;②两条异面直线所成的角(0,);③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

2.1.3 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内有无数个公共点(2)直线与平面相交有且只有一个公共点(3)直线在平面平行没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a 来表示a a =Aa∥2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:ab = a∥a∥b2.2.2 平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

符号表示:aba b =P ∥a∥b∥2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。

2.2.3 2.2.4直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行则线线平行。

符号表示:a∥a a∥b= b作用:利用该定理可解决直线间的平行问题。

2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。

符号表示:∥= a a∥b= b作用:可以由平面与平面平行得出直线与直线平行2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定1、定义如果直线L与平面内的任意一条直线都垂直,我们就说直线L与平面互相垂直,记作L ,直线L叫做平面的垂线,平面叫做直线L的垂面。

直线与平面垂直时,它们唯一公共点P叫做垂足。

2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

注意点:a)定理中的两条相交直线这一条件不可忽视;b)定理体现了直线与平面垂直与直线与直线垂直互相转化的数学思想。

2.3.2平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形2、二面角的记法:二面角-l- 或-AB-3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

2.3.3 2.3.4直线与平面、平面与平面垂直的性质1、定理:垂直于同一个平面的两条直线平行。

2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

高二数学必修二知识点:直线与方程3.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角叫做直线l 的倾斜角.特别地,当直线l与x轴平行或重合时, 规定= 0 .2、倾斜角的取值范围:0 180 .当直线l与x轴垂直时, = 90 .3、直线的斜率:一条直线的倾斜角( 90 )的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tan⑴当直线l与x轴平行或重合时, =0 , k = tan0⑵当直线l与x轴垂直时, = 90 , k 不存在.由此可知, 一条直线l的倾斜角一定存在,但是斜率k不一定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1 x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即3.2.1 直线的点斜式方程1、直线的点斜式方程:直线经过点且斜率为2、、直线的斜截式方程:已知直线的斜率为3.2.2 直线的两点式方程1、直线的两点式方程:已知两点2、直线的截距式方程:已知直线3.2.3 直线的一般式方程1、直线的一般式方程:关于x、y的二元一次方程(A,B不同时为0)2、各种直线方程之间的互化。

3.3直线的交点坐标与距离公式3.3.1两直线的交点坐标1、给出例题:两直线交点坐标L1 :3x+4y-2=0L1:2x+y+2=0解:解方程组得x=-2,y=2所以L1与L2的交点坐标为M(-2,2)3.3.2 两点间距离两点间的距离公式3.3.3 点到直线的距离公式1.点到直线距离公式:2、两平行线间的距离公式:高二数学必修二知识点:圆与方程4.1.1 圆的标准方程1、圆的标准方程:圆心为A(a,b),半径为r的圆的方程2、点与圆的关系的判断方法:(1),点在圆外(2),点在圆上(3),点在圆内4.1.2 圆的一般方程1、圆的一般方程:2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项.(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。

4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.4.2.2 圆与圆的位置关系4.2.3 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果翻译成几何结论.4.3.1空间直角坐标系1、点M对应着唯一确定的有序实数组,对应着空间直角坐标系中的一点3、空间中任意点M的坐标都可以用有序实数组来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M4.3.2空间两点间的距离公式高二数学必修一公式总结高二数学必修一公式高二数学学习方法抓好基础是关键数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。

只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。

弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。

反之,会使解题速度慢,逻辑混乱、叙述不清。

严防题海战术做习题是为了巩固知识、提高应变能力、思维能力、计算能力。

学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。

因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。

也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。

归纳数学大思维数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。

在平时听课时,一个明知的学生,应该听老师对该题目的分析和归纳。

但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。

听课是认真,但费力,听完后是满脑子的计算过程,支离破碎。

相关文档
最新文档