《图形的旋转》经典好题
中考数学元复习《图形的旋转》练习题含答案

中考数学复习图形的旋转一、选择题1.下列图形中是中心对称图形的有( B )A.1个B.2个C.3个D.4个2.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,连结AD.下列结论一定正确的是( C )A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC,第2题图),第3题图) 3.如图,在平面直角坐标系中,点B,C,E在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是( A )A.△ABC绕点C顺时针旋转90°,再向下平移3个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移1个单位D.△ABC绕点C逆时针旋转90°,再向下平移3个单位4.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为( A )A.10 B.2 2 C.3 D.25【解析】∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD=BE2+DE2=10.故选A.,第4题图),第5题图) 5.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(-2,5)的对应点A′的坐标是( B )A.(2,5) B.(5,2) C.(2,-5) D.(5,-2)【解析】∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′-∠COA′=∠COC′-∠COA′,∴∠AOC=∠A′OC′.∴△ACO≌△A′C′O,∴AC=A′C′,CO=C′O.∵A(-2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故选B.6.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连结AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是( D ) A.0个B.1个C.2个D.3个【解析】∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE =∠BCA=60°,A C=CD=DE=CE,∴∠ACD=120°-60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.二、填空题7.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是__60°__.,第7题图),第8题图) 8.如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:__将△COD绕点C顺时针旋转90°,再向左平移2个单位长度得到△AOB(答案不唯一).__.9.如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A恰好落在AC上的点A′处,连结CC′,则∠ACC′=__110°__.【解析】∵∠A=70°,AC=BC,∴∠BCA=40°,根据旋转的性质,AB=BA′,BC=BC′,∴∠α=180°-2×70°=40°,∵∠CBC′=∠α=40°,∴∠BCC′=70°,∴∠ACC′=∠ACB+∠BCC′=110°.10.如图,在正方形ABCD中,AD=23,把边BC绕点B逆时针旋转30°得到线段BP,连结AP并延长交CD于点E,连结PC,则△PCE的面积为__9-53__.【解析】∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP =60°,AP=AB=23,∵AD=23,∴AE=4,DE=2,∴CE=23-2,PE=4-23,过P作PF ⊥CD 于F ,∴PF =32PE =23-3,∴△PCE 的面积为12CE ·PF =12×(23-2)×(23-3)=9-5 3.故答案为9-5 3.,第10题图) ,第11题图)11.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,则DE 2+BG 2=__2a 2+2b 2__.【解析】连结BD ,EG ,如图所示,∴DO 2+BO 2=BD 2=BC 2+CD 2=2a 2,EO 2+OG 2=EG 2=CG 2+CE 2=2b 2,则BG 2+DE 2=DO 2+BO 2+EO 2+OG 2=2a 2+2b 2.三、解答题12. 如图,在边长为1的正方形组成的网格中,△ABC 的顶点均在格点上,点A ,B ,C 的坐标分别是A (-2,3),B (-1,2),C (-3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1.(1)在正方形网格中作出△A 1B 1C 1;(2)在旋转过程中,点A 经过的路径AA 1︵的长度为__132π__;(3)在y 轴上找一点D ,使DB +DB 1的值最小,并求出D 点的坐标.,题图),答图)解:(1)如图所示: (2)在旋转过程中,点A 经过的路径AA 1︵的长度为90×π×13180=132π (3)∵点B ,B 1在y 轴两旁,连结BB 1交y 轴于点D ,设D′为y 轴上异于D 的点,显然D′B +D′B 1>DB +DB 1,∴当点D 是BB 1与y 轴交点时,DB +DB 1最小.设直线BB 1的解析式为y =kx +b ,依据题意得⎩⎨⎧-k +b =2,2k +b =1,解得⎩⎨⎧k =-13,b =53,∴y =-13x +53,∴D (0,53) 13.如图,已知正方形ABCD 的边长为3,E ,F 分别是AB ,BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:△DEF ≌△DMF ;(2)若AE =1,求FM 的长.解:(1)∵△DAE 逆时针旋转90°得到△DCM ,∴∠FCM =∠FCD +∠DCM =180°,∴F ,C ,M 三点共线,∴DE =DM ,∠EDM =90°,∴∠EDF +∠MDF =90°,∵∠EDF=45°,∴∠MDF =∠EDF =45°,在△DEF 和△DMF 中,∵⎩⎨⎧DE =DM ,∠EDF =∠MDF ,DF =DF ,∴△DEF ≌△DMF (SAS ) (2)由(1)得EF =MF ,设EF =MF =x ,∵AE =CM =1,且BC =3,∴BM =BC +CM =3+1=4,∴BF =BM -MF =BM -EF =4-x ,∵EB =AB -AE =3-1=2,在Rt △EBF 中,由勾股定理得EB 2+BF 2=EF 2,即22+(4-x )2=x 2,解得x =52,∴FM =5214.如图①,将一个边长为2的正方形ABCD 和一个长为2,宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′,旋转角为α.(1)当点D ′恰好落在EF 边上时,求旋转角α的值;(2)如图②,G 为BC 中点,且0°<α<90°,求证:GD ′=E ′D ;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,△DCD ′与△CBD ′能否全等?若能,直接写出旋转角α的值;若不能,请说明理由.解:(1)∵DC ∥EF ,∴∠DCD ′=∠CD′E =α,∵sin α=CE CD′=CE CD =12,∴α=30° (2)∵G 为BC 中点,∴GC =CE′=CE =1.∵∠D′CG =∠DCG +∠DCD′=90°+α,∠DCE ′=∠D′CE′+∠DCD′=90°+α,∴∠D ′CG =∠DCE′.又∵CD′=CD ,∴△GCD ′≌△E ′CD (SAS ),∴GD ′=E′D (3)能.α=135°或α=315°。
中考数学《旋转》专题练习含答案解析

旋转一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点、旋转角是.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA PB+PC(选填“>”、“=”、“<”)10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为度,图中除△ABC外,还有等边三形是△.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).旋转参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:既是中心对称图形又是轴对称图形的只有A.故选A.【点评】掌握好中心对称与轴对称的概念.轴对称的关键是寻找对称轴,两边图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,图形旋转180度后与原图重合.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°【考点】旋转的性质.【专题】计算题.【分析】根据旋转的性质,把旋转后的图形看作为正八边形,依次得到旋转的角度.【解答】解:把△ABC绕点O顺时针旋转45°,得到△HEF;顺时针旋转180°,得到△ADC;顺时针旋转225°,得到△HGF;故选D.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣【考点】旋转的性质;正方形的性质.【分析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【解答】解:如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.【点评】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对【考点】旋转的性质;三角形内角和定理;等边三角形的性质.【专题】计算题.【分析】将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,则AP′=AP,∠P′AP=60°,得到△AP′P是等边三角形,PP′=AP,所以△P′CP的三边长分别为PA,PB,PC;再由∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,得到∠APB=100°,∠BPC=120°,∠CPA=140°,这样可分别求出∠PP′C=∠AP′C﹣∠AP′P=∠APB ﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,即可得到答案.【解答】解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C﹣∠AP′P=∠APB﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形【考点】中心对称图形.【分析】旋转180°后与原图重合的图形是中心对称图形.【解答】解:菱形,等腰梯形,等边三角形,等腰直角三角形都是轴对称图形;菱形既是轴对称图形,又是中心对称图形.故选A.【点评】运用轴对称和中心对称图形概念,找出符合条件的图形.【链接】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)【考点】关于原点对称的点的坐标.【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)”解答.【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3).故选B.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是(﹣1,).【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】已知将点P0绕着原点O按逆时针方向旋转60°得点P1,则OP1=1,P1点的坐标是(.则P2的坐标是;再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3与P2关于y轴对称,因而点P3的坐标就很容易求出.【解答】解:∵点P0绕着原点O按逆时针方向旋转60°得点P1,∴P1点的坐标是(,∴P2的坐标是,又∵点P3与P2关于y轴对称,∴点P3的坐标是(﹣1,).【点评】解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点A、旋转角是∠CAD,是90°.【考点】旋转的性质.【分析】确定图形的旋转时首先要确定旋转前后的对应点,即可确定旋转中心.【解答】解:旋转中心是点A、旋转角是∠CAD,是90°.【点评】本题主要考查了旋转的定义,正确确定旋转中的对应点,是确定旋转中心,旋转角的前提.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA<PB+PC(选填“>”、“=”、“<”)【考点】旋转的性质;三角形三边关系;等边三角形的判定.【分析】此题只需根据三角形的任意两边之和大于第三边和等边三角形的性质,进行分析即可.【解答】解:根据三角形的三边关系,得:BC<PB+PC.又AB=BC>PA,∴PA<PB+PC.【点评】本题结合旋转主要考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=45度.【考点】旋转的性质;正方形的性质.【分析】根据BE+DF=EF,则延长FD到G,使DG=BE,则FG=EF,可以认为是把△ABE 绕点A逆时针旋转90度,得到△ADG,根据旋转的定义即可求解.【解答】解:如图:延长FD到G,使DG=BE,则FG=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG又∴AF=AF,GF=EF∴△AGF≌△AEF∴∠EAF=∠GAF=×90°=45°.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为60度,图中除△ABC外,还有等边三形是△AOD.【考点】旋转的性质;等边三角形的性质;等边三角形的判定.【分析】根据旋转的性质及全等三角形的性质作答.【解答】解:∵将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,∴△AOB≌△ADC,∴OA=AD,∠BAO=∠DAC,∴∠BAO+∠OAC=∠DAC+∠OAC=∠BAC=60°,即∠OAD=60°,所以旋转角为60°.∵OA=AD,∠OAD=60°,∴△AOD为等边三角形.【点评】此题主要考查了图形旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有△EPQ.【考点】旋转的性质.【分析】旋转中心是P,旋转方向为逆时针,旋转角是90度,已确定,再通过观察发现全等三角形,判断是否符合本题的旋转规律.【解答】解:根据旋转的性质可知,旋转中心是P,旋转角是90度,图中通过旋转得到的三角形还有△EPQ.【点评】本题考查旋转两相等的性质,即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】计算题;压轴题.【分析】(1)BM+DN=MN成立,证得B、E、M三点共线即可得到△AEM≌△ANM,从而证得ME=MN.(2)DN﹣BM=MN.证明方法与(1)类似.【解答】解:(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.【点评】本题考查了旋转的性质,解决此类问题的关键是正确的利用旋转不变量.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.【考点】正方形的性质;全等三角形的判定与性质.【专题】计算题.【分析】简单的求正方形内一个角的大小,首先从△APQ的周长入手求出PQ=DQ+BP,然后将△CDQ逆时针旋转90°,使得CD、CB重合,然后利用全等来解.【解答】解:如图所示,△APQ的周长为2,即AP+AQ+PQ=2①,正方形ABCD的边长是1,即AQ+QD=1,AP+PB=1,∴AP+AQ+QD+PB=2②,①﹣②得,PQ﹣QD﹣PB=0,∴PQ=PB+QD.延长AB至M,使BM=DQ.连接CM,△CBM≌△CDQ(SAS),∴∠BCM=∠DCQ,CM=CQ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°,PM=PB+BM=PB+DQ=PQ.在△CPQ与△CPM中,CP=CP,PQ=PM,CQ=CM,∴△CPQ≌△CPM(SSS),∴∠PCQ=∠PCM=∠QCM=45°.【点评】熟练掌握正方形的性质,会运用正方形的性质进行一些简单的运算.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).【考点】锐角三角函数的定义;旋转的性质.【专题】操作型.【分析】(1)根据旋转的性质可知△AFM≌△ADB,则AF=AD=BD•cos∠ADB=8×=4cm;(2)当△AFK为等腰三角形时,由于AM<AF,那么A不能是等腰△AFK的顶点,则分两种情况:①K为顶点,即AK=FK时;②F为顶点,即AF=FK.针对每一种情况,利用三角形的面积公式,可分别求出△AFK的面积.【解答】解:(1)AF=;(2)△AFK为等腰三角形时,分两种情况:①当AK=FK时,如图.过点K作KN⊥AF于N,则KN⊥AF,AN=NF=AF=2cm.在直角△NFK中,∠KNF=90°,∠F=30°,∴KN=NF•tan∠F=2cm.∴△AFK的面积=×AF×KN=;②当AF=FK时,如图.过点K作KP⊥AF于P.在直角△PFK中,∠KPF=90°,∠F=30°,∴KP=KF=2cm.∴△AFK的面积=×AF×KP=12cm2.【点评】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.注意(2)中需分情况讨论△AFK为等腰三角形时的不同分类,不要漏解.。
初中数学九年级上册《图形的旋转》基础典型练习题(整理含答案)

《图形的旋转》基础典型练习题一、选择题(每题3分,共18分)1.下列物体的运动不是旋转的是()A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片2.在10分钟的时间内,分针转过的角度是()A.15°B.30°C.15°D.30°3.在10分钟的时间内,时钟的时针旋转过的角度是()A.5°B.10°C.15°D.30°4.等边三角形绕着它的中心旋转一周,可与原图形重合的次数是()A.1 B.2 C.3 D.45.在图形的旋转中,下列说法错误的是()A.图形上的每一点到旋转中心的距离都相等B.图形上的每一点转动的角度都相同C.图形上可能存在不动的点D.旋转前和旋转后的图形全等6.有一种平面图形,它绕着中心旋转,不论旋转多少度,•所得到的图形都与原图形完全重合,你觉得它可能是()A.三角形B.等边三角形C.正方形D.圆二、填空题(7题4分,11题5分,其余每题3分,共18分)7.经过旋转后的图形与原图形的关系是________,它们的对应线段_______,•对应角________,对应点到旋转中心的距离________.8.一架风车有分布均匀的四个叶片,旋转一周可与原来的位置重合______次.9.如图所示,图①沿逆时针方向旋转90°可得到图_________.10.如上图所示,图①按顺时针方向至少旋转_______度可得图③.11.如图所示,在△ABC中,∠C=90°,AB=5cm,BC=3cm,•把这个三角形在平面内绕点C逆时针旋转60°至△A′B′C′,那么AA′的长度是______cm.(•不取近似值)三、作图题(每题6分,共18分)12.如图所示,△ABC绕点A旋转后,点B与点D•重合,•作出旋转后的三角形ADE.13.把边长为2cm的正方形ABCD,绕着点D逆时针旋转45°后,变为正方形A′B•′C′D′,作出上述图形.14.如图所示是计算机操作人员用Flash设计出的美丽图案,•试把它按逆时针方向旋转180°,作出旋转后的图案.四、解答题(6分)15.如图所示,①图怎样变化可成②图呢?请你分析变化过程.参考答案:一、1.C 点拨:骑自行车的人的运动可以看作是平移.2.D 点拨:分针60分钟经过的角度为360°,则1分钟转6°,10分钟转6•°×10=60°.3 .A 点拨:时针1小时转过的角度是360°×112=30°, 则时针在10•分钟内经过30°×16=5°,故选A . 4.C 点拨:转过120°,240°,360°,均可与原图形重合.5.A 点拨:图形上的点到旋转中心的距离不一定相等,•但对应点到旋转中心的距离相等,一定要熟练掌握图形旋转的性质和定义.6.D 点拨:在平面图形中,具有这种性质的有圆,在立体图形中有球体,•这种性质叫图形的旋转不变性.二、7.全等;相等;相等;相等点拨:考查旋转图形的性质.8.四 点拨:在旋转一周的过程中,当风车旋转90°,180°,270°,360°时均可与原来的位置重合.9.⑤ 点拨:单独观察图形中的食指,原来的图案中食指向右,•当图案沿逆时针旋转90°时,食指向上,故应是图⑤.10.180 点拨:原来图案中的食指指向右,图③中的食指指向左,•故让图①按顺时针旋转180°即可.11.4 点拨:根据旋转的性质,可知AC=A ′C ,依题意∠ACA ′=60°,所以△ACA ′为等边三角形,故AA ′=AC .在Rt △ABC 中,AC=22AB BC -=2253-=4(cm),故AA ′=4cm .三、12.解:作法:①作∠DAE=∠BAC .②在∠DAE 的边AE 上取AE=AC .③连接DE . △ADE 即为所求.(如答图所示)点拨:回忆作一个角等于已知角的方法.13.解:如答图所示.点拨:作图时要注意旋转中心,旋转方向,旋转角度.14.解:如答图所示.点拨:原来的图案中“头发”向上,按逆时针方向旋转180°后,图案中“头发”向下.四、15.解:(1)先把①图向右平移直到两个大圆重合.(2)把图案按逆时针方向旋转90°即得②图.或把图案按顺时针方向旋转270°也可得到②图.点拨:先把图案向右平移,再把图案旋转即可.。
中考数学几何图形旋转试题经典问题及解答

中考数学几何图形旋转典型试题一、填空题1.(日照市)如图1,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于.2.(成都市)如图2,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB 上,那么此三角板向右平移的距离是cm.3.(连云港市)正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA顺时针连续翻转(如图3所示),直至点P第一次回到原来的位置,则点P运动路径的长为cm.4.(泰州市)如图4,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,将腰CD以点D为中心逆时针旋转90°至ED,连结AE,CE,则△ADE的面积是.二、解答题5.(资阳市)如图5-1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.(1) 求证:BP=DP;(2) 如图5-2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;(3) 试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论 .6.(武汉市)如图6-1是一个美丽的风车图案,你知道它是怎样画出来的吗?按下列步骤可画出这个风车图案:在图6-2中,先画线段OA,将线段OA平移至CB处,得到风车的第一个叶片F1,然后将第一个叶片OABC绕点O逆时针旋转180°得到第二个叶片F2,再将F1、F2同时绕点O逆时针旋转90°得到第三、第四个叶片F3、F4.根据以上过程,解答下列问题:(1)若点A的坐标为(4,0),点C的坐标为(2,1),写出此时点B的坐标;(2)请你在图6-2中画出第二个叶片F2;(3)在(1)的条件下,连接OB,由第一个叶片逆时针旋转180°得到第二个叶片的过程中,线段OB扫过的图形面积是多少?7.如图7,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OP n(n为正整数).(1)求点P6的坐标;(2)求△P5OP6的面积;(3)我们规定:把点P n(x n,y n)(n=0,1,2,3,…)的横坐标x n、纵坐标y n都取绝对值后得到的新坐标(|x n|,|y n|)称之为点P n的“绝对坐标”.根据图中点P n的分布规律,请你猜想点P n的“绝对坐标”,并写出来.8.(台州市)把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图8).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.9.(浙江省)如图9-1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图9-2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角形纸片摆成如图9-3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图9-3至图9-6中统一用F表示)图9-1 图9-2 图9-3小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.(1)将图9-3中的△ABF沿BD向右平移到图9-4的位置,使点B与点F 重合,请你求出平移的距离;(2)将图9-3中的△ABF绕点F顺时针方向旋转30°到图9-5的位置,A1F交DE于点G,请你求出线段FG的长度;(3)将图9-3中的△AB F沿直线AF翻折到图9-6的位置,AB1交DE于点H,请证明:AH﹦DH.图9-4 图9-5 图9-6参考答案一、1.2. 6-23.2π 4.1二、5. 解:(1)解法一:在△ABP与△ADP中,利用全等可得BP=DP.解法二:利用正方形的轴对称性,可得BP=DP.(2)不是总成立 .当四边形PECF绕点C按逆时针方向旋转,点P旋转到BC边上时,DP>DC>BP,此时BP=DP 不成立.(3)连接BE、DF,则BE与DF始终相等.在图1-1中,可证四边形PECF为正方形,在△BEC与△DFC中,可证△BEC≌△DFC .从而有 BE=DF .6. 解:(1)B(6,1)(2)图略(3)线段OB扫过的图形是一个半圆.过B作BD⊥x轴于D.由(1)知B点坐标为(6,1),∴OB2=OD2+BD2=62+12=37.∴线段OB扫过的图形面积是.7. 解:(1)根据旋转规律,点P6落在y轴的负半轴,而点P n到坐标原点的距离始终等于前一个点到原点距离的倍,故其坐标为P6(0,26),即P6(0,64).(2)由已知可得,△P0OP1∽△P1OP2∽…∽△P n-1OP n,设P1(x1,y1),则y1=2sin45°=,∴.又∵,∴.(3)由题意知,OP0旋转8次之后回到x轴正半轴,在这8次中,点P n分别落在坐标象限的平分线上或x轴或y轴上,但各点绝对坐标的横、纵坐标均为非负数,因此,点P n的坐标可分三类情况:令旋转次数为n.①当n=8k或n=8k+4时(其中k为自然数),点P n落在x轴上,此时,点P n的绝对坐标为(2n,0);②当n=8k+1或n=8k+3或n=8k+5或n=8k+7时(其中k为自然数),点P n落在各象限的平分线上,此时,点P n的绝对坐标为,即.③当n=8k+2或n=8k+6时(其中k为自然数),点P n落在y轴上,此时,点P n的绝对坐标为(0,2n).8. 解:HG=HB.证法1:连结AH(如图10).∵四边形ABCD,AEFG都是正方形,∴∠B=∠G=90°.由题意,知AG=AB,又AH=AH,∴Rt△AGH≌Rt△ABH(HL).∴HG=HB.证法2:连结GB(如图11).∵四边形ABCD,AEFG都是正方形,∴∠ABC=∠AGF=90°.由题意知AB=AG.∴∠AGB=∠ABG.∴∠HGB=∠HBG.∴HG=HB.9. 解:(1)图形平移的距离就是线段BC的长.∵在Rt△ABC中,斜边长为10cm,∠BAC=30°,∴BC=5cm.∴平移的距离为5cm.(2分)(2)∵∠A1FA=30°,∴∠GFD=60°.又∠D=30°,∴∠FGD=90°.在Rt△EFD中,ED=10 cm,∴ .∵FG=cm.(3)在△AHE与△DHB1中,∠FAB1=∠EDF=30°.∵FD=FA,EF=FB=FB1,∴FD-FB1=FA-FE,即AE=DB1.又∵∠AHE=∠DHB1,∴△AHE≌△DHB1(AAS).∴AH=DH.。
中考数学真题《图形的旋转》专项测试卷(附答案)

中考数学真题《图形的旋转》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(30题)一 、单选题1.(2023·江苏无锡·统考中考真题)如图,ABC 中 55BAC ∠=︒ 将ABC 逆时针旋转(055),αα︒<<︒得到ADE DE 交AC 于F .当40α=︒时 点D 恰好落在BC 上 此时AFE ∠等于( )A .80︒B .85︒C .90︒D .95︒2.(2023·天津·统考中考真题)如图,把ABC 以点A 为中心逆时针旋转得到ADE 点B C 的对应点分别是点D E 且点E 在BC 的延长线上 连接BD 则,下列结论一定正确的是( )A .CAE BED ∠=∠B .AB AE =C .ACE ADE ∠=∠D .CE BD =3.(2023·四川宜宾·统考中考真题)如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 把ADE 以A 为中心顺时针旋转 点M 为射线BD CE 的交点.若3AB 1AD =.以下结论: ①BD CE = ①BD CE ⊥ ①当点E 在BA 的延长线上时 33MC -=①在旋转过程中 当线段MB 最短时 MBC 的面积为12. 其中正确结论有( )A .1个B .2个C .3个D .4个4.(2023·山东聊城·统考中考真题)如图,已知等腰直角ABC 90ACB ∠=︒ 2AB = 点C 是矩形ECGF 与ABC 的公共顶点 且1CE = 3CG = 点D 是CB 延长线上一点 且2CD =.连接BG DF 在矩形ECGF 绕点C 按顺时针方向旋转一周的过程中 当线段BG 达到最长和最短时 线段DF 对应的长度分别为m 和n 则,mn的值为( )A .2B .3C 10D 13二 填空题5.(2023·江苏连云港·统考中考真题)以正五边形ABCDE 的顶点C 为旋转中心 按顺时针方向旋转 使得新五边形A B CD E ''''的顶点D 落在直线BC 上则,正五边ABCDE 旋转的度数至少为______°.6.(2023·湖南张家界·统考中考真题)如图,AO 为BAC ∠的平分线 且50BAC ∠=︒ 将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C ''' 且100OAC '∠=︒则,四边形ABOC 旋转的角度是______.7.(2023·湖南常德·统考中考真题)如图1 在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = D 是AB 上一点 且2AD = 过点D 作DE BC ∥交AC 于E 将ADE 绕A 点顺时针旋转到图2的位置.则图2中BDCE的值为__________.8.(2023·江苏无锡·统考中考真题)已知曲线12C C 、分别是函数2(0),(0,0)ky x y k x x x=-<=>>的图像 边长为6的正ABC 的顶点A 在y 轴正半轴上 顶点B C 在x 轴上(B 在C 的左侧) 现将ABC 绕原点O 顺时针旋转 当点B 在曲线1C 上时 点A 恰好在曲线2C 上则,k 的值为__________.9.(2023·辽宁·统考中考真题)如图,线段8AB = 点C 是线段AB 上的动点 将线段BC 绕点B 顺时针旋转120°得到线段BD 连接CD 在AB 的上方作Rt DCE ∆ 使90,30DCE E ∠=∠= 点F 为DE 的中点 连接AF 当AF 最小时 BCD ∆的面积为___________.10.(2023·江西·统考中考真题)如图,在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为_______.11.(2023·上海·统考中考真题)如图,在ABC 中 35C ∠=︒ 将ABC 绕着点A 旋转(0180)αα︒<<︒ 旋转后的点B 落在BC 上 点B 的对应点为D 连接AD AD ,是BAC ∠的角平分线则,α=________.12.(2023·湖南郴州·统考中考真题)如图,在Rt ABC △中 90BAC ∠=︒ 3cm AB = =60B ∠︒.将ABC 绕点A 逆时针旋转 得到AB C ''△ 若点B 的对应点B '恰好落在线段BC 上则,点C 的运动路径长.....是___________cm (结果用含π的式子表示).13.(2023·内蒙古·统考中考真题)如图,在Rt ABC △中 90,3,1ACB AC BC ∠=︒== 将ABC 绕点A 逆时针方向旋转90︒ 得到AB C ''△.连接BB ' 交AC 于点D 则,ADDC的值为________.14.(2023·黑龙江绥化·统考中考真题)已知等腰ABC 120A ∠=︒ 2AB =.现将ABC 以点B 为旋转中心旋转45︒ 得到A BC ''△ 延长C A ''交直线BC 于点D .则A D '的长度为_______. 15.(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中90304512C D B E BC EF ∠=∠=︒∠=︒∠=︒==,,,.将它们叠合在一起 边BC 与EF 重合 CD 与AB 相交于点G (如图1) 此时线段CG 的长是___________ 现将DEF 绕点()C F 按顺时针方向旋转(如图2)边EF 与AB 相交于点H 连结DH 在旋转0︒到60︒的过程中 线段DH 扫过的面积是___________.三 解答题16.(2023·北京·统考中考真题)在ABC 中 ()045B C αα∠=∠=︒<<︒ AM BC ⊥于点M D 是线段MC 上的动点(不与点M C 重合) 将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1 当点E 在线段AC 上时 求证:D 是MC 的中点(2)如图2 若在线段BM 上存在点F (不与点B M 重合)满足DF DC = 连接AE EF 直接写出AEF ∠的大小 并证明.17.(2023·四川自贡·统考中考真题)如图1 一大一小两个等腰直角三角形叠放在一起 M N 分别是斜边DE AB 的中点 2,4DE AB ==.(1)将CDE 绕顶点C 旋转一周 请直接写出点M N 距离的最大值和最小值(2)将CDE 绕顶点C 逆时针旋转120︒(如图2) 求MN 的长.18.(2023·四川达州·统考中考真题)如图,网格中每个小正方形的边长均为1 ABC 的顶点均在小正方形的格点上.(1)将ABC 向下平移3个单位长度得到111A B C △ 画出111A B C △ (2)将ABC 绕点C 顺时针旋转90度得到222A B C △ 画出222A B C △ (3)在(2)的运动过程中请计算出ABC 扫过的面积.19.(2023·辽宁·统考中考真题)在Rt ABC ∆中 90°ACB ∠= CA CB = 点O 为AB 的中点 点D 在直线AB 上(不与点,A B 重合) 连接CD 线段CD 绕点C 逆时针旋转90° 得到线段CE 过点B 作直线l BC ⊥ 过点E 作EF l ⊥ 垂足为点F 直线EF 交直线OC 于点G .(1)如图,当点D 与点O 重合时 请直接写出线段AD 与线段EF 的数量关系 (2)如图,当点D 在线段AB 上时 求证:2CG BD BC +=(3)连接DE CDE 的面积记为1S ABC 的面积记为2S 当:1:3EF BC =时 请直接写出12S S 的值.20.(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后 刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图,将一个三角形纸板ABC 绕点A 逆时针旋转θ到达AB C ''△的位置 那么可以得到:AB AB '=AC AC '= BC B C ''= BAC B AC ''∠=∠ ABC AB C ''∠=∠ ACB AC B ''∠=∠( )刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中 即“变”中蕴含着“不变” 这是我们解决图形旋转的关键 故数学就是一门哲学. 【问题解决】(1)上述问题情境中“( )”处应填理由:____________________(2)如图,小王将一个半径为4cm 圆心角为60︒的扇形纸板ABC 绕点O 逆时针旋转90︒到达扇形纸板A B C '''的位置.①请在图中作出点O①如果=6cm BB '则,在旋转过程中 点B 经过的路径长为__________ 【问题拓展】小李突发奇想 将与(2)中完全相同的两个扇形纸板重叠 一个固定在墙上 使得一边位于水平位置 另一个在弧的中点处固定 然后放开纸板 使其摆动到竖直位置时静止 此时 两个纸板重叠部分的面积是多少呢?如图所示 请你帮助小李解决这个问题.21.(2023·浙江绍兴·统考中考真题)在平行四边形ABCD 中(顶点,,,A B C D 按逆时针方向排列) 12,10,AB AD B ==∠为锐角 且4sin 5B =.(1)如图1 求AB 边上的高CH 的长.(2)P 是边AB 上的一动点 点,C D 同时绕点P 按逆时针方向旋转90︒得点,C D ''. ①如图2 当点C '落在射线CA 上时 求BP 的长. ①当AC D ''△是直角三角形时 求BP 的长.22.(2023·四川南充·统考中考真题)如图,正方形ABCD 中 点M 在边BC 上 点E 是AM 的中点 连接EDEC .(1)求证:ED EC =(2)将BE 绕点E 逆时针旋转 使点B 的对应点B '落在AC 上 连接MB '.当点M 在边BC 上运动时(点M 不与B C 重合) 判断CMB '的形状 并说明理由.(3)在(2)的条件下 已知1AB = 当45DEB ∠'=︒时 求BM 的长.23.(2023·江苏扬州·统考中考真题)【问题情境】在综合实践活动课上 李老师让同桌两位同学用相同的两块含30︒的三角板开展数学探究活动 两块三角板分别记作ADB 和,90,30A D C ADB A D C B C ∠=∠=︒∠''''=∠=︒△ 设2AB =. 【操作探究】如图1 先将ADB 和A D C ''的边AD A D ''重合 再将A D C ''绕着点A 按顺时针...方向旋转 旋转角为()0360αα︒≤≤︒ 旋转过程中ADB 保持不动 连接BC .(1)当60α=︒时 BC =________ 当22BC = α=________︒ (2)当90α=︒时 画出图形 并求两块三角板重叠部分图形的面积(3)如图2 取BC 的中点F 将A D C ''绕着点A 旋转一周 点F 的运动路径长为________. 24.(2023·湖南·统考中考真题)(1)[问题探究]如图1 在正方形ABCD 中 对角线AC BD 、相交于点O .在线段AO 上任取一点P (端点除外) 连接PD PB 、.①求证:PD PB =①将线段DP 绕点P 逆时针旋转 使点D 落在BA 的延长线上的点Q 处.当点P 在线段AO 上的位置发生变化时 DPQ ∠的大小是否发生变化?请说明理由 ①探究AQ 与OP 的数量关系 并说明理由. (2)[迁移探究]如图2 将正方形ABCD 换成菱形ABCD 且60ABC ∠=︒ 其他条件不变.试探究AQ 与CP 的数量关系 并说明理由.25.(2023·湖北随州·统考中考真题)1643年 法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A B C 求平面上到这三个点的距离之和最小的点的位置 意大利数学家和物理学家托里拆利给出了分析和证明 该点也被称为“费马点”或“托里拆利点” 该问题也被称为“将军巡营”问题. (1)下面是该问题的一种常见的解决方法 请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空 ①处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空 ①处填写角度数 ①处填写该三角形的某个顶点)当ABC 的三个内角均小于120︒时如图1 将APC △绕 点C 顺时针旋转60︒得到A P C '' 连接PP '由60PC P C PCP ''=∠=︒, 可知PCP '△为 ① 三角形 故PP PC '= 又P A PA ''= 故PA PB PC PA PB PP A B '''++=++≥由 ① 可知 当B P P ' A 在同一条直线上时 PA PB PC ++取最小值 如图2 最小值为A B ' 此时的P 点为该三角形的“费马点” 且有APC BPC APB ∠=∠=∠= ①已知当ABC 有一个内角大于或等于120︒时 “费马点”为该三角形的某个顶点.如图3 若120BAC ∠≥︒则,该三角形的“费马点”为 ① 点.(2)如图4 在ABC 中 三个内角均小于120︒ 且3430AC BC ACB ==∠=︒,, 已知点P 为ABC 的“费马点” 求PA PB PC ++的值(3)如图5 设村庄A B C 的连线构成一个三角形 且已知4km 23km 60AC BC ACB ==∠=︒,,.现欲建一中转站P 沿直线向A B C 三个村庄铺设电缆 已知由中转站P 到村庄A B C 的铺设成本分别为a 元/km a 元/km 2a 元/km 选取合适的P 的位置 可以使总的铺设成本最低为___________元.(结果用含a 的式子表示)26.(2023·四川·统考中考真题)如图1 已知线段AB AC 线段AC 绕点A 在直线AB 上方旋转 连接BC 以BC 为边在BC 上方作Rt BDC 且30DBC ∠=︒.(1)若=90BDC ∠︒ 以AB 为边在AB 上方作Rt BAE △ 且90AEB ∠=︒ 30EBA ∠=︒ 连接DE 用等式表示线段AC 与DE 的数量关系是(2)如图2 在(1)的条件下 若DE AB ⊥ 4AB = 2AC = 求BC 的长(3)如图3 若90BCD ∠=︒ 4AB = 2AC = 当AD 的值最大时 求此时tan CBA ∠的值.27.(2023·湖北黄冈·统考中考真题)【问题呈现】CAB △和CDE 都是直角三角形 90,,ACB DCE CB mCA CE mCD ∠=∠=︒== 连接AD BE 探究ADBE 的位置关系.(1)如图1 当1m =时 直接写出AD BE 的位置关系:____________(2)如图2 当1m ≠时 (1)中的结论是否成立?若成立 给出证明 若不成立 说明理由. 【拓展应用】(3)当3,7,4m AB DE ===时 将CDE 绕点C 旋转 使,,A D E 三点恰好在同一直线上 求BE 的长.28.(2023·内蒙古赤峰·统考中考真题)数学兴趣小组探究了以下几何图形.如图① 把一个含有45︒角的三角尺放在正方形ABCD 中 使45︒角的顶点始终与正方形的顶点C 重合 绕点C 旋转三角尺时 45︒角的两边CM CN 始终与正方形的边AD AB 所在直线分别相交于点M N 连接MN 可得CMN .【探究一】如图① 把CDM 绕点C 逆时针旋转90︒得到CBH 同时得到点H 在直线AB 上.求证:CNM CNH ∠=∠【探究二】在图①中 连接BD 分别交CM CN 于点E F .求证:CEF CNM △∽△【探究三】把三角尺旋转到如图①所示位置 直线BD 与三角尺45︒角两边CM CN 分别交于点E F .连接AC 交BD 于点O 求EFNM的值.29.(2023·湖南·统考中考真题)问题情境:小红同学在学习了正方形的知识后 进一步进行以下探究活动:在正方形ABCD 的边BC 上任意取一点G 以BG 为边长向外作正方形BEFG 将正方形BEFG 绕点B 顺时针旋转.特例感知:(1)当BG 在BC 上时 连接DF AC ,相交于点P 小红发现点P 恰为DF 的中点 如图①.针对小红发现的结论 请给出证明(2)小红继续连接EG 并延长与DF 相交 发现交点恰好也是DF 中点P 如图① 根据小红发现的结论 请判断APE 的形状 并说明理由 规律探究:(3)如图① 将正方形BEFG 绕点B 顺时针旋转α 连接DF 点P 是DF 中点 连接AP EP AEAPE 的形状是否发生改变?请说明理由.30.(2023·贵州·统考中考真题)如图① 小红在学习了三角形相关知识后 对等腰直角三角形进行了探究 在等腰直角三角形ABC 中 ,90CA CB C =∠=︒ 过点B 作射线BD AB ⊥ 垂足为B 点P 在CB 上.(1)【动手操作】如图① 若点P 在线段CB 上 画出射线PA 并将射线PA 绕点P 逆时针旋转90︒与BD 交于点E 根据题意在图中画出图形 图中PBE ∠的度数为_______度 (2)【问题探究】根据(1)所画图形 探究线段PA 与PE 的数量关系 并说明理由 (3)【拓展延伸】如图① 若点P 在射线CB 上移动 将射线PA 绕点P 逆时针旋转90︒与BD 交于点E 探究线段,,BA BP BE 之间的数量关系 并说明理由.参考答案一 单选题1.(2023·江苏无锡·统考中考真题)如图,ABC 中 55BAC ∠=︒ 将ABC 逆时针旋转(055),αα︒<<︒得到ADE DE 交AC 于F .当40α=︒时 点D 恰好落在BC 上 此时AFE ∠等于( )A .80︒B .85︒C .90︒D .95︒【答案】B【分析】根据旋转可得B ADB ADE ∠=∠=∠ 再结合旋转角40α=︒即可求解. 【详解】解:由旋转性质可得:55BAC DAE ∠=∠=︒ AB AD = ①40α=︒①15DAF ∠=︒ 70B ADB ADE ∠=∠=∠=︒ ①85AFE DAF ADE ∠=∠+∠=︒故选:B .【点睛】本题考查了几何—旋转问题 掌握旋转的性质是关键.2.(2023·天津·统考中考真题)如图,把ABC 以点A 为中心逆时针旋转得到ADE 点B C 的对应点分别是点D E 且点E 在BC 的延长线上 连接BD 则,下列结论一定正确的是( )A .CAE BED ∠=∠B .AB AE =C .ACE ADE ∠=∠D .CE BD = 【答案】A【分析】根据旋转的性质即可解答. 【详解】根据题意 由旋转的性质可得AB AD = AC AE = BC DE = 故B 选项和D 选项不符合题意=ABC ADE ∠∠=ACE ABCBAC∴=ACE ADEBAC 故C 选项不符合题意=ACB AED =ACB CAECEA=AED CEA BED∴=CAE BED 故A 选项符合题意故选:A .【点睛】本题考查了旋转的性质 熟练掌握旋转的性质和三角形外角运用是解题的关键.3.(2023·四川宜宾·统考中考真题)如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 把ADE 以A 为中心顺时针旋转 点M 为射线BD CE 的交点.若3AB 1AD =.以下结论: ①BD CE = ①BD CE ⊥ ①当点E 在BA 的延长线上时 33MC -=①在旋转过程中 当线段MB 最短时 MBC 的面积为12.其中正确结论有( )A .1个B .2个C .3个D .4个【答案】D【分析】证明BAD CAE ≌即可判断① 根据三角形的外角的性质得出① 证明DCM ECA ∠∠∽得出313-= 即可判断① 以A 为圆心 AD 为半径画圆 当CE 在A 的下方与A 相切时 MB 的值最小 可得四边形AEMD 是正方形 在Rt MBC 中22MC BC MB -21 然后根据三角形的面积公式即可判断①.【详解】解:①ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 ①,,90BA CA DA EA BAC DAE ==∠=∠=︒ ①BAD CAE ∠=∠ ①BAD CAE ≌①ABD ACE ∠=∠ BD CE = 故①正确 设ABD ACE α∠=∠= ①45DBC α∠=︒-,①454590EMB DBC BCM DBC BCA ACE αα∠=∠+∠=∠+∠+∠=︒-+︒+=︒ ①BD CE ⊥ 故①正确当点E 在BA 的延长线上时 如图所示①DCM ECA ∠=∠ 90DMC EAC ∠=∠=︒ ①DCM ECA ∠∠∽①MC CDAC EC= ①3AB = 1AD =.①31CD AC AD =-= 222CE AE AC =+= 313-=①33MC -=故①正确 ①如图所示 以A 为圆心 AD 为半径画圆①90BMC ∠=︒ ①当CE 在A 的下方与A 相切时 MB 的值最小 90ADM DAE AEM ∠=∠=∠=︒①四边形AEMD 是矩形 又AE AD =①四边形AEMD 是正方形 ①1MD AE ==①222BD EC AC AE =- ①21MB BD MD =-= 在Rt MBC 中 22MC BC MB -①PB 取得最小值时 222MC AB AC MB +-()2332121+--①)()1112121222BMCSMB MC =⨯==故①正确 故选:D .【点睛】本题考查了旋转的性质 相似三角形的性质 勾股定理 切线的性质 垂线段最短 全等三角形的性质与判定 正方形的性质 熟练掌握以上知识是解题的关键.4.(2023·山东聊城·统考中考真题)如图,已知等腰直角ABC 90ACB ∠=︒ 2AB = 点C 是矩形ECGF与ABC 的公共顶点 且1CE = 3CG = 点D 是CB 延长线上一点 且2CD =.连接BG DF 在矩形ECGF 绕点C 按顺时针方向旋转一周的过程中 当线段BG 达到最长和最短时 线段DF 对应的长度分别为m 和n 则,mn的值为( )A .2B .3C 10D 13【答案】D【分析】根据锐角三角函数可求得1AC BC == 当线段BG 达到最长时 此时点G 在点C 的下方 且BC G 三点共线 求得4BG = 5DG = 根据勾股定理求得26DF = 即26m = 当线段BG 达到最短时 此时点G 在点C 的上方 且B C G 三点共线则,2BG = 1DG = 根据勾股定理求得2DF 即2n = 即可求得13mn【详解】①ABC 为等腰直角三角形 2AB = ①2sin 4521AC BC AB ==⋅︒== 当线段BG 达到最长时 此时点G 在点C 的下方 且B C G 三点共线 如图:则4BG BC CG =+= 5DG DB BG =+=在Rt DGF △中 22225126DF DG GF =++ 即26m =当线段BG 达到最短时 此时点G 在点C 的上方 且B C G 三点共线 如图:则2BG CG BC =-= 1DG BG DB =-=在Rt DGF △中 2222112DF DG GF =++ 即2n = 故26132m n == 故选:D .【点睛】本题考查了锐角三角函数 勾股定理等 根据旋转推出线段BG 最长和最短时的位置是解题的关键.二 填空题5.(2023·江苏连云港·统考中考真题)以正五边形ABCDE 的顶点C 为旋转中心 按顺时针方向旋转 使得新五边形A B CD E ''''的顶点D 落在直线BC 上则,正五边ABCDE 旋转的度数至少为______°.【答案】72【分析】依据正五边形的外角性质 即可得到DCF ∠的度数 进而得出旋转的角度. 【详解】解:①五边形ABCDE 是正五边形①530726DCF ∠÷=︒=︒①新五边形A B CD E ''''的顶点D 落在直线BC 上则,旋转的最小角度是72︒故答案为:72.【点睛】本题主要考查了正多边形 旋转性质 关键是掌握正多边形的外角和公式的运用.6.(2023·湖南张家界·统考中考真题)如图,AO 为BAC ∠的平分线 且50BAC ∠=︒ 将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C ''' 且100OAC '∠=︒则,四边形ABOC 旋转的角度是______.【答案】75︒【分析】根据角平分线的性质可得25BAO OAC ==︒∠∠ 根据旋转的性质可得50BAC B AC ''∠=∠=︒ 25B AO O AC ''''==︒∠∠ 求得75OAO '∠=︒ 即可求得旋转的角度.【详解】①AO 为BAC ∠的平分线 50BAC ∠=︒①25BAO OAC ==︒∠∠①将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C '''①50BAC B AC ''∠=∠=︒ 25B AO O AC ''''==︒∠∠①1002575OAO OAC O AC ''''∠=∠-∠=︒-︒=︒故答案为:75︒.【点睛】本题考查了角平分线的性质 旋转的性质 熟练掌握以上性质是解题的关键.7.(2023·湖南常德·统考中考真题)如图1 在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = D 是AB 上一点 且2AD = 过点D 作DE BC ∥交AC 于E 将ADE 绕A 点顺时针旋转到图2的位置.则图2中BDCE的值为__________.【答案】45【分析】首先根据勾股定理得到2210AC AB BC += 然后证明出ADE ABC △△∽ 得到AD AEAB AC= 进而得到ADABAE AC = 然后证明出ABD ACE ∽ 利用相似三角形的性质求解即可.【详解】①在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = ①2210AC AB BC +①DE BC ∥①90ADE ABC ∠=∠=︒ AED ACB ∠=∠①ADE ABC △△∽ ①ADAEAB AC = ①ADABAE AC =①BAC DAE ∠=∠①BAC CAD DAE CAD ∠+∠=∠+∠①BAD CAE ∠=∠①ABD ACE ∽ ①84105BD AB CD AC ===. 故答案为:45.【点睛】此题考查了相似三角形的性质和判定 解题的关键是熟练掌握相似三角形的性质和判定定理.8.(2023·江苏无锡·统考中考真题)已知曲线12C C 、分别是函数2(0),(0,0)k y x y k x x x=-<=>>的图像 边长为6的正ABC 的顶点A 在y 轴正半轴上 顶点B C 在x 轴上(B 在C 的左侧)现将ABC 绕原点O 顺时针旋转 当点B 在曲线1C 上时 点A 恰好在曲线2C 上则,k 的值为__________.【答案】6【分析】画出变换后的图像即可(画AOB 即可) 当点A 在y 轴上 点B C 在x 轴上时 根据ABC 为等边三角形且AO BC ⊥ 可得3OB OA = 过点A B 分别作x 轴垂线构造相似则,BFO OEA ∽ 根据相似三角形的性质得出3AOE S =△ 进而根据反比例函数k 的几何意义 即可求解.【详解】当点A 在y 轴上 点B C 在x 轴上时 连接AOABC 为等边三角形且AO BC ⊥则,30BAO ∠=︒∴tan tan30BAO ∠=︒=3OB OA = 如图所示 过点,A B 分别作x 轴的垂线 交x 轴分别于点,E FAO BO ⊥ 90BFO AEO AOB ∠=∠=∠=︒∴90BOF AOE EAO ∠=︒-∠=∠∴BFO OEA ∽ ∴213BFO AOE S OB SOA ⎛⎫== ⎪⎝⎭ ∴212BFO S -==∴3AOE S =△∴6k =.【点睛】本题考查了反比例函数的性质 k 的几何意义 相似三角形的性质与判定 正确作出辅助线构造相似三角形是解题关键.9.(2023·辽宁·统考中考真题)如图,线段8AB = 点C 是线段AB 上的动点 将线段BC 绕点B 顺时针旋转120°得到线段BD 连接CD 在AB 的上方作Rt DCE ∆ 使90,30DCE E ∠=∠= 点F 为DE 的中点 连接AF 当AF 最小时 BCD ∆的面积为___________.3【分析】连接CF BF , BF ,CD 交于点P 由直角三角形的性质及等腰三角形的性质可得BF 垂直平分CF 60ABF ∠=︒为定角 可得点F 在射线BF 上运动 当AF BF ⊥时 AF 最小 由含30度角直角三角形的性质即可求解.【详解】解:连接CF BF , BF ,CD 交于点P 如图,①90DCE ∠= 点F 为DE 的中点①FC FD =①30E ∠=①60FDC ∠=︒,①FCD 是等边三角形①60DFC FCD ∠=∠=︒①线段BC 绕点B 顺时针旋转120°得到线段BD①BC BD =①FC FD =①BF 垂直平分CF 60ABF ∠=︒①点F 在射线BF 上运动①当AF BF ⊥时 AF 最小此时9030FAB ABF ∠=︒-∠=︒ ①142BF AB == ①1302BFC DFC ∠=∠=︒ ①90FCB BFC ABF ∠=∠+∠=︒①122BC BF == ①112PB BC == ①由勾股定理得223PC BC PB - ①223CD PC == ①11231322BCD S CD PB =⋅=⨯△3【点睛】本题考查了等腰三角形性质 含30度直角三角形的性质 斜边中线性质 勾股定理 线段垂直平分线的判定 勾股定理 旋转的性质 确定点F 的运动路径是关键与难点.10.(2023·江西·统考中考真题)如图,在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为_______.【答案】90︒或270︒或180︒【分析】连接AC 根据已知条件可得90BAC ∠=︒ 进而分类讨论即可求解.【详解】解:连接AC 取BC 的中点E 连接AE 如图所示①在ABCD 中 602B BC AB ∠=︒=, ①12BE CE BC AB ===①ABE 是等边三角形①60BAE AEB ∠=∠=︒ AE BE =①AE EC = ①1302EAC ECA AEB ∠=∠=∠=︒ ①90BAC ∠=︒①AC CD ⊥如图所示 当点P 在AC 上时 此时90BAP BAC ∠=∠=︒则,旋转角α的度数为90︒当点P 在CA 的延长线上时 如图所示则,36090270α=︒-︒=︒当P 在BA 的延长线上时则,旋转角α的度数为180︒ 如图所示①PA PB CD == PB CD ∥①四边形PACD 是平行四边形①AC AB ⊥①四边形PACD 是矩形①90PDC ∠=︒即PDC △是直角三角形综上所述 旋转角α的度数为90︒或270︒或180︒故答案为:90︒或270︒或180︒.【点睛】本题考查了平行四边形的性质与判定 等边三角形的性质与判定 矩形的性质与判定 旋转的性质 熟练掌握旋转的性质是解题的关键.11.(2023·上海·统考中考真题)如图,在ABC 中 35C ∠=︒ 将ABC 绕着点A 旋转(0180)αα︒<<︒ 旋转后的点B 落在BC 上 点B 的对应点为D 连接AD AD ,是BAC ∠的角平分线则,α=________.【答案】1103⎛⎫︒ ⎪⎝⎭【分析】如图,AB AD = BAD ∠=α 根据角平分线的定义可得CAD BAD α∠=∠= 根据三角形的外角性质可得35ADB α∠=︒+ 即得35B ADB α∠=∠=︒+ 然后根据三角形的内角和定理求解即可.【详解】解:如图,根据题意可得:AB AD = BAD ∠=α①AD 是BAC ∠的角平分线①CAD BAD α∠=∠=①35ADB C CAD α∠=∠+∠=︒+ AB AD =①35B ADB α∠=∠=︒+则在ABC 中 ①180C CAB B ∠+∠+∠=︒①35235180αα︒++︒+=︒ 解得:1103α⎛⎫=︒ ⎪⎝⎭故答案为:1103⎛⎫︒ ⎪⎝⎭【点睛】本题考查了旋转的性质 等腰三角形的性质 三角形的外角性质以及三角形的内角和等知识 熟练掌握相关图形的性质是解题的关键.12.(2023·湖南郴州·统考中考真题)如图,在Rt ABC △中 90BAC ∠=︒ 3cm AB = =60B ∠︒.将ABC 绕点A 逆时针旋转 得到AB C ''△ 若点B 的对应点B '恰好落在线段BC 上则,点C 的运动路径长.....是___________cm (结果用含π的式子表示).3π【分析】由于AC 旋转到AC ' 故C 的运动路径长是CC '的圆弧长度 根据弧长公式求解即可.【详解】以A 为圆心作圆弧CC ' 如图所示.在直角ABC 中 =60B ∠︒则,30C ∠=︒则()2236cm BC AB ==⨯=. ①)22226333cm AC BC AB =--.由旋转性质可知 AB AB '= 又=60B ∠︒①ABB '是等边三角形.①60BAB '∠=︒.由旋转性质知 60CAC '∠=︒.故弧CC '的长度为:()602333cm 3603AC πππ⨯⨯⨯=⨯ 3π【点睛】本题考查了含30︒角直角三角形的性质 勾股定理 旋转的性质 弧长公式等知识点 解题的关键是明确C 点的运动轨迹.13.(2023·内蒙古·统考中考真题)如图,在Rt ABC △中 90,3,1ACB AC BC ∠=︒== 将ABC 绕点A 逆时针方向旋转90︒ 得到AB C ''△.连接BB ' 交AC 于点D 则,AD DC 的值为________.【答案】5【分析】过点D 作DF AB ⊥于点F 利用勾股定理求得10AB根据旋转的性质可证ABB ' DFB △是等腰直角三角形 可得DF BF = 再由1122ADB SBC AD DF AB =⨯⨯=⨯⨯ 得=10AD DF 证明AFD ACB 可得DF AF BC AC = 即3AF DF = 再由=10AF DF 求得10=DF 从而求得52AD = 12CD = 即可求解. 【详解】解:过点D 作DF AB ⊥于点F①90ACB ∠=︒ 3AC = 1BC = ①223110AB +①将ABC 绕点A 逆时针方向旋转90︒得到AB C ''△ ①==10AB AB ' 90BAB '∠=︒①ABB '是等腰直角三角形①45ABB '∠=︒又①DF AB ⊥①45FDB ∠=︒①DFB △是等腰直角三角形①DF BF = ①1122ADB S BC AD DF AB =⨯⨯=⨯⨯ 即=10AD DF ① 90C AFD ∠=∠=︒ CAB FAD ∠=∠①AFD ACB ①DF AF BC AC= 即3AF DF = 又①=10AF DF ①10=DF ①105=10=2AD 51=3=22CD - ①52==512AD CD 故答案为:5.【点睛】本题考查旋转的性质 等腰三角形的判定与性质 相似三角形的判定与性质 三角形的面积 熟练掌握相关知识是解题的关键.14.(2023·黑龙江绥化·统考中考真题)已知等腰ABC 120A ∠=︒ 2AB =.现将ABC 以点B 为旋转中心旋转45︒ 得到A BC ''△ 延长C A ''交直线BC 于点D .则A D '的长度为_______. 【答案】423423+-或【分析】根据题意 先求得23BC = 当ABC 以点B 为旋转中心逆时针旋转45︒ 过点B 作BE A B '⊥交A D '于点E 当ABC 以点B 为旋转中心顺时针旋转45︒ 过点D 作DF BC '⊥交BC '于点F 分别画出图形 根据勾股定理以及旋转的性质即可求解.【详解】解:如图所示 过点A 作AM BC ⊥于点M①等腰ABC 120BAC ∠=︒ 2AB =. ①30ABC ACB ∠=∠=︒ ①112AM AB == 223BM CM AB AM =- ①23BC =如图所示 当ABC 以点B 为旋转中心逆时针旋转45︒ 过点B 作BE A B '⊥交A D '于点E①120BAC ∠=︒①60DA B '∠=︒ 30A EB '∠=︒在Rt A BE '中 24A E A B ''== 2223BE A E A B ''-= ①等腰ABC 120BAC ∠=︒ 2AB =. ①30ABC ACB ∠=∠=︒①ABC 以点B 为旋转中心逆时针旋转45︒ ①45ABA '∠=︒①180********DBE ∠=︒-︒-︒-︒=︒ 1804530105A BD '∠=︒-︒-︒=︒ 在A BD '中 1801806010515D DA B A BD ∠=︒-∠-∠=︒-︒-︒=''︒, ①D EBD ∠=∠ ①23EB ED ==①423A D A E DE ''=+=+如图所示 当ABC 以点B 为旋转中心顺时针旋转45︒ 过点D 作DF BC '⊥交BC '于点F在BFD △中 45BDF CBC ∠'=∠=︒ ①DF BF =在Rt DC F '中 30C '∠=︒ ①3'DF ①33BC BF BF ==①33DF BF ==①2623DC DF '==-①6232423A D C D A C ''''=-=-=- 综上所述 A D '的长度为423-423+ 故答案为:43-43+【点睛】本题考查了旋转的性质 勾股定理 含30度角的直角三角形的性质 熟练掌握旋转的性质 分类讨论是解题的关键.15.(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中90304512C D B E BC EF ∠=∠=︒∠=︒∠=︒==,,,.将它们叠合在一起 边BC 与EF 重合 CD 与AB 相交于点G (如图1) 此时线段CG 的长是___________ 现将DEF 绕点()C F 按顺时针方向旋转(如图2) 边EF 与AB 相交于点H 连结DH 在旋转0︒到60︒的过程中 线段DH 扫过的面积是___________.【答案】6662 1218318π-【分析】如图1 过点G 作GH BC ⊥于H 根据含30︒直角三角形的性质和等腰直角三角形的性质得出3BH GH = GH CH = 然后由12BC =可求出GH 的长 进而可得线段CG 的长 如图2 将DEF 绕点C 顺时针旋转60︒得到11D E F 1FE 与AB 交于1G 连接1D D 1AD 22D E F 是DEF 旋转0︒到60︒的过程中任意位置 作1DN CD ⊥于N 过点B 作1BM D D ⊥交1D D 的延长线于M 首先证明1CDD 是等边三角形 点1D 在直线AB 上 然后可得线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积 求出DN 和BM 然后根据线段DH 扫过的面积111121D DBCD DD DBD D D CD D S SS SS=+=-+弓形扇形列式计算即可.【详解】解:如图1 过点G 作GH BC ⊥于H①3045ABC DEF DFE ∠=︒∠=∠=︒, 90GHB GHC ∠=∠=︒ ①3BH GH = GH CH = ①312BC BH CH GH GH =+=+= ①36GH =①()226366662CG GH ===如图2 将DEF 绕点C 顺时针旋转60︒得到11D E F 1FE 与AB 交于1G 连接1D D 由旋转的性质得:1160E CB DCD ∠=∠=︒ 1CD CD = ①1CDD 是等边三角形①30ABC ∠=︒ ①190CG B ∠=︒ ①112CG BC =①1CE BC =①1112CG CE = 即AB 垂直平分1CE①11CD E 是等腰直角三角形 ①点1D 在直线AB 上连接1AD 22D E F 是DEF 旋转0︒到60︒的过程中任意位置 则线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积 ①12BC EF == ①22DC DB === ①1162DC D D == 作1DN CD ⊥于N 则,132ND NC == ①()()222211623236DN D D ND =-=-过点B 作1BM D D ⊥交1D D 的延长线于M 则,90M ∠=︒ ①160D DC ∠=︒ 90CDB ∠=︒①118030BDM D DC CDB ∠=︒-∠-∠=︒ ①1322BM BD == ①线段DH 扫过的面积112D DBD D D S S =+弓形111CD DD DBCD D S S S=-+扇形(260621123623236022π⋅=-⨯⨯ 1218318π=-故答案为:6662 1218318π-.【点睛】本题主要考查了旋转的性质 含30︒直角三角形的性质 二次根式的运算 解直角三角形 等边三角形的判定和性质 勾股定理 扇形的面积计算等知识 作出图形 证明点1D 在直线AB 上是本题的突破点 灵活运用各知识点是解题的关键.三 解答题16.(2023·北京·统考中考真题)在ABC 中 ()045B C αα∠=∠=︒<<︒ AM BC ⊥于点M D 是线段MC 上的动点(不与点M C 重合) 将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1 当点E 在线段AC 上时 求证:D 是MC 的中点(2)如图2 若在线段BM 上存在点F (不与点B M 重合)满足DF DC = 连接AE EF 直接写出AEF ∠的大小 并证明. 【答案】(1)见解析 (2)90AEF ∠=︒ 证明见解析【分析】(1)由旋转的性质得DM DE = 2MDE α∠= 利用三角形外角的性质求出C DEC α∠=∠= 可得DE DC = 等量代换得到DM DC =即可(2)延长FE 到H 使FE EH = 连接CH AH 可得DE 是FCH 的中位线 然后求出B ACH ∠∠= 设DM DE m == CD n = 求出2BF m CH == 证明()SAS ABF ACH ≅ 得到AF AH = 再根据等腰三角形三线合一证明AE FH ⊥即可.。
中考复习之图形的旋转经典题(含答案)

图形的旋转经典题一.选择题(共10小题)1.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部B.外部C.边上D.以上都有可能2.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D 两点间的距离为()A.B.2C.3 D.23.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.74.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形B.正方形C.正六边形D.正十边形5.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动6.如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()6题7题9题A.π+πB.2π+2 C.3π+3πD.6π+67.(2016?松北区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°8.一个菱形绕它的两条对角线的交点旋转,使它和原来的菱形重合,那么旋转的角度至少是()A.360°B.270°C.180°D.90°9.如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B.C.D.410.等边三角形ABC绕着它的中心,至少旋转()度才能与它本身重合.A.60°B.120°C.180°D.360°二.填空题(共6小题)11.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是______.11题12题13题12.如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若DA⊥AB,AD=1,,则BC的长为______.13.如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是______.14.如图,在△ABC 中,∠C=90°,∠B=55°,点D 在BC 边上,DB=2CD ,若将△ABC 绕点D 逆时针旋转α度(0<α<180)后,点B 恰好落在初始位置时△ABC 的边上,则α等于______.15.如图,用扳手拧螺母时,旋转中心为______,旋转角为______. 16.在平面直角坐标系中,点P (1,1),N (2,0),△MNP 和△M 1N 1P 1的顶点都在格点上,△MNP 与△M 1N 1P 1是关于某一点中心对称,则对称中心的坐标为______. 三.解答题(共8小题)17.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别在AB ,AC 上,CE=BC ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF .(1)补充完成图形;(2)若EF ∥CD ,求证:∠BDC=90°. 18.在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形). (1)将△ABC 沿x 轴方向向左平移6个单位,画出平移后得到的△A 1B 1C 1;(2)将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2,并直接写出点B 2、C 2的坐标. 19.如图,在平面直角坐标系xOy 中,每个小正方形的边长均为1,线段AB 和DE 的端点A 、B 、D 、E 均在小正方形的顶点上.(1)画出以AB 为一边且面积为2的Rt △ABC ,顶点C 必须在小正方形的顶点上;(2)画出一个以DE 为一边,含有45°内角且面积为的△DEF ,顶点F 必须在小正方形的顶点上;(3)若点C 绕点Q 顺时针旋转90°后与点F 重合,请直接写出点Q 的坐标. 20.(1)如图(1),直线a ∥b ,A ,B 两点分别在直线a ,b 上,点P 在a ,b 外部,则∠1,∠2,∠3之间有何数量关系?证明你的结论; (2)如图(2),直线a ∥b ,点P 在直线a ,b 直角,∠2=50°,∠3=30°,求∠1;(3)在图(2)中,将直线a 绕点A 按逆时针方向旋转一定角度交直线b 于点M ,如图(3),若∠1=100°,∠4=40°,求∠2+∠3的度数.21.(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC 中,∠ACB=90°,AC=BC ,P 是△ABC 内的一点,且PA=3,PB=1,PC=2,求∠BPC 的度数.小强在解决此题时,是将△APC 绕C 旋转到△CBE 的位置(即过C 作CE ⊥CP ,且使CE=CP ,连接EP 、EB ).你知道小强是怎么解决的吗? (2)请根据(1)的思想解决以下问题:如图2所示,设P 是等边△ABC 内一点,PA=3,PB=4,PC=5,求∠APB 的度数. 22.如图1,在等腰直角△ABC 中,AB=AC ,∠BAC=90°,将一块三角板中含45°角的顶点放在A 上,从AB 边开始绕点A 逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC 于点D ,直角边所在的直线交直线BC 于点E .操作一:在线段BC 上取一点M ,连接AM ,旋转中发现:若AD 平分∠BAM ,则AE 也平分∠MAC .请说明理由;操作二:当0°<α≤45°时,在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.某同学将△ABD沿AD所在的直线对折得到△ADF(如图2),很快找到了解决问题的方法,请你说明其中的道理.23.如图(1)所示,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.24.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案与试题解析一.选择题(共10小题)1.(2016?玉林)把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部B.外部C.边上D.以上都有可能【分析】先根据勾股定理求出两直角三角形的各边长,再由旋转的性质得:∠EBE′=45°,∠E′=∠DEB=90°,求出E′D′与直线AB的交点到B的距离也是5,与AB的值相等,所以点A在△D′E′B的边上.【解答】解:∵AC=BD=10,又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°,∴BE=5,AB=BC=5,由三角板DEB绕点B逆时针旋转45°得到△D′E′B,设△D′E′B与直线AB交于G,可知:∠EBE′=45°,∠E′=∠DEB=90°,∴△GE′B是等腰直角三角形,且BE′=BE=5,∴BG==5,∴BG=AB,∴点A在△D′E′B的边上,故选C.【点评】本题考查了旋转的性质和勾股定理,利用30°和45°的直角三角形的性质求出各边的长;注意:在直角三角形中,30度角所对的直角边等于斜边的一半,45°角所对的两直角边相等,熟练掌握此内容是解决问题的关键.2.(2016?宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C 落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A.B.2C.3 D.2【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.【点评】题目考查勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.3.(2016?朝阳)如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.7【分析】只要证明△BAC∽△BDA,推出=,求出BD即可解决问题.【解答】解:∵AF∥BC,∴∠FAD=∠ADB,∵∠BAC=∠FAD,∴∠BAC=∠ADB,∵∠B=∠B,∴△BAC∽△BDA,∴=,∴=,∴BD=9,∴CD=BD﹣BC=9﹣4=5,故选B.【点评】本题考查平行线的性质、旋转变换、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,属于中考常考题型.4.(2016?莆田)规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形B.正方形C.正六边形D.正十边形【分析】分别求出各旋转对称图形的最小旋转角,继而可作出判断.【解答】解:A、正三角形的最小旋转角是120°,故此选项错误;B、正方形的旋转角度是90°,故此选项错误;C、正六边形的最小旋转角是60°,故此选项正确;D、正十角形的最小旋转角是36°,故此选项错误;故选:C.【点评】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角度的定义,求出旋转角.5.(2016?呼伦贝尔校级一模)下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动【分析】根据旋转的定义来判断:旋转就是将图形绕某点转动一定的角度,旋转后所得图形与原图形的形状、大小不变,对应点与旋转中心的连线的夹角相等.【解答】解:传送带传送货物的过程中没有发生旋转.故选:A.【点评】本题考查了旋转,正确理解旋转的定义是解题的关键.6.(2016?无锡校级模拟)如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD 沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()A.π+πB.2π+2 C.3π+3πD.6π+6【分析】画出点A第一次回到x轴上时的图形,根据图形得到点A的路径分三部分,以B点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A运动的路线与x轴围成的图形的面积就由三个扇形和两个直角三角形组长,于是可根据扇形面积和三角形面积公式计算,然后把计算结果乘以3即可得到答案.【解答】解:点A第一次回到x轴上时,点A的路径为:开始以B点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A第一次回到x轴上时,点A运动的路线与x轴围成的图形的面积和=×2++2×××=2π+2,所以点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为3(2π+2)=6π+6.故选D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.7.(2016?松北区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°【分析】根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于80°,则可以利用三角形内角和度数为180°列出式子进行求解.【解答】解:∵将△OAB绕点O逆时针旋转80°∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α∠D=100°∵∠A=2∠D=100°∴∠D=50°∵∠C+∠D+∠DOC=180°∴100°+50°+80°﹣α=180°解得α=50°故选A【点评】本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.8.(2016?和平区一模)一个菱形绕它的两条对角线的交点旋转,使它和原来的菱形重合,那么旋转的角度至少是()A.360°B.270°C.180°D.90°【分析】根据菱形是中心对称图形解答.【解答】解:∵菱形是中心对称图形,∴把菱形绕它的中心旋转,使它与原来的菱形重合,旋转角为180°的整数倍,∴旋转角至少是180°.故选C.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.9.(2016春?雅安期末)如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B.C.D.4【分析】根据旋转前后的图形全等,即可得出△APP'等腰直角三角形,再根据等腰直角三角形的性质,进行计算即可.【解答】解:∵△ACP′是由△ABP绕点A逆时针旋转后得到的,∴△ACP′≌△ABP,∴AP=AP′,∠BAP=∠CAP′.∵∠BAC=90°,∴∠PAP′=90°,故可得出△APP'是等腰直角三角形,又∵AP=3,∴PP′=3.故选B.【点评】此题考查了旋转的性质,解答本题的关键是掌握旋转前后对应边相等、对应角相等,另外要掌握等腰三角形的性质,难度一般.10.(2015?浠水县校级模拟)等边三角形ABC绕着它的中心,至少旋转()度才能与它本身重合.A.60°B.120°C.180°D.360°【分析】根据等边三角形的性质及旋转对称图形得到性质确定出最小的旋转角即可.【解答】解:等边三角形ABC绕着它的中心,至少旋转120°才能与它本身重合.故选B【点评】此题考查了旋转对称图形,熟练掌握旋转的性质是解本题的关键.二.填空题(共6小题)11.(2016?邵阳)将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是120°.【分析】根据旋转的性质和等边三角形的性质解答即可.【解答】解:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,∴∠BCA'=180°,∠B'CA'=60°,∴∠ACB'=60°,∴∠α=60°+60°=120°,故答案为:120°.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.12.(2016?高青县模拟)如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若DA⊥AB,AD=1,,则BC的长为.【分析】如图,首先运用旋转变换的性质证明CD=CB(设为λ);运用勾股定理求出AB的长度;再次运用勾股定理列出关于λ的方程,求出λ即可解决问题.【解答】解:如图,由题意得CD=CB(设为λ);由勾股定理得:AB2=BD2﹣AD2,而BD=,AD=1,∴AB=4,AC=4﹣λ;由勾股定理得:λ2=12+(4﹣λ)2,解得:.故答案为.【点评】该题主要考查了旋转变换的性质、勾股定理等几何知识点及其应用问题;应牢固掌握旋转变换的性质、勾股定理等几何知识点,这是灵活运用、解题的基础和关键.13.(2016?海曙区一模)如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是70°.【分析】根据旋转的性质可得AB=AB′,然后判断出△ABB′是等腰直角三角形,根据等腰直角三角形的性质可得∠ABB′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠B′C′A,然后根据旋转的性质可得∠C=∠B′C′A.【解答】解:∵Rt△ABC绕直角顶点A顺时针旋转90°得到△AB′C′,∴AB=AB′,∴△ABB′是等腰直角三角形,∴∠ABB′=45°,∴∠AC′B′=∠1+∠ABB′=25°+45°=70°,由旋转的性质得∠C=∠AC′B′=70°.故答案为:70°.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.14.(2016?太原二模)如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于70或120 .【分析】根据题意画出符合的两种情况,①当B点落在AB上时,求出∠B=∠DB°,即可求出∠B′DB;②当B点落在AC上时,根据题意求出∠B′DC,即可求出∠B′DB的度数,即可得出答案.【解答】解:分为两种情况:①当B点落在AB上时,如图1,∵根据旋转的性质得出DB=DB′,∵∠B=55°,∴∠DB′B=∠B=55°,∴∠B′DB=180°﹣55°﹣55°=70°,即此时α=70;②当B点落在AC上时,如图2,如图,∵△ABC绕着点D顺时针旋转α度后得到△A′B′C′,∴B′D=BD,∵BD=2CD,∴B′D=2CD,∵∠ACB=90°,∴∠CB′D=30°,∴∠B′DC=60°,∴∠B′DB=180°﹣60°=120°,即此时α=120;故答案为:70或120.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的性质的应用,能求出∠B′DB 的度数是解题的关键,作出图形更形象直观.15.(2016?怀柔区二模)如图,用扳手拧螺母时,旋转中心为螺丝(母)的中心,旋转角为0°~360°的任意角(答案不唯一).【分析】根据旋转中心的定义以及旋转角的定义解答即可.【解答】解:由旋转中心的定义:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心可知,用扳手拧螺母时,旋转中心为螺丝(母)的中心,而旋转角可估计实际情况决定,所以不确定,故答案为:螺丝(母)的中,0°~360°的任意角(答案不唯一)【点评】本题考查了和旋转有关的概念:旋转中心和旋转角,属于基础性题目,对此知识点的考查重点在于对旋转的性质的掌握.16.(2016?瑞昌市一模)在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为(2,1).【分析】根据中心对称的性质,知道点P(1,1),N(2,0),并细心观察坐标轴就可以得到答案.【解答】解:∵点P(1,1),N(2,0),∴由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,∴对称中心的坐标为(2,1),故答案为:(2,1).【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.以及中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.三.解答题(共8小题)17.(2016?荆门)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.【分析】(1)根据题意补全图形,如图所示;(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.【解答】解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.【点评】此题考查了旋转的性质,以及全等三角形的判定与性质,熟练掌握旋转的性质是解本题的关键.18.(2016?丹东)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.【分析】(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A 1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.19.(2016?呼兰区模拟)如图,在平面直角坐标系xOy中,每个小正方形的边长均为1,线段AB 和DE的端点A、B、D、E均在小正方形的顶点上.(1)画出以AB为一边且面积为2的Rt△ABC,顶点C必须在小正方形的顶点上;(2)画出一个以DE为一边,含有45°内角且面积为的△DEF,顶点F必须在小正方形的顶点上;(3)若点C绕点Q顺时针旋转90°后与点F重合,请直接写出点Q的坐标.【分析】(1)和(2)分别画出图形;(3)作FC的中垂线,得Q(5,0).【解答】(1)S△ABC=×2×2=2;(2)S△DEF=2×3﹣1×2﹣×1×3=;∵ED=EF,∠DFE=90°,∴∠FDE=45°;(3)由勾股定理得:FC==,CQ==,FQ==,∴FC2=CQ2+FQ2,CQ=FQ,∴∠FQC=90°,∴点C绕点Q顺时针旋转90°后与点F重合;则点Q(5,0).【点评】本题考查了作图﹣旋转变换,对于画定值面积的三角形,利用面积的和、差先试求某点所组成的图形的面积是否符合题意,再确定这一点;同时根据勾股定理计算所成的三角形是否为直角三角形或等腰直角三角形.20.(2016春?重庆期末)(1)如图(1),直线a∥b,A,B两点分别在直线a,b上,点P在a,b 外部,则∠1,∠2,∠3之间有何数量关系?证明你的结论;(2)如图(2),直线a∥b,点P在直线a,b直角,∠2=50°,∠3=30°,求∠1;(3)在图(2)中,将直线a绕点A按逆时针方向旋转一定角度交直线b于点M,如图(3),若∠1=100°,∠4=40°,求∠2+∠3的度数.【分析】(1)设直线AP交直线b于O,根据平行线的性质得出∠2=∠AOB,根据三角形外角性质求出∠AOB=∠1+∠3,即可得出答案;(2)延长AP交直线b于O,根据平行线的性质得出∠ABO=∠2=50°,根据三角形的外角性质得出∠1=∠AOB+∠3,代入求出即可;(3)延长AP交直线b于O,根据三角形外角性质得出∠AOB=∠2+∠4,∠1=∠3+∠AOB,求出∠1=∠2+∠4+∠3,代入求出即可.【解答】(1)∠2=∠1+∠3,证明:设直线AP交直线b于O,如图1,∵直线a∥直线b,∴∠2=∠AOB,∵∠AOB=∠1+∠3,∴∠2=∠1+∠3;(2)解:延长AP交直线b于O,如图2,∵直线a∥直线b,∠2=50°,∴∠ABO=∠2=50°,∵∠3=30°,∴∠1=∠AOB+∠3=50°+30°=80°;(3)解:延长AP交直线b于O,如图3,∵∠AOB=∠2+∠4,∠1=∠3+∠AOB,∴∠1=∠2+∠4+∠3,∵∠1=100°,∠4=40°,∴∠2+∠3=∠1﹣∠4=60°.【点评】本题考查了平行线的性质,三角形外角性质的应用,能灵活运用性质进行推理是解此题的关键.21.(2014秋?五常市校级期中)(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PA=3,PB=1,PC=2,求∠BPC 的度数.小强在解决此题时,是将△APC绕C旋转到△CBE的位置(即过C作CE⊥CP,且使CE=CP,连接EP、EB).你知道小强是怎么解决的吗?(2)请根据(1)的思想解决以下问题:如图2所示,设P是等边△ABC内一点,PA=3,PB=4,PC=5,求∠APB的度数.【分析】(1)如图1,首先证明BE2=PE2+PB2,得到∠BPE=90°;证明∠CPE=45°即可解决问题.(2)如图2,作旋转变换;首先证明∠AQP=60°;其次证明PQ2+CQ2=PC2,得到∠PQC=90°,求出∠AQC=150°,即可解决问题.【解答】解:(1)如图1,由题意得:∠PCE=90°PC=EC=2;BE=PA=3;由勾股定理得:PE2=22+22=8;∵PB2=1,BE2=9,∴BE2=PE2+PB2,∴∠BPE=90°,∵∠CPE=45°,∴∠BPC=135°.(2)如图2,将△ABP绕点A逆时针旋转60°到△ACQ的位置,连接PQ;则AP=AQ,∠PAQ=60°,QC=PB=4;∴△APQ为等边三角形,∠AQP=60°,PQ=PA=3;∵PQ2+CQ2=32+42=25,PC2=52=25,∴PQ2+CQ2=PC2,∴∠PQC=90°,∠AQC=60°+90°=150°,∴∠APB=∠AQC=150°.【点评】该题主要考查了旋转变换的性质、等边三角形的判定及其性质、勾股定理逆定理等几何知识点及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.22.(2014秋?苏州期中)如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.操作一:在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请说明理由;操作二:当0°<α≤45°时,在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.某同学将△ABD沿AD所在的直线对折得到△ADF(如图2),很快找到了解决问题的方法,请你说明其中的道理.【分析】(1)如图1,根据图形、已知条件推知∠BAD+∠MAE=∠DAM+∠EAC=45°,所以∠MAE=∠EAC,即AE平分∠MAC;(2)应用折叠对称的性质和SAS得到△AEF≌△AEC,得出FE=CE,∠AFE=∠C=45°.再证明∠DFE=90°.然后在Rt△DFE中应用勾股定理即可证明.【解答】(1)证明:如图1,∵∠BAC=90°,∴∠BAD+∠DAM+∠MAE+∠EAC=90°.∵∠DAE=45°,∴∠BAD+∠EAC=45°.∵∠BAD=∠DAM,∴∠BAD+∠EAC=∠DAM+∠EAC=45°,∴∠BAD+∠MAE=∠DAM+∠EAC,∴∠MAE=∠EAC,即AE平分∠MAC;(2)证明:如图2,连接EF.由折叠可知,∠BAD=∠FAD,AB=AF,BD=DF,∠B=∠AFD=45°.∵∠BAD=∠FAD,∴由(1)可知,∠CAE=∠FAE.在△AEF和△AEC中,,∴△AEF≌△AEC(SAS),∴FE=CE,∠AFE=∠C=45°.∴∠DFE=∠AFD+∠AFE=90°.在Rt△DFE中,DF2+FE2=DE2,∴BD2+CE2=DE2.【点评】本题考查了旋转的性质,角平分线的定义,等腰直角三角形的性质,轴对称的性质,全等三角形的判定和性质等知识点.注意,旋转前后,图形的大小和形状都不改变.23.(2014秋?利川市校级期中)如图(1)所示,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.【分析】(1)根据等边三角形的性质利用SAS判定△ACN≌△MCB,从而得到AN=MB;(2)连接AN,BM,根据等边三角形的性质及旋转的性质利用SAS判定△ACN≌△MCB,从而得到AN=MB.【解答】(1)证明:∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∴∠ACN=∠MCB=120°,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=MB.(2)解:连接AN,BM,∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∵∠ACB=90°,∴∠ACN=∠MCB,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=MB.【点评】此题主要考查学生对等边三角形的性质、旋转的性质及全等三角形的判定方法的综合运用.24.(2014秋?江西期末)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE ⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.【分析】(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.(2)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE ﹣CD=AD﹣BE.(3)DE、AD、BE具有的等量关系为:DE=BE﹣AD.证明的方法与(2)相同.【解答】(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.【点评】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了直角三角形全等的判定与性质.。
中考复习之图形的旋转经典题(含答案)汇总

图形的旋转经典题一.选择题(共10小题)1.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部 B.外部C.边上 D.以上都有可能2.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2C.3 D.23.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.74.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形 B.正方形C.正六边形 D.正十边形5.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动6.如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()6题7题9题A.π+πB.2π+2 C.3π+3πD.6π+67.(2016•松北区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°8.一个菱形绕它的两条对角线的交点旋转,使它和原来的菱形重合,那么旋转的角度至少是()A.360°B.270°C.180°D.90°9.如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B. C. D.410.等边三角形ABC绕着它的中心,至少旋转()度才能与它本身重合.A.60°B.120°C.180°D.360°二.填空题(共6小题)11.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是______.11题12题13题12.如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若DA⊥AB,AD=1,,则BC的长为______.13.如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是______.14.如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于______.15.如图,用扳手拧螺母时,旋转中心为______,旋转角为______.16.在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为______.三.解答题(共8小题)17.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.18.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.19.如图,在平面直角坐标系xOy中,每个小正方形的边长均为1,线段AB和DE的端点A、B、D、E均在小正方形的顶点上.(1)画出以AB为一边且面积为2的Rt△ABC,顶点C必须在小正方形的顶点上;(2)画出一个以DE为一边,含有45°内角且面积为的△DEF,顶点F必须在小正方形的顶点上;(3)若点C绕点Q顺时针旋转90°后与点F重合,请直接写出点Q的坐标.20.(1)如图(1),直线a∥b,A,B两点分别在直线a,b上,点P在a,b外部,则∠1,∠2,∠3之间有何数量关系?证明你的结论;(2)如图(2),直线a∥b,点P在直线a,b直角,∠2=50°,∠3=30°,求∠1;(3)在图(2)中,将直线a绕点A按逆时针方向旋转一定角度交直线b于点M,如图(3),若∠1=100°,∠4=40°,求∠2+∠3的度数.21.(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PA=3,PB=1,PC=2,求∠BPC的度数.小强在解决此题时,是将△APC绕C旋转到△CBE的位置(即过C作CE⊥CP,且使CE=CP,连接EP、EB).你知道小强是怎么解决的吗?(2)请根据(1)的思想解决以下问题:如图2所示,设P是等边△ABC内一点,PA=3,PB=4,PC=5,求∠APB的度数.22.如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.操作一:在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请说明理由;操作二:当0°<α≤45°时,在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.某同学将△ABD沿AD所在的直线对折得到△ADF(如图2),很快找到了解决问题的方法,请你说明其中的道理.23.如图(1)所示,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.24.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.参考答案与试题解析一.选择题(共10小题)1.(2016•玉林)把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部 B.外部C.边上 D.以上都有可能【分析】先根据勾股定理求出两直角三角形的各边长,再由旋转的性质得:∠EBE′=45°,∠E′=∠DEB=90°,求出E′D′与直线AB的交点到B的距离也是5,与AB的值相等,所以点A在△D′E′B的边上.【解答】解:∵AC=BD=10,又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°,∴BE=5,AB=BC=5,由三角板DEB绕点B逆时针旋转45°得到△D′E′B,设△D′E′B与直线AB交于G,可知:∠EBE′=45°,∠E′=∠DEB=90°,∴△GE′B是等腰直角三角形,且BE′=BE=5,∴BG==5,∴BG=AB,∴点A在△D′E′B的边上,故选C.【点评】本题考查了旋转的性质和勾股定理,利用30°和45°的直角三角形的性质求出各边的长;注意:在直角三角形中,30度角所对的直角边等于斜边的一半,45°角所对的两直角边相等,熟练掌握此内容是解决问题的关键.2.(2016•宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2C.3 D.2【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.【点评】题目考查勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.3.(2016•朝阳)如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.7【分析】只要证明△BAC∽△BDA,推出=,求出BD即可解决问题.【解答】解:∵AF∥BC,∴∠FAD=∠ADB,∵∠BAC=∠FAD,∴∠BAC=∠ADB,∵∠B=∠B,∴△BAC∽△BDA,∴=,∴=,∴BD=9,∴CD=BD﹣BC=9﹣4=5,故选B.【点评】本题考查平行线的性质、旋转变换、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,属于中考常考题型.4.(2016•莆田)规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形 B.正方形C.正六边形 D.正十边形【分析】分别求出各旋转对称图形的最小旋转角,继而可作出判断.【解答】解:A、正三角形的最小旋转角是120°,故此选项错误;B、正方形的旋转角度是90°,故此选项错误;C、正六边形的最小旋转角是60°,故此选项正确;D、正十角形的最小旋转角是36°,故此选项错误;故选:C.【点评】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角度的定义,求出旋转角.5.(2016•呼伦贝尔校级一模)下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动【分析】根据旋转的定义来判断:旋转就是将图形绕某点转动一定的角度,旋转后所得图形与原图形的形状、大小不变,对应点与旋转中心的连线的夹角相等.【解答】解:传送带传送货物的过程中没有发生旋转.故选:A.【点评】本题考查了旋转,正确理解旋转的定义是解题的关键.6.(2016•无锡校级模拟)如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()A.π+πB.2π+2 C.3π+3πD.6π+6【分析】画出点A第一次回到x轴上时的图形,根据图形得到点A的路径分三部分,以B 点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A运动的路线与x轴围成的图形的面积就由三个扇形和两个直角三角形组长,于是可根据扇形面积和三角形面积公式计算,然后把计算结果乘以3即可得到答案.【解答】解:点A第一次回到x轴上时,点A的路径为:开始以B点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A第一次回到x轴上时,点A运动的路线与x轴围成的图形的面积和=×2++2×××=2π+2,所以点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为3(2π+2)=6π+6.故选D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.7.(2016•松北区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°【分析】根据旋转的性质得知∠A=∠C,∠AOC为旋转角等于80°,则可以利用三角形内角和度数为180°列出式子进行求解.【解答】解:∵将△OAB绕点O逆时针旋转80°∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α∠D=100°∵∠A=2∠D=100°∴∠D=50°∵∠C+∠D+∠DOC=180°∴100°+50°+80°﹣α=180°解得α=50°故选A【点评】本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.8.(2016•和平区一模)一个菱形绕它的两条对角线的交点旋转,使它和原来的菱形重合,那么旋转的角度至少是()A.360°B.270°C.180°D.90°【分析】根据菱形是中心对称图形解答.【解答】解:∵菱形是中心对称图形,∴把菱形绕它的中心旋转,使它与原来的菱形重合,旋转角为180°的整数倍,∴旋转角至少是180°.故选C.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.9.(2016春•雅安期末)如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B. C. D.4【分析】根据旋转前后的图形全等,即可得出△APP'等腰直角三角形,再根据等腰直角三角形的性质,进行计算即可.【解答】解:∵△ACP′是由△ABP绕点A逆时针旋转后得到的,∴△ACP′≌△ABP,∴AP=AP′,∠BAP=∠CAP′.∵∠BAC=90°,∴∠PAP′=90°,故可得出△APP'是等腰直角三角形,又∵AP=3,∴PP′=3.故选B.【点评】此题考查了旋转的性质,解答本题的关键是掌握旋转前后对应边相等、对应角相等,另外要掌握等腰三角形的性质,难度一般.10.(2015•浠水县校级模拟)等边三角形ABC绕着它的中心,至少旋转()度才能与它本身重合.A.60°B.120°C.180°D.360°【分析】根据等边三角形的性质及旋转对称图形得到性质确定出最小的旋转角即可.【解答】解:等边三角形ABC绕着它的中心,至少旋转120°才能与它本身重合.故选B【点评】此题考查了旋转对称图形,熟练掌握旋转的性质是解本题的关键.二.填空题(共6小题)11.(2016•邵阳)将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是120°.【分析】根据旋转的性质和等边三角形的性质解答即可.【解答】解:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,∴∠BCA'=180°,∠B'CA'=60°,∴∠ACB'=60°,∴∠α=60°+60°=120°,故答案为:120°.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.12.(2016•高青县模拟)如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若DA⊥AB,AD=1,,则BC的长为.【分析】如图,首先运用旋转变换的性质证明CD=CB(设为λ);运用勾股定理求出AB的长度;再次运用勾股定理列出关于λ的方程,求出λ即可解决问题.【解答】解:如图,由题意得CD=CB(设为λ);由勾股定理得:AB2=BD2﹣AD2,而BD=,AD=1,∴AB=4,AC=4﹣λ;由勾股定理得:λ2=12+(4﹣λ)2,解得:.故答案为.【点评】该题主要考查了旋转变换的性质、勾股定理等几何知识点及其应用问题;应牢固掌握旋转变换的性质、勾股定理等几何知识点,这是灵活运用、解题的基础和关键.13.(2016•海曙区一模)如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是70°.【分析】根据旋转的性质可得AB=AB′,然后判断出△ABB′是等腰直角三角形,根据等腰直角三角形的性质可得∠ABB′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠B′C′A,然后根据旋转的性质可得∠C=∠B′C′A.【解答】解:∵Rt△ABC绕直角顶点A顺时针旋转90°得到△AB′C′,∴AB=AB′,∴△ABB′是等腰直角三角形,∴∠ABB′=45°,∴∠AC′B′=∠1+∠ABB′=25°+45°=70°,由旋转的性质得∠C=∠AC′B′=70°.故答案为:70°.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.14.(2016•太原二模)如图,在△ABC中,∠C=90°,∠B=55°,点D在BC边上,DB=2CD,若将△ABC绕点D逆时针旋转α度(0<α<180)后,点B恰好落在初始位置时△ABC的边上,则α等于70或120 .【分析】根据题意画出符合的两种情况,①当B点落在AB上时,求出∠B=∠DB°,即可求出∠B′DB;②当B点落在AC上时,根据题意求出∠B′DC,即可求出∠B′DB的度数,即可得出答案.【解答】解:分为两种情况:①当B点落在AB上时,如图1,∵根据旋转的性质得出DB=DB′,∵∠B=55°,∴∠DB′B=∠B=55°,∴∠B′DB=180°﹣55°﹣55°=70°,即此时α=70;②当B点落在AC上时,如图2,如图,∵△ABC绕着点D顺时针旋转α度后得到△A′B′C′,∴B′D=BD,∵BD=2CD,∴B′D=2CD,∵∠ACB=90°,∴∠CB′D=30°,∴∠B′DC=60°,∴∠B′DB=180°﹣60°=120°,即此时α=120;故答案为:70或120.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的性质的应用,能求出∠B′DB的度数是解题的关键,作出图形更形象直观.15.(2016•怀柔区二模)如图,用扳手拧螺母时,旋转中心为螺丝(母)的中心,旋转角为0°~360°的任意角(答案不唯一).【分析】根据旋转中心的定义以及旋转角的定义解答即可.【解答】解:由旋转中心的定义:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心可知,用扳手拧螺母时,旋转中心为螺丝(母)的中心,而旋转角可估计实际情况决定,所以不确定,故答案为:螺丝(母)的中,0°~360°的任意角(答案不唯一)【点评】本题考查了和旋转有关的概念:旋转中心和旋转角,属于基础性题目,对此知识点的考查重点在于对旋转的性质的掌握.16.(2016•瑞昌市一模)在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为(2,1).【分析】根据中心对称的性质,知道点P(1,1),N(2,0),并细心观察坐标轴就可以得到答案.【解答】解:∵点P(1,1),N(2,0),∴由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,∴对称中心的坐标为(2,1),故答案为:(2,1).【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.以及中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.三.解答题(共8小题)17.(2016•荆门)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.【分析】(1)根据题意补全图形,如图所示;(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.【解答】解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.【点评】此题考查了旋转的性质,以及全等三角形的判定与性质,熟练掌握旋转的性质是解本题的关键.18.(2016•丹东)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.【分析】(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.19.(2016•呼兰区模拟)如图,在平面直角坐标系xOy中,每个小正方形的边长均为1,线段AB和DE的端点A、B、D、E均在小正方形的顶点上.(1)画出以AB为一边且面积为2的Rt△ABC,顶点C必须在小正方形的顶点上;(2)画出一个以DE为一边,含有45°内角且面积为的△DEF,顶点F必须在小正方形的顶点上;(3)若点C绕点Q顺时针旋转90°后与点F重合,请直接写出点Q的坐标.【分析】(1)和(2)分别画出图形;(3)作FC的中垂线,得Q(5,0).【解答】(1)S△ABC=×2×2=2;(2)S△DEF=2×3﹣1×2﹣×1×3=;∵ED=EF,∠DFE=90°,∴∠FDE=45°;(3)由勾股定理得:FC==,CQ==,FQ==,∴FC2=CQ2+FQ2,CQ=FQ,∴∠FQC=90°,∴点C绕点Q顺时针旋转90°后与点F重合;则点Q(5,0).【点评】本题考查了作图﹣旋转变换,对于画定值面积的三角形,利用面积的和、差先试求某点所组成的图形的面积是否符合题意,再确定这一点;同时根据勾股定理计算所成的三角形是否为直角三角形或等腰直角三角形.20.(2016春•重庆期末)(1)如图(1),直线a∥b,A,B两点分别在直线a,b上,点P 在a,b外部,则∠1,∠2,∠3之间有何数量关系?证明你的结论;(2)如图(2),直线a∥b,点P在直线a,b直角,∠2=50°,∠3=30°,求∠1;(3)在图(2)中,将直线a绕点A按逆时针方向旋转一定角度交直线b于点M,如图(3),若∠1=100°,∠4=40°,求∠2+∠3的度数.【分析】(1)设直线AP交直线b于O,根据平行线的性质得出∠2=∠AOB,根据三角形外角性质求出∠AOB=∠1+∠3,即可得出答案;(2)延长AP交直线b于O,根据平行线的性质得出∠ABO=∠2=50°,根据三角形的外角性质得出∠1=∠AOB+∠3,代入求出即可;(3)延长AP交直线b于O,根据三角形外角性质得出∠AOB=∠2+∠4,∠1=∠3+∠AOB,求出∠1=∠2+∠4+∠3,代入求出即可.【解答】(1)∠2=∠1+∠3,证明:设直线AP交直线b于O,如图1,∵直线a∥直线b,∴∠2=∠AOB,∵∠AOB=∠1+∠3,∴∠2=∠1+∠3;(2)解:延长AP交直线b于O,如图2,∵直线a∥直线b,∠2=50°,∴∠ABO=∠2=50°,∵∠3=30°,∴∠1=∠AOB+∠3=50°+30°=80°;(3)解:延长AP交直线b于O,如图3,∵∠AOB=∠2+∠4,∠1=∠3+∠AOB,∴∠1=∠2+∠4+∠3,∵∠1=100°,∠4=40°,∴∠2+∠3=∠1﹣∠4=60°.【点评】本题考查了平行线的性质,三角形外角性质的应用,能灵活运用性质进行推理是解此题的关键.21.(2014秋•五常市校级期中)(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PA=3,PB=1,PC=2,求∠BPC的度数.小强在解决此题时,是将△APC绕C旋转到△CBE的位置(即过C作CE⊥CP,且使CE=CP,连接EP、EB).你知道小强是怎么解决的吗?(2)请根据(1)的思想解决以下问题:如图2所示,设P是等边△ABC内一点,PA=3,PB=4,PC=5,求∠APB的度数.【分析】(1)如图1,首先证明BE2=PE2+PB2,得到∠BPE=90°;证明∠CPE=45°即可解决问题.(2)如图2,作旋转变换;首先证明∠AQP=60°;其次证明PQ2+CQ2=PC2,得到∠PQC=90°,求出∠AQC=150°,即可解决问题.【解答】解:(1)如图1,由题意得:∠PCE=90°PC=EC=2;BE=PA=3;由勾股定理得:PE2=22+22=8;∵PB2=1,BE2=9,∴BE2=PE2+PB2,∴∠BPE=90°,∵∠CPE=45°,∴∠BPC=135°.(2)如图2,将△ABP绕点A逆时针旋转60°到△ACQ的位置,连接PQ;则AP=AQ,∠PAQ=60°,QC=PB=4;∴△APQ为等边三角形,∠AQP=60°,PQ=PA=3;∵PQ2+CQ2=32+42=25,PC2=52=25,∴PQ2+CQ2=PC2,∴∠PQC=90°,∠AQC=60°+90°=150°,∴∠APB=∠AQC=150°.【点评】该题主要考查了旋转变换的性质、等边三角形的判定及其性质、勾股定理逆定理等几何知识点及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.22.(2014秋•苏州期中)如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.操作一:在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请说明理由;操作二:当0°<α≤45°时,在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.某同学将△ABD沿AD所在的直线对折得到△ADF(如图2),很快找到了解决问题的方法,请你说明其中的道理.【分析】(1)如图1,根据图形、已知条件推知∠BAD+∠MAE=∠DAM+∠EAC=45°,所以∠MAE=∠EAC,即AE平分∠MAC;(2)应用折叠对称的性质和SAS得到△AEF≌△AEC,得出FE=CE,∠AFE=∠C=45°.再证明∠DFE=90°.然后在Rt△DFE中应用勾股定理即可证明.【解答】(1)证明:如图1,∵∠BAC=90°,∴∠BAD+∠DAM+∠MAE+∠EAC=90°.∵∠DAE=45°,∴∠BAD+∠EAC=45°.∵∠BAD=∠DAM,∴∠BAD+∠EAC=∠DAM+∠EAC=45°,∴∠BAD+∠MAE=∠DAM+∠EAC,∴∠MAE=∠EAC,即AE平分∠MAC;(2)证明:如图2,连接EF.由折叠可知,∠BAD=∠FAD,AB=AF,BD=DF,∠B=∠AFD=45°.∵∠BAD=∠FAD,∴由(1)可知,∠CAE=∠FAE.在△AEF和△AEC中,,∴△AEF≌△AEC(SAS),∴FE=CE,∠AFE=∠C=45°.∴∠DFE=∠AFD+∠AFE=90°.在Rt△DFE中,DF2+FE2=DE2,∴BD2+CE2=DE2.【点评】本题考查了旋转的性质,角平分线的定义,等腰直角三角形的性质,轴对称的性质,全等三角形的判定和性质等知识点.注意,旋转前后,图形的大小和形状都不改变.23.(2014秋•利川市校级期中)如图(1)所示,点C为线段AB上一点,△ACM、△CBN 是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图(2)中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.【分析】(1)根据等边三角形的性质利用SAS判定△ACN≌△MCB,从而得到AN=MB;(2)连接AN,BM,根据等边三角形的性质及旋转的性质利用SAS判定△ACN≌△MCB,从而得到AN=MB.【解答】(1)证明:∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∴∠ACN=∠MCB=120°,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=MB.(2)解:连接AN,BM,∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∵∠ACB=90°,∴∠ACN=∠MCB,在△ACN和△MCB中,,∴△ACN≌△MCB,∴AN=MB.【点评】此题主要考查学生对等边三角形的性质、旋转的性质及全等三角形的判定方法的综合运用.24.(2014秋•江西期末)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD ⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.【分析】(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.(2)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE﹣CD=AD﹣BE.(3)DE、AD、BE具有的等量关系为:DE=BE﹣AD.证明的方法与(2)相同.【解答】(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.【点评】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了直角三角形全等的判定与性质.教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。
北师大版八年级数学下册《3.2 图形的旋转》练习题(含答案)

3.2 图形的旋转一、选择题1.下列是世博会会徽和吉祥物,你认为能用旋转得到的图形(字母不计)是()A. B. C. D.2.如图,点都在方格纸上,若是由绕点按逆时针方向旋转而得,则旋转的角度为( )A. B. C. D.3.如图,将绕点逆时针旋转一定角度,得到,且.若,,则的大小为()A. B. C. D.4.如图,将绕点顺时针旋转得到,点正好落在边上.已知,则( )A. B. C. D.5.如图,小明正在玩俄罗斯方块,他想将正在下降的“”型插入图中①的位置,他需要怎样操作?()A.先绕点逆时针旋转,再向右平移个单位,向下平移个单位B.先绕点顺时针旋转,再向右平移个单位,向下平移个单位C.先绕点逆时针旋转,再向右平移个单位,向下平移个单位D.先绕点顺时针旋转,再向右平移个单位,向下平移个单位6.如图,在菱形中,点在轴上,点,将菱形绕原点逆时针旋转,若点的对应点是点,那么点坐标是A. B. C. D.二、填空题7.如图,、分别是正五边形的边、上的点,,连接、.将绕正五边形的中心按逆时针方向旋转到,旋转角为,则________.8.如图,将绕直角顶点顺时针旋转,得到,连结,若,则的度数是________.9.如图,在中,,,,将绕点按顺时针旋转一定角度得到,当点的对应点恰好落在边上时,则的长为________.10.如图,教室里有一只倒地的装垃圾的灰斗,与地面的夹角为,,小贤同学将它扶起平放在地面上(如图),则灰斗柄绕点转动的角度为________.11.如图,在中,,,将其绕点逆时针旋转得到,交于,若图中阴影部分面积为,则的长为________.12.如图,在中,为直角顶点,,为斜边的中点.将绕着点逆时针旋转至,当恰为轴对称图形时,的值为________三、解答题13.如图所示,请在网格中作出关于点对称的,再作出绕点逆时针旋转后的.14.如图,将绕着点旋转,使点恰好落在边上,得,若且,求的度数.15.如图,方格纸中的每个小方格都是正方形,的顶点均在格点上,建立平面直角坐标系.(1)以原点为对称中心,画出与关于原点对称的,的坐标是________.(2)将原来的绕着点顺时针旋转得到,试在图上画出的图形.16.如图,在中,,,点是内一点,连结,将线段绕点逆时针旋转一定角度得到线段使(在右侧),连结,.(1)求证:;(2)若,求点绕点旋转到点所经过的路径长.17.如图,在边长为的小正方形组成的网格中,的三个顶点均在格点上,点,的坐标分别为,,在第一象限内以点为位似中心,位似比为得到.在网格中画出,并标上字母;将线段绕点逆时针旋转得到线段,画出线段;点的坐标为________.18.如图,为内一点,,将绕点逆时针旋转,画出旋转后的三角形;若,点旋转后的对应点为,求的长.参考答案一、选择题1.D2.D3.D4.C5.D6.D二、填空题7.8.9.10.11.12.或或三、解答题13.【答案】解:如图所示:和,即为所求.14.【答案】解:由旋转可知:,,∴,∵,∴,∴.15.【答案】;(2)如图所示,即为所求作的三角形.16.【答案】(1)证明:∵,∴,即,∵线段绕点逆时针旋转一定角度得到线段,∴,而,∴绕点逆时针旋转度可得到,∴;(2)解:点经过的路径长.所以点绕点旋转到点所经过的路径长为.17.【答案】解:18.【答案】解:根据旋转前后图形的性质,得,旋转后的对应点为,的对应点为,,即为所求;∵,∴,∴,∴与重合,∴,∵是由逆时针旋转得到的,∴∴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16/9/21 旋转构图,聚拢条件(1)姓名:
1.正三角形类型
在正ΔABC中,P 为ΔABC内一点,将ΔABP 绕A 点按逆时针方向旋转 600,使得AB 与 AC 重合。
经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP 中,此时ΔP'AP 也为正三角形。
例 1. 图 1-1 ,设 P 是等边Δ ABC 内的一点, PA=3 , PB=4 , PC=5,求∠ APB 的度数解:将△APC 绕 A 点逆时针旋转60°,使得AC与AB重合并连接 PP',
2.正方形类型
在正方形 ABCD 中,P 为正方形 ABCD内一点,将ΔABP绕 B 点按顺时针方向旋转 900,使得 BA与BC重合。
经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中
的ΔCPP'中,此时ΔBPP' 为等腰直角三角形。
例 2. 如图( 2-1 ), P 是正方形 ABCD 内一点,点 P 到正方形的三个顶点 A、 B 、C 的距离分别为
PA=1,PB=2,PC=3。
求∠APB 的度数。
图 2-1
3.等腰直角三角形类型
在等腰直角三角形ΔABC中,∠C=900 , P为ΔABC内一点,将ΔAPC绕C点按逆时针方向
旋转 900,使得 AC与 BC 重合。
经过这样旋转变化,在图(3-1-b)中的一个ΔP' CP为等腰直角三角形。
例 3.如下图,在Δ ABC 中,∠ ACB =900, BC=AC ,P 为Δ ABC 内一点,且 PA=3, PB=1 ,PC=2 。
求∠ BPC 的度数。
解:
练习:
在Rt△ABC 中,∠C=90°,AC=1,∠ABC=30°,点 O 为Rt△ABC 内一点,连接 A0、BO、CO,且∠AOC=∠COB=BOA=120°,
(1)按下列要求画图(保留画图痕迹):以点 B 为旋转中心,将△AOB 绕点 B 顺时针方向旋转60°,得到△A′O′B(得到 A、O 的对应点分别为点A′、O′),(2)分别求∠A′BC、
OA+OB+OC 的大小。
16/9/23旋转构图,聚拢条件(2)姓名:
例 1.如图,已知E是正方形ABCD的边CD上任意一点,F是边AD上的点,且FB平分
∠ABE.
求证:BE=AF+CE.
例 2 .如图,正方形 ABCD 中,∠EAF=45 , 当∠EAF 绕点 A 旋转时,分别交 BC、 CD 于点
E 、 F,
变式1】如上图,已知正方形 ABCD 中,∠EAF=45, 当∠EAF绕点 A 旋转时,分别交 BC、CD 于点 E、F,如果正方形的边长为1,求△EFC 的周长.
变式2】如图3,设点E、F分别在正方形ABCD的边BC、CD上滑动且保持∠EAF=45,AP⊥EF 于点P,( 1)求证:AP=AB,(2)若AB=5,求ΔECF的周长。
变式 3】如图,正方形ABCD 的边长为1,BC、CD上各有一点 E、F,如果△EFC 的周长为 2,
求∠EAF 的度数.
E
变式 4】(09 广州)如图 12,边长为 1 的正方形 ABCD 被两条与边平行的线段 EF、GH 分割为四个小矩形,EF与GH交于点P。
(1)若 AG=AE,证明:AF=AH;
(2)若∠FAH=45°,证明:AG+AE=FH;
变式5】( 09山东济宁)如图,在坐标中,边长为2的正方形OABC的两顶点A、C分别在
y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y = x上时停止旋转,旋转过程中,AB边交直线y = x于点M,BC边交x轴于点N .
1)求边OA在旋转过程中所扫过的面积;
y
2)旋转过程中,当MN和AC平行时,求正方形
OABC旋转的度数;
3)设MBN的周长为p,在旋转正方形OABC
的过程中,p值是否有变化?请证明你的结论.
C
16/9/23 图形的旋转》专项练习 1 姓名:
1.如左1 图,如图 3,等腰直角△ABC 绕直角顶点A 按逆时针方向旋转 60°后得到△ADE , 且 AB =1,则 EC 的长为 ____
2.如左 2 图,AD 是ΔABC 的中线,∠ADC=45°,把ΔADC 沿AD 对折,点C 落在点C′的位置, 如果 BC =2,则 BC ′=
. 3.如左3图,在△ABC 中,以AB 、AC 为边分别作正方形ADEB 、ACGF ,连接DC 、BF , 则 CD
与 BF 的关系是 ( ). (A)相等但不垂直 (B)垂直但不相等 (C)相等且垂直 4.如左 4 图,四边形 ABCD 中,∠BAD=∠C=90º,AB=AD ,
6.如图,△ABC 的直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP′重合, 如果 AP=3,求 PP′的长.
(D)没有任何关系
若线段 AE=5,
AE ⊥BC 于 E , 的位置,使 B 在斜边 A ′B ′上,A 'C 与AB 相交于点 D ,
5. 如下中图,Rt △ABC 中,∠ACB =90°,∠ABC =60°
D
7.如左1 图图,在正方形 ABCD中,AD=1,将△ABD 绕点 B顺时针旋转45°得到△A′BD′,此时A′D′与 CD 交于点 E,则 DE 的长度为.
8.如左2图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1 与 CD 交于点 O ,则四边形 AB1OD 的面积是()
A.B.C.D.
9.如左 3 图,在Rt△ABC 中,∠ACB=90°,∠B=60°,BC=2,△A′B′C 可以由△ABC 绕点 C 顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()
A.6 B.4 C.3 D.3
10.如左 4 图,已知△ABC 中,∠C=90°,AC=BC= ,将△ABC 绕点 A 顺时针方向旋转60°
11.如图,在Rt△ABC 中,∠ACB=90°,∠B=30°,将△ABC 绕点C
按顺时针方向旋转 n 度后,
得到△DEC,点 D 刚好落在 AB边上.
1)求 n 的值;
2)若F 是 DE的中点,判断四边形 ACFD 的形状,并说明理由.
12.如图,已知Rt△ABC 中,∠ABC=90°,先把△ABC 绕点 B 顺时针
旋转90°至△DBE 后,再
把△ABC 沿射线平移至△FEG,DE、FG相交于点 H.
1)判断线段DE、FG 的位置关系,并说明理由;
2)连结 CG,求证:四边形 CBEG是正方形.
的位置,连接C′B,则
C′
B 的长为(
到△AB′C′
A.B.
)。