多孔硅简介
多孔硅参考PPT

❖ 高孔度多孔硅(高于70%):可用作发光材料, 孔度越高,发射光的波长就越短。
2021/5/8
8
研究硅基蓝光发射材料的意义
❖ 蓝光无论在光显示、光信息处理还是光通信等方面都是极 为重要的。从集成光电子学的要求来看,在硅基上实现蓝 光发射则意义更大。
2021/5/8
4
在直接带隙材料中,电子在价带和导带之间跃 迁符合动量守恒条件,因此具有较大的跃迁几率。
在间接带隙材料中,电子在价带和导带之间跃 迁不符合动量守恒条件,光子与电子的相互作用需 要在声子的作用下才能完成,因此跃迁几率非常低。
所以间接带隙材料发光效率比较低,不适合于制 作光源。因此多孔硅发光在光电技术中具有十分重 要的意义!
2021/5/8
9
多孔硅的结构
❖ 研究中发现,只有高孔度(高于70%)的多孔硅才能发光,而且孔度越高, 发射光的波长就越短。
❖ 当孔度达到80%以后,相邻的孔将连通,留下一些孤立的晶柱或晶丝; ❖ 鲍希茂等认为,多孔硅是由许多小颗粒组成,颗粒的内核是有序的,
外面覆盖一个无序壳层,这些颗粒在空间堆成无规则的珊瑚状,有序 晶核的排列保持原来单晶的晶向。
构型上主要表现在键长上。
2021/5/8
11
多孔硅发光的基本理论
分子在势能面间的“跳跃”过程称为跃迁,相应于电子从一个 轨道跳跃到另一个轨道。 辐射跃迁:即跃迁过程伴随着光子的放出,包括荧光和磷光过程; 非辐射跃迁:即跃迁过程没有光子参与,能量以热或者其他形式
耗散,包括内转换、系间窜越等。
2021/5/8
6. 文献报道多孔硅红光的瞬态时间常数为10~100us量级,而蓝 光的瞬态时间常数在1~10ns,相差3~5个量级。
多孔硅

四、展望
由于多孔硅的研究从一开始就有明确的应用 目的,未来可以从以下几个方面去研究: 1、发光机理 2、色彩
五、应用
多孔硅的应用研究领域已经拓展到生物物递送等领域。
二、发展历史
1、1956年Uhlir首先制备并报道了多孔硅, 随后多孔硅作为绝缘材料,即做成 SOL(Silicon on insulator)结构被应用于硅 集成电路; 2、1984年Pickering等首先在低温(4.2K) 下观察到了多孔硅的可见光致发光现象, 但当时未引起足够的重视。
3、1990年Canham 首次报道了多孔硅在 室温下具有强烈的可见光致发光现象后, 多孔硅的研究才得到较大的进展,人们相 继发现了多孔硅多种颜色(红、蓝、绿、紫、 黄、紫外、蓝绿以及黄绿等)的光致发光和 电致发光.鉴于硅基发光材料在光电子学 领域巨大的潜在应用前景,有关多孔硅的 制备、光致(电致)发光特性以及发光器件等 方面的研究便迅速成为当今国际凝聚物理 和材料研究领域的研究热点
多孔硅
一、定义及特点 二、发展历史 三、制备方法 四、展望 五、应用
一、定义及特点
1、定义
多孔硅是一种新型的 一维纳米光子晶体材 料,具有纳米硅原子 簇为骨架的“量子海 绵”状微结构,可以 通过电化学阳极腐蚀 或化学腐蚀单晶硅而 形成。
2、特点
多孔硅具有良好电致发光特性,在光或电的激发 下可产生电子和空穴,这些载流子可以复合发光, 在电场的作用下进行定向移动,产生电信号,也 可以储能。多孔硅在光学和电学方面的特性为全 硅基光电子集成和开发开创了新道路,并迅速引 起了国内外对多孔硅的研究热潮。由于多孔硅具 有比表面大,易氧化的特点,因而被用作集成电 路中的结构隔离层
多孔有机硅材料

多孔有机硅材料
多孔有机硅材料是一种以有机硅材料为基础的多孔材料,其具有高比表面积、低密度、低介电常数等特点。
多孔有机硅材料可以通过控制合成条件和材料组分来调节孔隙结构和化学性质,从而实现对其性能的定制化。
多孔有机硅材料可用于吸附、催化、分离、传感等领域。
例如,在吸附方面,多孔有机硅材料具有很高的吸附容量和选择性,可以用于处理废水、气体或吸附有害物质。
在催化方面,由于其高比表面积和可调控的孔隙结构,多孔有机硅材料可以作为催化剂载体,提高催化反应的效率和选择性。
此外,多孔有机硅材料还可以用于分离和纯化领域。
由于其孔隙结构可以调控,可以选择性地分离不同大小或性质的分子,用于纯化药物、分离混合物等。
同时,多孔有机硅材料还可以用于传感器领域,利用其高比表面积和与分子之间的相互作用,实现对目标物质的检测和监测。
总的来说,多孔有机硅材料具有广泛的应用潜力,在环境治理、催化、分离、传感等领域都有重要的应用前景。
新型含能材料-多孔硅含能材料

• 引言 • 多孔硅含能材料的制备方法 • 多孔硅含能材料的性能特点 • 多孔硅含能材料的应用领域 • 多孔硅含能材料的挑战与前景 • 结论
01
引言
含能材料的定义与重要性
含能材料
指在一定的条件下能够释放出大 量能量的物质,广泛应用于军事 、航天、能源等领域。
重要性
原材料成本
多孔硅含能材料的原材料成本较高,进一步推高 了其整体成本。
设备投入
为了满足多孔硅含能材料的生产需求,需要投入 昂贵的生产设备和基础设施。
未来发展前景
军事领域应用
多孔硅含能材料具有高能量密度和低 感度的特性,有望在军事领域发挥重 要作用。
航天领域应用
多孔硅含能材料在航天领域可用于推 进剂的燃烧催化剂或点火装置等。
安全防护领域应用
多孔硅含能材料具有快速燃烧的特性, 可应用于安全防护领域的快速灭火或 爆炸抑制等。
新材料研发
多孔硅含能材料作为一种新型含能材 料,其研究和发展对于推动新材料领 域的发展具有重要意义。
06
结论
多孔硅含能材料的重要地位
新型含能材料的代表
多孔硅含能材料作为新型含能材料的代表,具有优异的安 全性能和能量释放能力,在推进剂、爆炸和军事等领域具 有广阔的应用前景。
多孔硅含能材料的简介
多孔硅
多孔硅是一种新型的含能材料, 具有高能量密度、高稳定性、环
保等优点。
制备方法
多孔硅的制备通常采用化学气相沉 积法,通过控制反应条件和原料配 比,制备出不同孔径和孔隙率的硅 基多孔材料。
应用领域
多孔硅含能材料在军事、航天、能 源等领域具有广泛的应用前景,如 火箭推进剂、炸药、燃料电池等。
深度解析硅碳复合材料的包覆结构之多孔型

深度解析硅碳复合材料的包覆结构之多孔型碳质负极材料在充放电过程中体积变化较小,具有较好的循环稳定性能,而且碳质负极材料本身是离子与电子的混合导体;另外,硅与碳化学性质相近,二者能紧密结合,因此碳常用作与硅复合的首选基质。
在Si/C复合体系中,Si颗粒作为活性物质,提供储锂容量;C既能缓冲充放电过程中硅负极的体积变化,又能改善Si质材料的导电性,还能避免Si颗粒在充放电循环中发生团聚。
因此Si/C复合材料综合了二者的优点,表现出高比容量和较长循环寿命,有望代替石墨成为新一代锂离子电池负极材料。
从硅碳复合材料的结构出发,可将目前研究的硅碳复合材料分为包覆结构和嵌入结构。
其中,包覆结构是在活性物质硅表面包覆碳层,缓解硅的体积效应,增强其导电性。
根据包覆结构和硅颗粒形貌,包覆结构可分为核壳型、蛋黄-壳型以及多孔型。
多孔型多孔硅常用模板法来制备,硅内部空隙可以为锂硅合金化过程中的体积膨胀预留缓冲空间,缓解材料内部机械应力。
由多孔硅形成的硅碳复合材料,在循环过程中具有更加稳定的结构。
研究表明,在多孔型硅/碳复合材料中,均匀分布在硅颗粒周围的孔道结构能够提供快速的离子传输通道,且较大的比表面积增加了材料反应活性,从而展现出优良的倍率性能,在电池快充性能方面具有显著优势。
Li等通过可控还原二氧化硅气凝胶的方法,合成出3D连通的多孔硅碳复合材料,该材料在200mA/g电流密度下循环200次时容量保持在1552mA·h/g,且在2000mA/g大电流充放电下循环50次后仍保持1057mA·h/g的比容量。
Bang等通过电偶置换反应,将Ag颗粒沉积于硅粉(粒径10μm)表面,经刻蚀除去Ag后得到具有3D孔结构的块状硅,再通过乙炔热解进行碳包覆,制备出多孔型硅碳复合材料,在0.1C倍率下具有2390mA·h/g的初始容量以及94.4%的首次Coulomb效率。
在5C倍率时的容量仍可达到0.1C倍率时容量的92%,展现出优异的倍率性能。
多孔真空硅隔热材料

多孔真空硅隔热材料
多孔真空硅隔热材料是一种具有优异隔热性能的纳米材料。
它的细孔径在10~40 nm之间,孔隙率高达97%以上,使得细孔内部分子间不会发生碰撞,从而实现超高的隔热性能。
这种材料具有低导热系数,可低至0.014 W/m·K,同时具有疏水、阻燃、绝缘、环保等优异性能。
多孔真空硅隔热材料适用于电子产品、航天航空、智能手持终端、智能穿戴、电子烟、无线充电器、电源、小家电及大型设备的隔热和保温等场景。
与传统隔热保温材料相比,多孔真空硅隔热材料具有更低的导热系数,能更好地解决电子产品在狭小空间的隔热保温问题,提升人体感受的舒适度。
然而,多孔真空硅隔热材料的制备过程较为繁琐,价格较高,这在一定程度上限制了其广泛应用。
不过,随着科技的发展和制备工艺的改进,多孔真空硅隔热材料在隔热领域的应用前景非常广阔。
纳米多孔硅粉的制备及其在含能材料中的应用

纳米多孔硅粉的制备及其在含能材料中的应用纳米多孔硅(nano porous silicon, nPS)是一种在硅表面形成微纳米多孔结构的硅基底材料,被广泛应用于电子元件、发光元件、生物传感器以及MEMS含能器件中。
自20世纪50年代发明以来,受到了广泛的关注。
1992年Bard教授首先发现了nPS的低温爆炸性能,自此nPS被逐步应用于进纳米含能材料。
以多晶硅粉为原料,HF、HNO3、NaNO2混合液为腐蚀体系,利用化学腐蚀法制备了nPS粉。
应用氮吸附技术、SEM、DSC-TG以及FTIR技术分别对nPS粉的比表面积、平均孔径、表面形貌、热性能及官能团进行了表征及分析,研究了HN03浓度、腐蚀时间以及原料Si粉粒径对nPS粉理化性质的影响,优化了化学腐蚀条件,得出nPS粉最佳制备方案。
以NaC104为氧化剂,制备了nPS/NaClO4复合含能材料,红外热成像仪对复合含能材料的燃烧温度进行测试,利用DSC-TG以及XRD衍射测试对复合含能材料的燃烧机理进行分析。
利用化学沉淀法制备了nPS/BaCrO4延期药,进行了燃速测试并计算了其延期精度,具体研究内容与结果如下:(1)利用化学腐蚀法制备了nPS粉体,SEM测试结果显示,nPS粉体颗粒表面产生了大量的纳米孔洞,氮吸附实验结果表明比表面积得到大幅度提升,FTIR谱图显示nPS表面产生了较高密度的Si-Hx键。
腐蚀液体系中HN03浓度是影响孔径大小及分布的主要原因;在相同的腐蚀液浓度下,延长腐蚀时间、减小原料Si粉粒径可以有效的增大nPS粉的比表面积。
确定了nPS粉的最优腐蚀条件,所制备的nPS粉比表面积最大可达到72.4m2/g。
热分析结果显示,当环境中氧气含量充足时,nPS粉氧化反应提前至400℃;(2)按照1:1的质量配比,利用超声波填充技术,制备了nPS/NaClO4复合含能材料。
该复合含能材料在燃烧过程中会发生多次燃烧现象,最高火焰温度达到2444℃。
多孔硅简介

光致发光等特性的影响已有较多的认识。
缺点是如果阳极和阴极的相对位置不合适及在 其表面形成氢气泡的绝缘效应引起电解质电流密 度空间的变化,从而导致不均匀腐蚀的发生。
2、双槽电化学法制备多孔硅
双槽电化学方法制备多孔硅的具体做法是将
硅片插入装有腐蚀液的电解槽中间的固定架上,
硅片把电解槽分成两个相互独立的电解槽,用两 片铺片分别面对面放在硅片的两侧作为阴极和阳 极。结构简图如图3所示。 通过改变腐蚀电流的大小,可以得到不同太
简单制备方法
硅在HF溶液中进行电化学腐蚀(单槽和双槽)
多孔硅发光机理的几个模型
多孔硅的发光机理——量子尺寸模型
Canham提出,采用电化学腐蚀的制备的多
孔硅是由密集的、具有纳米量级线度和微米量
级的硅丝组成,形成了所谓的“量子线”。当
空隙密度大于80%时,硅丝间是相互竖立的。 多孔硅的发光被认为是约束在这些量子线上的 激子的辐射复合。
多孔硅的制备
1.单槽电化学制备多孔硅
具体做法是先用真空溅射的方法在清洗好抛光 的硅片背面溅射一层金属铂膜作为电极。 再按照图 所示的方法将直流稳压电源、硅片、电流表、阴极 串联成通路,打开电源即可进行腐蚀。
单槽电化学方法是人们对制备多孔硅研究较 多的一种方法,该方法的 优点是工艺比较成熟,人们对温度、腐蚀液成 分、掺杂、电流密度等制备条件对样品的形貌、
多孔硅简介
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多孔硅的发光机理——非晶发光模型
多孔硅中含有较多的氧,形成无序混合相 ,其发光光谱与非晶硅相似。多孔硅产生非 晶硅的可能性有两种解释:一是多孔硅晶格 常数比衬底硅大,会产生较大应力;多孔硅 晶粒表面应力引起无序变化。第二种是自然 氧化过程也会在多孔硅表面引起应力。
多孔硅发光机理——与表面相有关的发光模型
缺点是如果阳极和阴极的相对位置不合适及在 其表面形成氢气泡的绝缘效应引起电解质电流密 度空间的变化,从而导致不均匀腐蚀的发生。
2、双槽电化学法制备多孔硅 双槽电化学方法制备多孔硅的具体做法是将
硅片插入装有腐蚀液的电解槽中间的固定架上, 硅片把电解槽分成两个相互独立的电解槽,用两 片铺片分别面对面放在硅片的两侧作为阴极和阳 极。结构简图如图3所示。
1.SH2模型 红外吸收光谱表明,多孔硅表面存在SH2,升温 退火可解吸,HF浸泡又可恢复。这些变化与多 孔硅的荧光谱有对应关系,所以认为发光是由 SH2引起的。 2.表面吸附分子发光模型 认为多孔硅巨大的表面积所吸附的某些成分是 荧光的原因,例如氢、氟、氧、碳等。而这些 成分都被证明存在多孔硅表面。
简单制备方法
硅在HF溶液中进行电化学腐蚀(单槽和双槽)
多孔硅发光机理的几个模型
多孔硅的发光机理——量子尺寸模型
Canham提出,采用电化学腐蚀的制备的多孔 硅是由密集的、具有纳米量级线度和微米量级 的硅丝组成,形成了所谓的“量子线”。当空 隙密度大于80%时,硅丝间是相互竖立的。多 孔硅的发光被认为是约束在这些量子线上的激 子的辐射复合。
具有以纳米硅晶粒为骨架的海绵状结构 的新ห้องสมุดไป่ตู้功能材料
多孔硅结构
多孔硅特性
绝热层
导热率达到 0.624W(m.k)
牺牲层
在腐蚀液中易腐蚀 机械性能好
发光性
常温下发出可见光 特性
多孔硅(porous silicon)
相关参数
HF浓度、硅片类型参数、光照、电流密度、孔度 孔度:电化学处理时,腐蚀掉的硅的质量分数 孔度越高,发射的波长越短。 高孔度(70%)可用作发光材料
通过改变腐蚀电流的大小,可以得到不同太 小的孔,改变腐蚀时间可得到不同厚度的多孔硅 层。
双槽化学腐蚀装置图
双槽电化学方法因为工艺简单、条件容易控制,是 目前制各多孔硅最常用的方法,其优点主要表现为:
(1)在双槽装置中采用Pt电极作为阴极和阳极,不必 考虑硅基体背面的金属化问题,降低了操作的复杂性 。
多孔硅的制备
1.单槽电化学制备多孔硅 具体做法是先用真空溅射的方法在清洗好抛光
的硅片背面溅射一层金属铂膜作为电极。 再按照图 所示的方法将直流稳压电源、硅片、电流表、阴极 串联成通路,打开电源即可进行腐蚀。
单槽电化学方法是人们对制备多孔硅研究较多 的一种方法,该方法的
优点是工艺比较成熟,人们对温度、腐蚀液成 分、掺杂、电流密度等制备条件对样品的形貌、 光致发光等特性的影响已有较多的认识。
(2)在双槽装置中,两个电极相对放置.暴露的硅片 是电流的唯一通路,所以流过硅片的电流密度较均匀 ,更易在大尺寸的硅基体表面形成均匀的多孔硅层。
小结
• 从现有理论及分析结果看,多孔硅的发光机理还 是基于量子现象。
• 双槽电化学腐蚀法制备多孔硅在孔径、孔隙率、 表面均匀性等性能指标上都明显优于单槽电化学 腐蚀。
• 对于多孔硅的研究,除了它本身的意义外,还促 进了纳米半导体和硅基发光等学科的发展。
多孔硅简介
主要内容
结构 多孔硅的结构特征 多孔硅的发光机理 工艺 多孔硅制备方法 小结
Si
硅是间接带隙结构,发光效率很低 (约10-6),长期以来被认为不能 用作发光材料,因此多孔硅发光在 光电技术中具有重要意义。
多孔硅结构特性
什么是多孔硅?
多孔什硅是么硅是表面多通孔过电硅化学腐蚀形成的