杭电自控实验报告
杭电电力电子实验报告

电力电子技术实验报告班级:学号:姓名:指导老师:余善恩、孙伟华实验名称:单相交流调压电路实验全桥DC/DC变换电路实验实验九交流调压电路实验一、实验目的1.加深理解单相交流调压电路的工作原理;2.加深理解交流调压感性负载时对移相范围要求。
二、实验内容1.单相交流调压器带电阻性负载;2.单相交流调压器带电阻—电感性负载。
三、实验线路及原理本实验采用了锯齿波移相触发器。
该触发器适用于双向晶闸管或两只反并联晶闸管电路的交流相位控制,具有控制方式简单的优点。
晶闸管交流调压器的主电路由两只反向晶闸管组成,见图9-1。
(a) 纯电阻负载(b)电阻电感负载图9-1四、实验设备及仪器1.教学实验台主控制屏;2.NMCL—33B组件;3.NMCL—D3组件;4.NMEL—36组件;5.NMCL—18D组件;6.双踪示波器(自备);7.万用表(自备)。
五、注意事项αϕ时,若脉冲宽度不够会使负载电流出现直流分量,在电阻电感负载时,当<损坏元件。
为此主电路可通过变压器降压供电,这样即可看到电流波形不对称现象,又不会损坏设备。
六、实验方法1. 单相交流调压器带电阻性负载将NMCL —33B 上的两只晶闸管VT1,VT4反并联而成交流电调压器,将触发器的输出脉冲端G1、K1,G3、K3分别接至主电路相应VT1和VT4的门极和阴极。
接上电阻性负载(可采用两只900Ω电阻并联),并调节电阻负载至最大。
NMCL —18D 的给定电位器RP1逆时针调到底,使Uct=0。
调节锯齿波同步移相触发电路偏移电压电位器RP2,使150=︒α。
三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压,使U uv =220V 。
用示波器观察负载电压()=u f t ,晶闸管两端电压U VT =f (t )的波形,调节U ct ,观察不同α 角时各波形的变化,并记录α =60°,90°,120°时的波形。
在实验过程中,欲改变阻抗角,只需改变电阻器的数值即可。
自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
最新自控实验报告实验三

最新自控实验报告实验三实验目的:1. 理解并掌握自控系统的基本原理和工作机制。
2. 学习如何搭建和调试简单的闭环控制系统。
3. 通过实验数据分析,加深对系统稳定性和响应特性的认识。
实验设备:1. 自动控制系统实验台。
2. 直流电机及调速器。
3. 传感器(如光电编码器)。
4. 数据采集卡及计算机。
5. 相关软件(如LabVIEW、MATLAB等)。
实验步骤:1. 按照实验指导书的要求,搭建闭环控制系统,包括电机、传感器和控制器。
2. 使用数据采集卡连接传感器和计算机,确保数据传输无误。
3. 开启实验软件,设置相应的参数,如控制算法(PID)、采样时间等。
4. 进行系统开环测试,记录电机的响应数据。
5. 切换至闭环模式,调整PID参数,进行系统调试,直至达到预期的控制效果。
6. 收集闭环控制下的数据,并进行分析,绘制系统响应曲线。
7. 分析系统的稳定性、过渡过程和稳态误差等性能指标。
实验结果:1. 系统开环测试结果显示,电机响应存在较大的超调和振荡。
2. 闭环控制调试后,系统响应速度加快,超调量减小,振荡减少。
3. 通过调整PID参数,系统达到较快的响应时间和较小的稳态误差。
4. 实验数据表明,所设计的控制系统能有效改善电机的动态和稳态性能。
结论:通过本次实验,我们成功搭建并调试了一个简单的闭环控制系统。
实验结果表明,合理的PID参数设置对于提高系统性能至关重要。
此外,实验过程中我们也加深了对自动控制系统原理的理解,为后续更复杂系统的设计和分析打下了坚实的基础。
杭电《过程控制系统》实验报告分析解析

实验时间:5月25号序号:杭州电子科技大学自动化学院实验报告课程名称:自动化仪表与过程控制实验名称:一阶单容上水箱对象特性测试实验实验名称:上水箱液位PID整定实验实验名称:上水箱下水箱液位串级控制实验指导教师:尚群立学生姓名:俞超栋学生学号:09061821实验一、一阶单容上水箱对象特性测试实验一.实验目的(1)熟悉单容水箱的数学模型及其阶跃响应曲线。
(2)根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。
二.实验设备AE2000型过程控制实验装置, PC 机,DCS 控制系统与监控软件。
三、系统结构框图单容水箱如图1-1所示:丹麦泵电动调节阀V1DCS控制系统手动输出hV2Q1Q2图1-1、 单容水箱系统结构图四、实验原理阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。
然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。
图解法是确定模型参数的一种实用方法。
不同的模型结构,有不同的图解方法。
单容水箱对象模型用一阶加时滞环节来近似描述时,常可用两点法直接求取对象参数。
如图1-1所示,设水箱的进水量为Q 1,出水量为Q 2,水箱的液面高度为h ,出水阀V 2固定于某一开度值。
根据物料动态平衡的关系,求得:在零初始条件下,对上式求拉氏变换,得:h1( t ) h1(∞ ) 0.63h1(∞)0 T式中,T 为水箱的时间常数(注意:阀V 2的开度大小会影响到水箱的时间常数),T=R 2*C ,K=R 2为单容对象的放大倍数,R 1、R 2分别为V 1、V 2阀的液阻,C 为水箱的容量系数。
令输入流量Q 1 的阶跃变化量为R 0,其拉氏变换式为Q 1(S )=R O /S ,R O 为常量,则输出液位高度的拉氏变换式为:当t=T 时,则有:h(T)=KR 0(1-e -1)=0.632KR 0=0.632h(∞) 即 h(t)=KR 0(1-e-t/T)当t —>∞时,h (∞)=KR 0,因而有 K=h (∞)/R0=输出稳态值/阶跃输入式(1-2)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图1-2所示。
杭电自动化单片机实验报告

杭电自动化单片机实验报告单片机原理与应用及 C51程序设计实验报告实验名称:单片机技术实验实验一继电器控制输出实验一、实验目的1.掌握STC12C5A16S2单片机的最基本电路的设计;2.了解单片机I/O端口的使用方法;3.了解继电器和蜂鸣器控制电路以及小电压控制大电压的方法。
二、实验要求1.利用STC12C5A16S2单片机的P1.2、P1.3口作按钮S9和S10输入,P1.0和P1.1口作开关量输出,并分别控制一个5V的继电器和蜂鸣器。
2.当S9闭合时,P1.0控制继电器闭合并控制灯泡闪亮;当S9断开时,继电器触电断开,灯泡不亮;3.当S10闭合时,P1.1控制蜂鸣器闭合并发出声音;当S10断开时,蜂鸣器不响。
三、电路四、原理说明Q1、Q2为9012三极管即PNP型,低电平导通,当S9或S10按下时,相应的IO口拉低,当P1.0或P1.1赋0时即可控制继电器的吸合活着蜂鸣器的发声。
五、程序代码#includesbit L1=P1^1;sbit L2=P1^2;sbit L3=P1^3;sbit L0=P1^0;//定义位变量void delay(){int i,j;for(i=0;i<250;i++)for(j=0;j<250;j++);//利用系统时钟,定义延时函数}void main (){int n=20;while(1) //不断循环检测{if(L2==0) //判断S9输入{while(n--){L0=0;delay();L0=1;delay(); //灯泡以2*delay为周期闪亮}n=20;}if(L3==0) //判断S10闭合{while(n--){L1=0;delay();delay(); //蜂鸣器以2*delay为周期发声}n=20;}}}实验二 LED轮换点亮实验一、实验目的1.掌握STC12C5A16S2单片机的I/O电路设计;2.学习SN74HC573数据锁存输出方法。
杭电自动化专业计算机控制系统实验报告

实验一、常规PID控制算法仿真仿真框图如下实验参数:shiyanpid Ts=0.1s,b为班号1~5,x为学号后2位,1~45实验要求:(1)画Simulinnk框图(2)设计或凑试PID三个参数,进行仿真(3)使稳态误差为0,且动态性能较满意仿真框图:实验分析:b=1,x=15。
比例系数Kp增大时系统动作灵敏,响应速度加快,过大会使振荡次数增加,系统趋向不稳定,这里取120。
积分环节可以消除稳态误差,Ti减小,系统振荡次数增加,这里取Ki为150。
微分环节可以改善系统动态性能,减小超调和调节时间,这里取Kd为10。
系统在2秒内达到稳态。
实验二、积分分离PID控制算法仿真实验参数:shiyanpidjffl Ts=0.1s,b为班号1~5,x为学号后2位,1~45实验要求:(1)画Simulinnk框图(2)使稳态误差为0,且动态性能较满意(3)尝试不同的积分分离的阈值(比如ε=0,0.1,0.2,……,0.9,1),观察阶跃响应,并确定最佳的阈值实验框图:翻译后Switch模块的说明:如果2输入满足规则,则1通道通过,否则3输入通过。
输入被标号。
1输入通过规则是输入2(偏差e)大于或等于阀值。
第一三输入为数据输入,第二输入为控制输入。
原理:|e(k)|<=ε,ki起作用|e(k)|>ε,ki不起作用,由于阶跃输入,(treshhold )ε=0.1,0.2,……,0.9,1。
由于参数原因去kp=50,ki=kd=0时,曲线最好为了体现ε的作用,积分值不取0,改为Ki=10取不同ε后的曲线ε=0.1ε=0.5ε=1分析:ε=0.1时曲线最好,ε过大起不到积分分离的作用,比如ε=1,总会存在积分作用,ε过小可能是控制不能跳出积分分离的区域,从而只存在PD作用,长时间存在静差。
实验三、不完全微分PID控制算法仿真1、不完全微分PID控制器的阶跃响应实验参数:Shiyanpidbwqwfstep Ts=0.1s,仿真时间设为10s,5s,3s P=1 I=1 D=1滤波器参数a=0.1,0.2,……,0.8,1.2,实验框图:框图1:积分输出:微分输出:可见微分只在第一个单位时间有相应,而且较大框图2:a=0.1时a=0.5时:a=1时:分析:引入惯性环节后,对微分环节对阶跃响应有明显的改善作用。
杭电《过程控制系统》实验报告

实验时间:5月25号序号:杭州电子科技大学自动化学院实验报告课程名称:自动化仪表与过程控制实验名称:一阶单容上水箱对象特性测试实验实验名称:上水箱液位PID整定实验实验名称:上水箱下水箱液位串级控制实验指导教师:尚群立学生姓名:俞超栋学生学号:09061821实验一、一阶单容上水箱对象特性测试实验一.实验目的(1)熟悉单容水箱的数学模型及其阶跃响应曲线。
(2)根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。
二.实验设备AE2000型过程控制实验装置, PC 机,DCS 控制系统与监控软件。
三、系统结构框图单容水箱如图1-1所示:丹麦泵电动调节阀V1DCS控制系统手动输出hV2Q1Q2图1-1、 单容水箱系统结构图四、实验原理阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。
然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。
图解法是确定模型参数的一种实用方法。
不同的模型结构,有不同的图解方法。
单容水箱对象模型用一阶加时滞环节来近似描述时,常可用两点法直接求取对象参数。
如图1-1所示,设水箱的进水量为Q 1,出水量为Q 2,水箱的液面高度为h ,出水阀V 2固定于某一开度值。
根据物料动态平衡的关系,求得:在零初始条件下,对上式求拉氏变换,得:h1( t ) h1(∞ ) 0.63h1(∞)0 T式中,T 为水箱的时间常数(注意:阀V 2的开度大小会影响到水箱的时间常数),T=R 2*C ,K=R 2为单容对象的放大倍数,R 1、R 2分别为V 1、V 2阀的液阻,C 为水箱的容量系数。
令输入流量Q 1 的阶跃变化量为R 0,其拉氏变换式为Q 1(S )=R O /S ,R O 为常量,则输出液位高度的拉氏变换式为:当t=T 时,则有:h(T)=KR 0(1-e -1)=0.632KR 0=0.632h(∞) 即 h(t)=KR 0(1-e-t/T)当t —>∞时,h (∞)=KR 0,因而有 K=h (∞)/R0=输出稳态值/阶跃输入式(1-2)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图1-2所示。
杭电实验报告模版

一、实验模块实验名称:____________________实验课程:____________________实验时间:____________________实验地点:____________________实验人员:____________________二、实验标题____________________三、实验目的1. 了解____________________2. 掌握____________________3. 培养____________________四、实验原理____________________五、实验仪器与设备1. 仪器名称:____________________2. 仪器型号:____________________3. 仪器规格:____________________4. 其他设备:____________________六、实验步骤1. 实验步骤一:(1)____________________(2)____________________(3)____________________2. 实验步骤二:(1)____________________(2)____________________(3)____________________3. 实验步骤三:(1)____________________(2)____________________(3)____________________(注:根据实际实验内容,添加相应步骤)七、实验过程1. 实验过程一:(1)____________________(2)____________________(3)____________________2. 实验过程二:(1)____________________(2)____________________(3)____________________3. 实验过程三:(1)____________________(2)____________________(3)____________________(注:根据实际实验内容,添加相应过程)八、实验数据记录与分析1. 实验数据记录:(注:根据实际实验内容,添加数据记录表格)2. 实验数据分析:(注:根据实际实验内容,对实验数据进行分析)九、实验结论1. 实验结果:(1)____________________(2)____________________(3)____________________2. 实验结论:(1)____________________(2)____________________(3)____________________十、实验讨论1. 实验中遇到的问题及解决方法:(1)____________________(2)____________________(3)____________________2. 实验改进建议:(1)____________________(2)____________________(3)____________________十一、实验总结通过本次实验,我了解了____________________,掌握了____________________,培养了____________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理实验报告
班级:12063012
姓名:成思屹
学号:
3.1典型环节的模拟研究
3.1.1典型环节的模拟研究
一、实验目的
1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。
2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。
(1)观察比例环节的阶跃响应曲线
R0 R1 输入Ui
比例系数K
计算值测量值
200K 100K 4V 0.5 200K 4V 1
50K 100K 2V 2 200K 1V 4
截图依次如下:
(2)观察惯性环节的阶跃响应曲线
R0 R1 C 输入Ui
比例系数K 惯性常数K 计算值测量值计算值测量值
200K 200K 1U
4V
1 0.
2 2U 1 0.4
50K 100K
1U
2V 2 0.1 200K 1V 4 0.2
截图依次如下:
(3)观察积分环节的阶跃响应曲线 R0 C
输入Ui 积分常数Ti 计算值 测量值
200K 1U
1U 2U
100K 1U
2U
截图依次如下:
(4)观察比例积分环节的阶跃响应曲线
R0 R1 C 输入Ui
比例系数K 积分常数Ti
计算值测量值计算值测量值
200K
200K
1U
1V
1
2U 1
100K
1U 2
2U 2
截图依次如下:
3.1.2二阶系统瞬态响应和稳定性
一、实验目的
1.了解和掌握典型二阶系统模拟电路的构成方法及I型二阶闭环系统的传递函数标准式。
2.研究I型二阶闭环系统的结构参数——无阻尼振荡频率,阻尼比对过渡过程的影响。
3.掌握欠阻尼I型二阶闭环系统在阶跃信号输入时的动态性能指标MP,TP,TS的计算。
4.观察和分析I型二阶闭环系统在欠阻尼,临界阻尼,过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标MP,TP值,并与理论计算值做对比。
(1)计算和观察被测对象的临界阻尼的增益K,填入实验报告
(2)画出阶跃响应曲线,测量超调量Mp,峰值时间tp填入实验报告
截图如下:
第一张为T=0.1时,Mp的计算;
第二张为T=0.1时,tp 计算;
第三张为T=0.3时,Mp的计算;
第四张为T=0.3时,tp 计算。
3.2线性控制系统的频域分析
3.2.1频率特性测试
一、实验目的:
1.了解线性系统的频率特性的基本概念
2.了解和掌握对数幅频和相频曲线(伯德图)的构造及绘制方法观测幅频特性和相频特性,填入实验报告
输入频率
Hz
幅频特性相频特性
计算值测量值计算值测量值
1.6
4.5
8
12.5
16
幅频特性曲线、相频特性曲线的绘制:截图依次如下:
3.3线性系统的校正与状态反馈
3.3.1频域法串联超前校正
一、实验目的:
1.了解和掌握超前校正的原理
2.了解和掌握利用闭环和开环的对数幅频特性和相频特性完成超前校正网络的参数的计算
3.掌握在被控系统中如何串入超前校正网络,构建一个性能满足指标要求的新系统的方法
超前校正网络的设计:截图如下:。