辽宁省丹东市中考数学试卷(附答案解析)

合集下载

初中毕业升学考试(辽宁丹东卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(辽宁丹东卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(辽宁丹东卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】﹣3的倒数是()A.3 B. C.﹣ D.﹣3【答案】C【解析】试题分析:利用倒数的定义,直接得出结果.∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.考点:倒数.【题文】2016年1月19日,国家统计局公布了2015年宏观经济数据,初步核算,全年国内生产总值为676000亿元.676000用科学记数法表示为()A. 6.76×106B. 6.76×105C. 67.6×105D. 0.676×106【答案】B【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.将676000用科学记数法表示为6.76×105.考点:科学记数法—表示较大的数.【题文】如图所示,几何体的左视图为()A. B. C. D.【答案】A【解析】试题分析:根据从左边看得到的图形是左视图,可得答案.从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形考点:简单组合体的三视图.评卷人得分【题文】一组数据8,3,8,6,7,8,7的众数和中位数分别是( )A. 8,6B. 7,6C. 7,8D. 8,7【答案】D【解析】试题分析:根据中位数和众数的定义分别进行解答即可.把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7考点:(1)众数;(2)中位数.【题文】下列计算结果正确的是()A.a8÷a4=a2 B.a2•a3=a6 C.(a3)2=a6 D .(﹣2a2)3=8a6【答案】C【解析】试题分析:根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.A、a8÷a4=a4,故A错误;B、a2•a3=a5,故B错误;C、(a3)2=a6,故C正确;D、(﹣2a2)3=﹣8a6,故D错误.考点:(1)同底数幂的除法;(2)同底数幂的乘法;(3)幂的乘方;(4)积的乘方.【题文】二元一次方程组的解为()A. B. C. D.【答案】C【解析】试题分析:根据加减消元法,可得方程组的解.①+②,得 3x=9,解得x=3,把x=3代入①,得3+y=5,y=2,所以原方程组的解为考点:二元一次方程组的解.【题文】如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A. 8B. 10C. 12D. 14【答案】B【解析】试题分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选:B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.【题文】如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的有()A.1个 B.2 个 C.3 个 D.4个【答案】D【解析】试题分析:由直角三角形斜边上的中线性质得出FD=AB,证明△ABE是等腰直角三角形,得出AE=BE,证出FE=AB,延长FD=FE,①正确;证出∠ABC=∠C,得出AB=AC,由等腰三角形的性质得出BC=2CD,∠BAD=∠CAD=∠CBE,由ASA证明△AEH≌△BEC,得出AH=BC=2CD,②正确;证明△ABD~△BCE,得出=,即BC•AD=AB•BE,再由等腰直角三角形的性质和三角形的面积得出BC•AD=AE2;③正确;由F是AB的中点,BD=CD,得出S△ABC=2S△ABD=4S△ADF.④正确;即可得出结论.考点:(1)相似三角形的判定与性质;(2)全等三角形的判定与性质.【题文】分解因式:xy2﹣x=.【答案】x(y﹣1)(y+1)【解析】试题分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.xy2﹣x,=x(y2﹣1),=x(y﹣1)(y+1).考点:提公因式法与公式法的综合运用.【题文】不等式组的解集为.【答案】2<x<6【解析】试题分析:分别求出各不等式的解集,再求出其公共解集即可.,由①得,x>2,由②得,x<6,故不等式组的解集为:2<x<6.考点:解一元一次不等式组.【题文】一个袋中装有两个红球、三个白球,每个球除颜色外都相同.从中任意摸出一个球,摸到红球的概率是__________.【答案】【解析】试题分析:先求出球的总数,再根据概率公式求解即可.∵一个袋中装有两个红球、三个白球,∴球的总数=2+3=5,∴从中任意摸出一个球,摸到红球的概率=.考点:概率公式.【题文】反比例函数y=的图象经过点(2,3),则k=.【答案】7【解析】试题分析:根据点的坐标以及反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解方程即可得出结论.∵反比例函数y=的图象经过点(2,3),∴k﹣1=2×3,解得:k=7.考点:反比例函数图象上点的坐标特征.【题文】某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为,则可列方程为__________.【答案】60(1+x)2=100【解析】试题分析:设平均每月的增长率为x,根据4月份的营业额为60万元,6月份的营业额为100万元,分别表示出5,6月的营业额,即可列出方程.设平均每月的增长率为x,根据题意可得:60(1+x)2=100 考点:由实际问题抽象出一元二次方程.【题文】观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是.【答案】﹣【解析】试题分析:根据题意可得:所有数据分母为连续正整数,第奇数个是负数,且分子是连续正整数的平方加1,进而得出答案.∵﹣2=﹣,,﹣,,﹣,…,∴第11个数据是:﹣=﹣.考点:(1)规律型;(2)数字的变化类.【题文】如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为__________.【答案】6【解析】试题分析:利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.∵四边形ABCD为正方形,且边长为3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3+3=6考点:(1)相似三角形的判定与性质;(2)正方形的性质.【题文】如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为.【答案】(3,4)或(,)或(﹣,)【解析】试题分析:由条件可知AB为两三角形的公共边,且△AOB为直角三角形,当△AOB和△APB全等时,则可知△APB为直角三角形,再分三种情况进行讨论,可得出P点的坐标.如图所示:①∵OA=3,OB=4,∴P1(3,4);②连结OP2,设AB的解析式为y=kx+b,则,解得.故AB的解析式为y=﹣x+4,则OP2的解析式为y=x,联立方程组得,解得,则P2(,);③连结P2P3,∵(3+0)÷2=1.5,(0+4)÷2=2,∴E(1.5,2),∵1.5×2﹣=﹣, 2×2﹣=,∴P3(﹣,).故点P的坐标为(3,4)或(,)或(﹣,)考点:(1)全等三角形的判定;(2)坐标与图形性质.【题文】计算:4sin60°+|3﹣|﹣()﹣1+(π﹣2016)0.【答案】4﹣4【解析】试题分析:根据实数的运算顺序,首先计算乘方、乘法,然后从左向右依次计算,求出算式4sin60°+|3﹣|﹣()﹣1+(π﹣2016)0的值是多少即可.试题解析:原式=4×+2﹣3﹣2+1=2+2﹣4=4﹣4考点:(1)实数的运算;(2)零指数幂;(3)负整数指数幂;(4)特殊角的三角函数值.【题文】在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2 、C2的坐标.【答案】(1)答案见解析;(2)图形见解析;B2(4,﹣2),C2(1,﹣3)【解析】试题分析:(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.试题解析:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3l(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?【答案】(1)200;(2)108°;(3)答案见解析;(4)600【解析】试题分析:(1)根据体育人数80人,占40%,可以求出总人数.(2)根据圆心角=百分比×360°即可解决问题.(3)求出艺术类、其它类社团人数,即可画出条形图.(4)用样本百分比估计总体百分比即可解决问题.试题解析:(1)80÷40%=200(人).        ∴此次共调查200人.       (2)×360°=108°.∴文学社团在扇形统计图中所占圆心角的度数为108°.       (3)补全如图,(4)1500×40%=600(人).        ∴估计该校喜欢体育类社团的学生有600人.【点睛】此题主要考查了条形图与统计表以及扇形图的综合应用,由条形图与扇形图结合得出调查的总人数是解决问题的关键,学会用样本估计总体的思想,属于中考常考题型.【题文】甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.【答案】(1);(2)不公平;理由见解析.【解析】试题分析:(1)利用列表法得到所有可能出现的结果,根据概率公式计算即可;(2)分别求出甲、乙获胜的概率,比较即可.试题解析:(1)所有可能出现的结果如图:从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为:;(2)不公平.从l试题分析:设甲商品的单价为x元,乙商品的单价为2x元,根据购买240元甲商品的数量比购买300元乙商品的数量多15件列出方程,求出方程的解即可得到结果.试题解析:设甲商品的单价为x元,乙商品的单价为2x元,根据题意,得﹣=15,解这个方程,得x=6,经检验,x=6是所列方程的根,∴2x=2×6=12(元),答:甲、乙两种商品的单价分别为6元、12元.考点:分式方程的应用【题文】如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.【答案】(1)证明过程见解析;(2)6.【解析】试题分析:(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰直角三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到,解方程即可得到结论.试题解析:(1)连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴,∴EC2=DE•AE,∴16=2(2+AD),∴AD=6.考点:(1)切线的性质;(2)相似三角形的判定与性质.【题文】某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)【答案】14.7米.【解析】试题分析:Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根据CD=BC﹣BD可得关于AB 的方程,解方程可得.试题解析:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC﹣BD即6=AB﹣AB解得:AB=≈14.7(米),∴建筑物的高度约为14.7米.考点:解直角三角形的应用-仰角俯角问题.【题文】某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低,若该果园每棵果树产果y千克,增种果树x棵,它们之间的函数关系如图所示.(1)求y与x之间的函数解析式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?【答案】(1)y=-0.5x+80;(2)10棵;(3)40棵时果园的最大产量是7200千克.【解析】试题分析:(1)函数的表达式为y=kx+b,把点(12,74),(28,66)代入解方程组即可.(2)列出方程解方程组,再根据实际意义确定x的值.(3)构建二次函数,利用二次函数性质解决问题.试题解析:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,∴该函数的表达式为y=﹣0.5x+80,(2)根据题意,得,(﹣0.5x+80)(80+x)=6750,解得,x1=10,x2=70∵投入成本最低.∴x2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3)根据题意,得w=(﹣0.5x+80)(80+x)=﹣0.5 x2+40 x+6400=﹣0.5(x﹣40)2+7200∵a=﹣0.5<0,则抛物线开口向下,函数有最大值∴当x=40时,w最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.考点:二次函数的应用.【题文】如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.【答案】(1)PM=PN,PM⊥PN,理由见解析;(2)理由见解析;(3)PM=kPN;理由见解析【解析】试题分析:(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)PM=kPN,由已知条件可证明△BCD∽△ACE,所以可得BD=kAE,因为点P、M、N分别为AD、AB、DE的中点,所以PM=BD,PN=AE,进而可证明PM=kPN.试题解析:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵∠NPD=∠EAC,∠MPN=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN;(2)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD; PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)PM=kPN∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PN=AE.∴PM=kPN.考点:相似形综合题.【题文】如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【答案】(1)y=﹣x2+4x;(2)(3,3);3;(3)(5,﹣5);(4)2.5或14.5或17或5【解析】试题分析:(1)利用待定系数法求二次函数的表达式;(2)根据二次函数的对称轴x=2写出点C的坐标为(3,3),根据面积公式求△ABC的面积;(3)因为点P是抛物线上一动点,且位于第四象限,设出点P的坐标(m,﹣m2+4m),利用差表示△ABP的面积,列式计算求出m的值,写出点P的坐标;(4)分别以点C、M、N为直角顶点分三类进行讨论,利用全等三角形和勾股定理求CM或CN的长,利用面积公式进行计算.试题解析:(1)把点A(4,0),B(1,3)代入抛物线y=ax2+bx中,得解得:,∴抛物线表达式为:y=﹣x2+4x;(2)点C的坐标为(3,3),又∵点B的坐标为(1,3),∴BC=2,∴S△ABC=×2×3=3;(3)过P点作PD⊥BH交BH于点D,设点P(m,﹣m2+4m),根据题意,得:BH=AH=3,HD=m2﹣4m,PD=m﹣1,∴S△ABP=S△ABH+S四边形HAPD﹣S△BPD,6=×3×3+(3+m﹣1)(m2﹣4m)﹣(m﹣1)(3+m2﹣4m),∴3m2﹣15m=0,解得:m1=0(舍去),m2=5,∴点P坐标为(5,﹣5).(4)以点C、M、N为顶点的三角形为等腰直角三角形时,分三类情况讨论:①以点M为直角顶点且M在x轴上方时,如图2,CM=MN,∠CMN=90°,则△CBM≌△MHN,∴BC=MH=2,BM=HN=3﹣2=1,∴M(1,2),N(2,0),由勾股定理得:MC==,∴S△CMN=××=;②以点M为直角顶点且M在x轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt△NEM和Rt △MDC,得Rt△NEM≌Rt△MDC,∴EM=CD=5,MD=ME=2,由勾股定理得:CM==,∴S△CMN=××=;③以点N为直角顶点且N在y轴左侧时,如图4,CN=MN,∠MNC=90°,作辅助线,同理得:CN==,∴S△CMN=××=17;④以点N为直角顶点且N在y轴右侧时,作辅助线,如图5,同理得:CN==,∴S△CMN=××=5;⑤以C为直角顶点时,不能构成满足条件的等腰直角三角形;综上所述:△CMN的面积为:或或17或5.考点:二次函数综合题.。

2022年辽宁省丹东市中考数学试卷解析

2022年辽宁省丹东市中考数学试卷解析

2022年辽宁省丹东市中考数学试卷一、选择题〔以下各题的备选答案中,只有一个是正确的.每题3分,共24分1.〔3分〕〔2022•丹东〕﹣2022的绝对值是〔〕A.﹣2022 B.2022 C.D.﹣2.〔3分〕〔2022•丹东〕据统计,2022年在“情系桃源,好运丹东〞的鸭绿江桃花欣赏活动中,6天内参与人次达27.8万.用科学记数法将27.8万表示为〔〕A.2.78×106B.27.8×106C.2.78×105D.27.8×1053.〔3分〕〔2022•丹东〕如图,是某几何体的俯视图,该几何体可能是〔〕A.圆柱B.圆锥C.球D.正方体4.〔3分〕〔2022•丹东〕如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是〔〕A.5.2 B.4.6 C.4D.3.65.〔3分〕〔2022•丹东〕以下计算正确的选项是〔〕C.=±3 D.〔a3〕2=a6A.2a+a=3a2B.4﹣2=﹣6.〔3分〕〔2022•丹东〕如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,那么∠D的度数为〔〕A.15°B.17.5°C.20°D.22.5°7.〔3分〕〔2022•丹东〕过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.假设AB=,∠DCF=30°,那么EF的长为〔〕A.2B.3C.D.8.〔3分〕〔2022•丹东〕一次函数y=﹣x+a﹣3〔a为常数〕与反比例函数y=﹣的图象交于A、B两点,当A、B两点关于原点对称时a的值是〔〕A.0B.﹣3 C.3D.4二、填空题〔每题3分,共24分〕9.〔3分〕〔2022•丹东〕如图,正六边形卡片被分成六个全等的正三角形.假设向该六边形内投掷飞镖,那么飞镖落在阴影区域的概率为.10.〔3分〕〔2022•丹东〕如图,∠1=∠2=40°,MN平分∠EMB,那么∠3=°.11.〔3分〕〔2022•丹东〕分解因式:3x2﹣12x+12=.12.〔3分〕〔2022•丹东〕假设a<<b,且a、b是两个连续的整数,那么a b=.13.〔3分〕〔2022•丹东〕不等式组的解集为.14.〔3分〕〔2022•丹东〕在菱形ABCD中,对角线AC,BD的长分别是6和8,那么菱形的周长是.15.〔3分〕〔2022•丹东〕假设x=1是一元二次方程x2+2x+a=0的一个根,那么a=.16.〔3分〕〔2022•丹东〕如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三角形,点A1、A2、A3…A n+1在x轴的正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B n的坐标为.三、解答题〔每题8分,共16分〕17.〔8分〕〔2022•丹东〕先化简,再求值:〔1﹣〕÷,其中a=3.18.〔8分〕〔2022•丹东〕如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A〔1,4〕,B〔4,2〕,C〔3,5〕〔每个方格的边长均为1个单位长度〕.〔1〕请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;〔2〕将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.19.〔10分〕〔2022•丹东〕某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了局部学生最喜爱哪一类节目〔被调查的学生只选一类并且没有不选择的〕,并将调查结果制成了如下的两个统计图〔不完整〕.请你根据图中所提供的信息,完成以下问题:〔1〕求本次调查的学生人数;〔2〕请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;〔3〕假设该中学有2000名学生,请估计该校喜爱电视剧节目的人数.20.〔10分〕〔2022•丹东〕从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米21.〔10分〕〔2022•丹东〕一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.〔1〕小红摸出标有数字3的小球的概率是;〔2〕请用列表法或画树状图的方法表示出由x,y确定的点P〔x,y〕所有可能的结果;〔3〕假设规定:点P〔x,y〕在第一象限或第三象限小红获胜;点P〔x,y〕在第二象限或第四象限那么小颖获胜.请分别求出两人获胜的概率.22.〔10分〕〔2022•丹东〕如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.〔1〕假设OA=CD=2,求阴影局部的面积;〔2〕求证:DE=DM.23.〔10分〕〔2022•丹东〕如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°〔人的身高忽略不计〕,求乙楼的高度CD.〔参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈〕24.〔10分〕〔2022•丹东〕某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y〔件〕与每件销售价x〔元〕的关系数据如下:x 30 32 34 36y 40 36 32 28〔1〕y与x满足一次函数关系,根据上表,求出y与x之间的关系式〔不写出自变量x的取值范围〕;〔2〕如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元〔3〕设该商店每天销售这种商品所获利润为w〔元〕,求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大25.〔12分〕〔2022•丹东〕在正方形ABCD 中,对角线AC 与BD 交于点O ;在Rt △PMN 中,∠MPN=90°.〔1〕如图1,假设点P 与点O 重合且PM ⊥AD 、PN ⊥AB ,分别交AD 、AB 于点E 、F ,请直接写出PE 与PF 的数量关系;〔2〕将图1中的Rt △PMN 绕点O 顺时针旋转角度α〔0°<α<45°〕.①如图2,在旋转过程中〔1〕中的结论依然成立吗假设成立,请证明;假设不成立,请说明理由;②如图2,在旋转过程中,当∠DOM=15°时,连接EF ,假设正方形的边长为2,请直接写出线段EF 的长;③如图3,旋转后,假设Rt △PMN 的顶点P 在线段OB 上移动〔不与点O 、B 重合〕,当BD=3BP 时,猜想此时PE 与PF 的数量关系,并给出证明;当BD=m •BP 时,请直接写出PE 与PF 的数量关系.26.〔14分〕〔2022•丹东〕如图,二次函数y=ax 2+x+c 的图象与y 轴交于点A 〔0,4〕,与x 轴交于点B 、C ,点C 坐标为〔8,0〕,连接AB 、AC . 〔1〕请直接写出二次函数y=ax 2+x+c 的表达式;〔2〕判断△ABC 的形状,并说明理由;〔3〕假设点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请直接写出此时点N 的坐标;〔4〕假设点N 在线段BC 上运动〔不与点B 、C 重合〕,过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.2022年辽宁省丹东市中考数学试卷参考答案与试题解析一、选择题〔以下各题的备选答案中,只有一个是正确的.每题3分,共24分 1.〔3分〕〔2022•丹东〕﹣2022的绝对值是〔 〕 A . ﹣2022 B . 2022 C .D .﹣考点:绝对值. 分析: 根据相反数的意义,求解即可.注意正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数. 解答: 解:∵﹣2022的绝对值等于其相反数, ∴﹣2022的绝对值是2022;故答案为:2022.点评: 此题考查了绝对值的知识,掌握绝对值的意义是此题的关键,解题时要细心. 2.〔3分〕〔2022•丹东〕据统计,2022年在“情系桃源,好运丹东〞的鸭绿江桃花欣赏活动中,6天内参与人次达27.8万.用科学记数法将27.8万表示为〔 〕 A . 2.78×106 B . 27.8×106 C . 2.78×105 D . 27.8×105 考点:科学记数法—表示较大的数.分析: 科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答: 解:将27.8万用科学记数法表示为2.78×105. 应选:C .点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3.〔3分〕〔2022•丹东〕如图,是某几何体的俯视图,该几何体可能是〔 〕 A . 圆柱 B . 圆锥 C . 球 D .正方体考点:由三视图判断几何体. 分析: 根据几何体的俯视图是从上面看,所得到的图形分别写出各个几何体的俯视图判断即可.解答: 解:圆柱的俯视图是圆,A 错误;圆锥的俯视图是圆,且中心由一个实点,B 正确;球的俯视图是圆,C 错误;正方体的俯视图是正方形,D 错误. 应选:B .点评: 此题考查了三视图的概念,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键. 4.〔3分〕〔2022•丹东〕如果一组数据2,4,x ,3,5的众数是4,那么该组数据的平均数是〔 〕 A . 5.2 B . 4.6 C . 4 D . 3.6 考点:算术平均数;众数. 分析:根据这组数据的众数是4,求出x 的值,根据平均数的公式求出平均数. 解答: 解:∵这组数据的众数是4, ∴x=4,=〔2+4+4+3+5〕=3.6.应选:D .点评: 此题考查的是平均数的计算公式和众数的概念,掌握平均数的计算公式和众数确实定方法是解题的关键. 5.〔3分〕〔2022•丹东〕以下计算正确的选项是〔 〕A . 2a+a=3a 2B . 4﹣2=﹣C . =±3D . 〔a 3〕2=a 6考点: 幂的乘方与积的乘方;算术平方根;合并同类项;负整数指数幂.分析: A 、依据合并同类项法那么计算即可;B 、根据负整数指数幂的法那么计算即可;C 、根据算术平方根的定义可做出判断;D 、依据幂的乘方的运算法那么进行计算即可. 解答: 解:A 、2a+a=3a ,故A 错误;B 、4﹣2==,故B 错误;C 、,故C 错误;D 、〔a 3〕2=a 3×2=a 6,故D 正确. 应选:D .点评: 此题主要考查的是数与式的计算,掌握合并同类项、负整数指数幂、算术平方根以及幂的乘方的运算法那么是解题的关键. 6.〔3分〕〔2022•丹东〕如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,那么∠D 的度数为〔 〕A . 15°B . 17.5°C . 20°D .22.5° 考点:等腰三角形的性质. 分析: 先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A ,∠1=∠3+∠D ,那么2∠1=2∠3+∠A ,利用等式的性质得到∠D=∠A ,然后把∠A 的度数代入计算即可.解答:解:∵∠ABC 的平分线与∠ACE 的平分线交于点D ,∴∠1=∠2,∠3=∠4, ∵∠ACE=∠A+∠ABC , 即∠1+∠2=∠3+∠4+∠A , ∴2∠1=2∠3+∠A , ∵∠1=∠3+∠D , ∴∠D=∠A=×30°=15°.应选A .点评: 此题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析. 7.〔3分〕〔2022•丹东〕过矩形ABCD 的对角线AC 的中点O 作EF ⊥AC ,交BC 边于点E ,交AD 边于点F ,分别连接AE 、CF .假设AB=,∠DCF=30°,那么EF 的长为〔 〕A . 2B . 3C .D .考点:菱形的判定与性质;矩形的性质. 分析: 求出∠ACB=∠DAC ,然后利用“角角边〞证明△AOF 和△COE 全等,根据全等三角形对应边相等可得OE=OF ,再根据对角线互相垂直平分的四边形是菱形得到四边形AECF 是菱形,再求出∠ECF=60°,然后判断出△CEF 是等边三角形,根据等边三角形的三条边都相等可得EF=CF ,根据矩形的对边相等可得CD=AB ,然后求出CF ,从而得解. 解答: 解:∵矩形对边AD ∥BC , ∴∠ACB=∠DAC ,∵O 是AC 的中点, ∴AO=CO ,在△AOF 和△COE 中,,∴△AOF ≌△COE 〔ASA 〕, ∴OE=OF , 又∵EF ⊥AC ,∴四边形AECF 是菱形, ∵∠DCF=30°,∴∠ECF=90°﹣30°=60°, ∴△CEF 是等边三角形, ∴EF=CF , ∵AB=, ∴CD=AB=, ∵∠DCF=30°, ∴CF=÷=2,∴EF=2. 应选A .点评: 此题考查了菱形的判定与性质,矩形的性质,全等三角形的判定与性质,等边三角形的判定与性质,难点在于判断出△CEF 是等边三角形.8.〔3分〕〔2022•丹东〕一次函数y=﹣x+a ﹣3〔a 为常数〕与反比例函数y=﹣的图象交于A 、B 两点,当A 、B 两点关于原点对称时a 的值是〔 〕 A . 0 B . ﹣3C . 3D . 4 考点:反比例函数与一次函数的交点问题;关于原点对称的点的坐标. 专题:计算题.分析:设A 〔t ,﹣〕,根据关于原点对称的点的坐标特征得B 〔﹣t ,〕,然后把A 〔t ,﹣〕,B 〔﹣t ,〕分别代入y=﹣x+a ﹣3得﹣=﹣t+a ﹣3,=t+a ﹣3,两式相加消去t 得2a ﹣6=0,再解关于a 的一次方程即可. 解答:解:设A 〔t ,﹣〕, ∵A 、B 两点关于原点对称,∴B 〔﹣t ,〕,把A 〔t ,﹣〕,B 〔﹣t ,〕分别代入y=﹣x+a ﹣3得﹣=﹣t+a ﹣3,=t+a﹣3,两式相加得2a ﹣6=0, ∴a=3. 应选C .点评:此题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,假设方程组有解那么两者有交点,方程组无解,那么两者无交点. 二、填空题〔每题3分,共24分〕 9.〔3分〕〔2022•丹东〕如图,正六边形卡片被分成六个全等的正三角形.假设向该六边形内投掷飞镖,那么飞镖落在阴影区域的概率为.考点: 几何概率. 分析: 确定阴影局部的面积在整个转盘中占的比例,根据这个比例即可求出飞镖落在阴影区域的概率. 解答:解:如图:转动转盘被均匀分成6局部,阴影局部占2份,飞镖落在阴影区域的概率是;故答案为:.点评: 此题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比. 10.〔3分〕〔2022•丹东〕如图,∠1=∠2=40°,MN 平分∠EMB ,那么∠3= 110 °. 考点: 平行线的判定与性质. 分析:根据对顶角相等得出∠2=∠MEN ,利用同位角相等,两直线平行得出AB ∥CD ,再利用平行线的性质解答即可. 解答:解:∵∠2=∠MEN ,∠1=∠2=40°, ∴∠1=∠MEN , ∴AB ∥CD ,∴∠3+∠BMN=180°, ∵MN 平分∠EMB ,∴∠BMN=,∴∠3=180°﹣70°=110°.故答案为:110.点评:此题考查了平行线的性质,角平分线的定义,是根底题,熟记性质并准确识图是解题的关键.11.〔3分〕〔2022•丹东〕分解因式:3x2﹣12x+12=3〔x﹣2〕2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取3后,利用完全平方公式分解即可.解答:解:原式=3〔x2﹣4x+4〕=3〔x﹣2〕2,故答案为:3〔x﹣2〕2点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解此题的关键.12.〔3分〕〔2022•丹东〕假设a<<b,且a、b是两个连续的整数,那么a b=8.考点:估算无理数的大小.分析:先估算出的范围,即可得出a、b的值,代入求出即可.解答:解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.点评:此题考查了估算无理数的大小的应用,解此题的关键是求出的范围.13.〔3分〕〔2022•丹东〕不等式组的解集为﹣1<x<1.考点:解一元一次不等式组.分析:先求出两个不等式的解集,再求其公共解.解答:解:,由①得,x>﹣1,由②得,x<1.所以,不等式组的解集为﹣1<x<1.故答案为﹣1<x<1.点评:此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到〔无解〕.14.〔3分〕〔2022•丹东〕在菱形ABCD中,对角线AC,BD的长分别是6和8,那么菱形的周长是20.考点:菱形的性质.专题:计算题.分析:AC与BD相交于点O,如图,根据菱形的性质得AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,那么可在Rt△AOD中,根据勾股定理计算出AD=5,于是可得菱形ABCD的周长为20.解答:解:AC与BD相交于点O,如图,∵四边形ABCD为菱形,∴AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,在Rt△AOD中,∵OA=3,OB=4,∴AD==5,∴菱形ABCD的周长=4×5=20.故答案为20.点评:此题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.15.〔3分〕〔2022•丹东〕假设x=1是一元二次方程x2+2x+a=0的一个根,那么a=﹣3.考点:一元二次方程的解.分析:根据方程的根的定义将x=1代入方程得到关于a的方程,然后解得a的值即可.解答:解:将x=1代入得:1+2+a=0,解得:a=﹣3.故答案为:﹣3.点评:此题主要考查的是方程的解〔根〕的定义和一元一次方程的解法,将方程的解代入方程是解题的关键.16.〔3分〕〔2022•丹东〕如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三角形,点A1、A2、A3…A n+1在x轴的正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B n的坐标为〔3×2n﹣2,×2n﹣2〕.考点:一次函数图象上点的坐标特征;等边三角形的性质.专题:规律型.分析:根据等边三角形的性质和∠B1OA2=30°,可求得∠B1OA2=∠A1B1O=30°,可求得OA2=2OA1=2,同理可求得OA n=2n﹣1,再结合含30°角的直角三角形的性质可求得△A n B n A n+1的边长,进一步可求得点B n的坐标.解答:解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠B1OA2=30°,∴∠B1OA2=∠A1B1O=30°,可求得OA2=2OA1=2,同理可求得OA n=2n﹣1,∵∠B n OA n+1=30°,∠B n A n A n+1=60°,∴∠B n OA n+1=∠OB n A n=30°∴B n A n=OA n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,那么可求得其高为×2n﹣1=×2n﹣2,∴点B n的横坐标为×2n﹣1+2n﹣1=×2n﹣1=3×2n﹣2,∴点B n的坐标为〔3×2n﹣2,×2n﹣2〕.故答案为〔3×2n﹣2,×2n﹣2〕.点评:此题主要考查等边三角形的性质和含30°角的直角三角形的性质,根据条件找到等边三角形的边长和OA1的关系是解题的关键.三、解答题〔每题8分,共16分〕17.〔8分〕〔2022•丹东〕先化简,再求值:〔1﹣〕÷,其中a=3.考点:分式的化简求值.分析:先计算括号里面的,再把分子、分母因式分解,约分即可,把a=3代入计算即可.解答:解:原式=×=,当a=3时,原式==.点评:此题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.18.〔8分〕〔2022•丹东〕如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A〔1,4〕,B〔4,2〕,C〔3,5〕〔每个方格的边长均为1个单位长度〕.〔1〕请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;〔2〕将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.考点:作图-旋转变换;作图-轴对称变换.分析:〔1〕根据网格特点,找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;〔2〕分别找出点A、B、C绕点O逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可,观察可知点B所经过的路线是半径为,圆心角是90°的扇形,然后根据弧长公式进行计算即可求解.解答:解:〔1〕如图,△A1B1C1即为所求.〔2〕如图,△A2B2C2即为所求.点B旋转到点B2所经过的路径长为:=π.故点B旋转到点B2所经过的路径长是π.点评:此题综合考查了利用对称变换作图,利用旋转变化作图,熟知网格结构特点找出变换后的对应点的位置是解题的关键.19.〔10分〕〔2022•丹东〕某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了局部学生最喜爱哪一类节目〔被调查的学生只选一类并且没有不选择的〕,并将调查结果制成了如下的两个统计图〔不完整〕.请你根据图中所提供的信息,完成以下问题:〔1〕求本次调查的学生人数;〔2〕请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;〔3〕假设该中学有2000名学生,请估计该校喜爱电视剧节目的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:〔1〕根据喜爱电视剧的人数是69人,占总人数的23%,即可求得总人数;〔2〕根据总人数和喜欢娱乐节目的百分数可求的其人数,补全即可;利用360°乘以对应的百分比即可求得圆心角的度数;〔3〕利用总人数乘以对应的百分比即可求解.解答:解:〔1〕69÷23%=300〔人〕∴本次共调查300人;〔2〕∵喜欢娱乐节目的人数占总人数的20%,∴20%×300=60〔人〕,补全如图;∵360°×12%=43.2°,∴新闻节目在扇形统计图中所占圆心角的度数为43.2°;〔3〕2000×23%=460〔人〕,∴估计该校有460人喜爱电视剧节目.点评:此题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映局部占总体的百分比大小.20.〔10分〕〔2022•丹东〕从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米考点:分式方程的应用.分析:设普通列车平均速度每小时x千米,那么高速列车平均速度每小时3x千米,根据题意可得,坐高铁走180千米比坐普通车240千米少用2小时,据此列方程求解.解答:解:设普通列车平均速度每小时x千米,那么高速列车平均速度每小时3x千米,根据题意得,﹣=2,解得:x=90,经检验,x=90是所列方程的根,那么3x=3×90=270.答:高速列车平均速度为每小时270千米.点评:此题考查了分式方程的应用,解答此题的关键是读懂题意,设出未知数,找出适宜的等量关系,列方程求解,注意检验.21.〔10分〕〔2022•丹东〕一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.〔1〕小红摸出标有数字3的小球的概率是;〔2〕请用列表法或画树状图的方法表示出由x,y确定的点P〔x,y〕所有可能的结果;〔3〕假设规定:点P〔x,y〕在第一象限或第三象限小红获胜;点P〔x,y〕在第二象限或第四象限那么小颖获胜.请分别求出两人获胜的概率.考点:列表法与树状图法.专题:计算题.分析:〔1〕直接根据概率公式求解;〔2〕通过列表展示所有12种等可能性的结果数;〔3〕找出在第一象限或第三象限的结果数和第二象限或第四象限的结果数,然后根据概率公式计算两人获胜的概率.解答:解:〔1〕小红摸出标有数字3的小球的概率是;故答案为;〔2〕列表如下:﹣1 ﹣2 3 4﹣1 〔﹣1,﹣2〕〔﹣1,3〕〔﹣1,4〕﹣2 〔﹣2,﹣1〕〔﹣2,3〕〔﹣2,4〕3 〔3,﹣1〕〔3,﹣2〕〔3,4〕4 〔4,﹣1〕〔4,﹣2〕〔4,3〕〔3〕从上面的表格可以看出,所有可能出现的结果共有12种,且每种结果出现的可能性相同,其中点〔x,y〕在第一象限或第三象限的结果有4种,第二象限或第四象限的结果有8种,所以小红获胜的概率==,小颖获胜的概率==.点评:此题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.〔10分〕〔2022•丹东〕如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.〔1〕假设OA=CD=2,求阴影局部的面积;〔2〕求证:DE=DM.考点:切线的性质;扇形面积的计算.分析:〔1〕连接OD,根据和切线的性质证明△OCD为等腰直角三角形,得到∠DOC=45°,根据S阴影=S△OCD﹣S扇OBD计算即可;〔2〕连接AD,根据弦、弧之间的关系证明DB=DE,证明△AMD≌△ABD,得到DM=BD,得到答案.解答:〔1〕解:如图,连接OD,∵CD是⊙O切线,∴OD⊥CD,∵OA=CD=2,OA=OD,∴OD=CD=2,∴△OCD为等腰直角三角形,∴∠DOC=∠C=45°,∴S阴影=S△OCD﹣S扇OBD=﹣=4﹣π;〔2〕证明:如图,连接AD,∵AB是⊙O直径,∴∠ADB=∠ADM=90°,又∵=,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,,∴△AMD≌△ABD,∴DM=BD,∴DE=DM.点评:此题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法.23.〔10分〕〔2022•丹东〕如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°〔人的身高忽略不计〕,求乙楼的高度CD.〔参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈〕考点:解直角三角形的应用-仰角俯角问题.分析:过点C作CE⊥AB交AB于点E,在直角△ADB中利用三角函数求得AB的长,然后在直角△AEC中求得AE的长,即可求解.解答:解:过点C作CE⊥AB交AB于点E,那么四边形EBDC为矩形,∴BE=CD CE=BD=60,如图,根据题意可得,∠ADB=48°,∠ACE=37°,∵,在Rt△ADB中,那么AB=tan48°•BD≈〔米〕,∵,在Rt△ACE中,那么AE=tan37°•CE≈〔米〕,∴CD=BE=AB﹣AE=66﹣45=21〔米〕,∴乙楼的高度CD为21米.点评:此题考查了解直角三角形的应用﹣仰角俯角问题,此题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.24.〔10分〕〔2022•丹东〕某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y〔件〕与每件销售价x〔元〕的关系数据如下:x 30 32 34 36y 40 36 32 28〔1〕y与x满足一次函数关系,根据上表,求出y与x之间的关系式〔不写出自变量x的取值范围〕;〔2〕如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元〔3〕设该商店每天销售这种商品所获利润为w〔元〕,求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大考点:二次函数的应用.分析:〔1〕根据待定系数法解出解析式即可;〔2〕根据题意列出方程解答即可;〔3〕根据题意列出函数解析式,利用函数解析式的最值解答即可.解答:解:〔1〕设该函数的表达式为y=kx+b,根据题意,得,解得:.故该函数的表达式为y=﹣2x+100;〔2〕根据题意得,〔﹣2x+100〕〔x﹣30〕=150,解这个方程得,x1=35,x2=45,故每件商品的销售价定为35元或45元时日利润为150元;〔3〕根据题意,得w=〔﹣2x+100〕〔x﹣30〕=﹣2x2+160x﹣3000=﹣2〔x﹣40〕2+200,∵a=﹣2<0 那么抛物线开口向下,函数有最大值,即当x=40时,w的值最大,∴当销售单价为40元时获得利润最大.点评:此题考查二次函数的应用,关键是根据题意列出方程和函数解析式,利用函数解析式的最值分析.25.〔12分〕〔2022•丹东〕在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN 中,∠MPN=90°.〔1〕如图1,假设点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;〔2〕将图1中的Rt△PMN绕点O顺时针旋转角度α〔0°<α<45°〕.①如图2,在旋转过程中〔1〕中的结论依然成立吗假设成立,请证明;假设不成立,请说明理由;②如图2,在旋转过程中,当∠DOM=15°时,连接EF,假设正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,假设Rt△PMN的顶点P在线段OB上移动〔不与点O、B重合〕,当BD=3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD=m•BP时,请直接写出PE与PF的数量关系.考点:四边形综合题.分析:〔1〕根据正方形的性质和角平分线的性质解答即可;〔2〕①根据正方形的性质和旋转的性质证明△FOA≌△EOD,得到答案;②作OG⊥AB于G,根据余弦的概念求出OF的长,根据勾股定理求值即可;③过点P作HP⊥BD交AB于点H,根据相似三角形的判定和性质求出PE与PF的数量关系,根据解答结果总结规律得到当BD=m•BP时,PE与PF的数量关系.解答:解:〔1〕PE=PF,理由:∵四边形ABCD为正方形,∴∠BAC=∠DAC,又PM⊥AD、PN⊥AB,∴PE=PF;〔2〕①成立,理由:∵AC、BD是正方形ABCD的对角线,∴OA=OD,∠FAO=∠EDO=45°,∠AOD=90°,∴∠DOE+∠AOE=90°,∵∠MPN=90°,∴∠FOA+∠AOE=90°,∴∠FOA=∠DOE,在△FOA和△EOD中,,∴△FOA≌△EOD,∴OE=OF,即PE=PF;②作OG⊥AB于G,∵∠DOM=15°,∴∠AOF=15°,那么∠FOG=30°,∵cos∠FOG=,∴OF==,又OE=OF,∴EF=;③PE=2PF,证明:如图3,过点P作HP⊥BD交AB于点H,那么△HPB为等腰直角三角形,∠HPD=90°,∴HP=BP,∵BD=3BP,∴PD=2BP,∴PD=2 HP,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE,又∵∠BHP=∠EDP=45°,∴△PHF∽△PDE,∴==,即PE=2PF,由此规律可知,当BD=m•BP时,PE=〔m﹣1〕•PF.点评:此题考查的是正方形的性质和旋转变换,掌握旋转变换的性质、找准对应关系正确运用三角形全等和相似的判定和性质定理是解题的关键,正确作出辅助线是解答此题的重点.26.〔14分〕〔2022•丹东〕如图,二次函数y=ax2+x+c的图象与y轴交于点A〔0,4〕,与x轴交于点B、C,点C坐标为〔8,0〕,连接AB、AC.〔1〕请直接写出二次函数y=ax2+x+c的表达式;〔2〕判断△ABC的形状,并说明理由;。

丹东中考数学试题及答案

丹东中考数学试题及答案

丹东中考数学试题及答案试题一:1. 已知直角三角形ABC,∠ABC=90°,AC=5cm, BC=12cm,求∠ACB的正弦值。

解答:根据三角函数定义,sinθ = 对边/斜边。

在直角三角形ABC中,∠ACB的对边为边AC,斜边为边BC。

代入已知数值,得到sin∠ACB = AC/BC = 5/12。

所以,∠ACB的正弦值为5/12。

试题二:2. 数列{an}的首项为a1=2,公差为d=-3。

设a10的值为x,请写出等差数列的第n项通项公式,并求出a10的值。

解答:等差数列的第n项通项公式为an = a1 + (n-1)d。

代入已知数值,得到a10 = a1 + (10-1)d = 2 + 9*(-3) = -25。

所以,a10的值为-25。

试题三:3.一个长方体的长、宽、高分别为2cm,3cm,4cm。

求其体积和表面积。

解答:长方体的体积公式为V = 长×宽×高。

代入已知数值,得到体积V =2cm × 3cm × 4cm = 24cm³。

长方体的表面积公式为S = 2(长×宽 + 长×高 + 宽×高)。

代入已知数值,得到表面积S = 2(2cm×3cm + 2cm×4cm + 3cm×4cm) = 52cm²。

所以,该长方体的体积为24cm³,表面积为52cm²。

试题四:4.已知集合A={1, 2, 3, 4},集合B={3, 4, 5, 6},请写出集合A∪B (并集)和集合A∩B(交集)的元素。

解答:集合A∪B(并集)的元素为A和B中的所有元素,且不重复。

根据题目给出的集合A和集合B,可以得到A∪B = {1, 2, 3, 4, 5, 6}。

集合A∩B(交集)的元素为同时属于集合A和集合B的元素。

根据题目给出的集合A和集合B,可以得到A∩B = {3, 4}。

2024年辽宁省中考数学试卷(附答案解析)

2024年辽宁省中考数学试卷(附答案解析)

2024年辽宁省中考数学试卷(附答案解析)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图是由5个相同的小立方块搭成的几何体,这个几何体的俯视图是()A .B .C .D .【解答】解:从上边看,底层左边是一个小正方形,上层是两个小正方形,左齐.故选:A .2.(3分)亚洲、欧洲、非洲和南美洲的最低海拔如表:大洲亚洲欧洲非洲南美洲最低海拔/m﹣415﹣28﹣156﹣40其中最低海拔最小的大洲是()A .亚洲B .欧洲C .非洲D .南美洲【解答】解:∵﹣415<﹣156<﹣40<﹣28,∴海拔最低的是亚洲.故选:A .3.(3分)越山向海,一路花开.在5月24日举行的2024辽宁省高品质文体旅融合发展大产业招商推介活动中,全省30个重大文体旅项目进行集中签约,总金额达532亿元.将53200000000用科学记数法表示为()A .532×108B .53.2×109C .5.32×1010D .5.32×1011【答案】C .4.(3分)如图,在矩形ABCD 中,点E 在AD 上,当△EBC 是等边三角形时,∠AEB 为()A.30°B.45°C.60°D.120°【分析】根据平行线的性质和等边三角形的性质即可解答.【解答】证明:∵△EBC是等边三角形,∴∠CBE=60°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEB=∠CBE=60°.故选:C.【点评】本题考查矩形的性质,等边三角形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(3分)下列计算正确的是()A.a2+a3=2a5B.a2•a3=a6C.(a2)3=a5D.a(a+1)=a2+a【答案】D.6.(3分)一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,每个球除颜色外都相同.从中随机摸出一个球,则下列事件发生的概率为的是()A.摸出白球B.摸出红球C.摸出绿球D.摸出黑球【分析】分别求得各个事件发生的概率,即可得出答案.【解答】解:∵一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,共有10个球,∴从中随机摸出一个球,摸出白球的概率为=,摸出红球的概率为,摸出绿球的概率为=,摸出黑球的概率为.故选:B.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)纹样是我国古代艺术中的瑰宝.下列四幅纹样图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】一个平面内,如果一个图形沿一条直线折叠,若直线两旁的图形能够完全重合,那么这个图形即为轴对称图形;一个平面内,如果一个图形绕某个点旋转180°,若旋转后的图形与原来的图形完全重合,那么这个图形即为中心对称图形;据此进行判断即可.【解答】解:A中图形既不是轴对称图形,也不是中心对称图形,则A不符合题意;B中图形既是轴对称图形,也是中心对称图形,则B符合题意;C中图形是轴对称图形,但不是中心对称图形,则C不符合题意;D中图形不是轴对称图形,但它是中心对称图形,则D不符合题意;故选:B.【点评】本题考查轴对称图形,中心对称图形,熟练掌握其定义是解题的关键.8.(3分)我国古代数学著作《孙子算经》中有“雉兔同笼”问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”其大意是:鸡兔同笼,共有35个头,94条腿,问鸡兔各多少只?设鸡有x只,兔有y只,根据题意可列方程组为()A.B.C.D.【分析】根据“上有35个头,下有94条腿”,即可列出关于x,y的二元一次方程组,此题得解.【解答】解:∵上有35个头,∴x+y=35;∵下有94条腿,∴2x+4y=94.∴根据题意可列方程组.故选:D.【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)如图,▱ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD,若AC=3,BD=5,则四边形OCED的周长为()A.4B.6C.8D.16【分析】根据平行四边形对角线互相平分得出OC、OD的长,再证明四边形OCED是平行四边形即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴OC=,OD=,∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∴四边形OCED的周长=2(OC+OD)=2×()=8,故选:C.【点评】本题考查了平行四边形的判定与性质,熟记平行四边形的判定与性质是解题的关键.10.(3分)如图,在平面直角坐标系xOy中,菱形AOBC的顶点A在x轴负半轴上,顶点B在直线上,若点B的横坐标是8,则点C的坐标为()A.(﹣1,6)B.(﹣2,6)C.(﹣3,6)D.(﹣4,6)【分析】利用一次函数图象上点的坐标特征,可求出点B的坐标,利用两点间的距离公式,可求出OB 的长,结合菱形的性质,可得出BC的长及BC∥x轴,再结合点B的坐标,即可得出点C的坐标.【解答】解:当x=8时,y=×8=6,∴点B的坐标为(8,6),∴OB==10.∵四边形AOBC是菱形,且AO在x轴上,∴BC=OB=10,且BC∥x轴,∴点C的坐标为(8﹣10,6),即(﹣2,6).故选:B.【点评】本题考查了一次函数图象上点的坐标特征以及菱形的性质,利用一次函数图象上点的坐标特征及菱形的性质,求出点B的坐标及BC的长是解题的关键.二、填空题(本题共5小题,每小题3分,共15分)11.(3分)方程的解为x=3.【分析】先把分式方程变形成整式方程,求解后再检验即可.【解答】解:,方程的两边同乘(x+2),得5=x+2,解得:x=3,经检验x=3是分式方程的解,所以原分式方程的解为x=3.故答案为:x=3.【点评】本题考查了解分式方程,掌握解分式方程的一般步骤是解决本题的关键.12.(3分)在平面直角坐标系中,线段AB的端点坐标分别为A(2,﹣1),B(1,0),将线段AB平移后,点A的对应点A′的坐标为(2,1),则点B的对应点B′的坐标为(1,2).【分析】根据点A及点A对应点的坐标,得出平移的方向和距离,据此可解决问题.【解答】解:因为点A坐标为(2,﹣1),且平移后对应点A′的坐标为(2,1),所以2﹣2=0,1﹣(﹣1)=2,所以1+0=1,0+2=2,所以点B的对应点B′的坐标为(1,2).故答案为:(1,2).【点评】本题主要考查了坐标与图形变化﹣平移,熟知图形平移的性质是解题的关键.13.(3分)如图,AB∥CD,AD与BC相交于点O,且△AOB与△DOC的面积比是1:4,若AB=6,则CD的长为12.【分析】根据AB∥CD,得出△AOB和△DOC相似,从而得出,由此得出CD的长.【解答】解:∵AB∥CD,∴△AOB∽△DOC,∴,∴,∵AB=6,∴,∴DC=12,故答案为:12.【点评】本题考查了相似三角形的性质与判定,掌握相似三角形面积之比等于相似比的平方是解题的关键.14.(3分)如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴相交于点A,B,点B的坐标为(3,0),若点C(2,3)在抛物线上,则AB的长为4.【分析】依据题意,由抛物线y=ax2+bx+3过B(3,0),C(2,3),可得,求出a,b后可得抛物线的解析式,再求得对称轴,依据对称性可得A的坐标,进而可以判断得解.【解答】解:由题意,∵抛物线y=ax2+bx+3过B(3,0),C(2,3),∴.∴.∴抛物线为y=﹣x2+2x+3.∴抛物线的对称轴是直线x=﹣=1.∵抛物线与x轴的一交点为B(3,0),∴另一交点为A(1﹣2,0),即A(﹣1,0).∴AB=3﹣(﹣1)=4.故答案为:4.【点评】本题主要考查了二次函数图象上点的坐标特征、抛物线与x轴的交点,解题时要熟练掌握并能灵活运用二次函数的性质是关键.15.(3分)如图,四边形ABCD中,AD∥BC,AD>AB,AD=a,AB=10,以点A为圆心,以AB长为半径作弧,与BC相交于点E,连接AE.以点E为圆心,适当长为半径作弧,分别与EA,EC相交于点M,N,再分别以点M,N为圆心,大于的长为半径作弧,两弧在∠AEC的内部相交于点P,作射线EP,与AD相交于点F,则FD的长为a﹣10(用含a的代数式表示).【分析】利用基本作图得到AE=AB=10,EF平分∠AEC,接着证明∠AEF=∠AFE得到AF=AE=10,然后利用FD=AD﹣AF求解.【解答】解:由作法得AE=AB=10,EF平分∠AEC,∴∠AEF=∠CEF,∵AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AF=AE=10,∴FD=AD﹣AF=a﹣10.故答案为:a﹣10.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了列代数式、平行线的性质和角平分线的定义.三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分)(1)计算:;(2)计算:.【分析】(1)先算乘方、化简二次根式,再化简绝对值算除法,最后加减;(2)先算分式乘法,再算加法.【解答】解:(1)=16﹣10+2+3﹣=9+;(2)=•+=+==1.【点评】本题考查了实数的混合运算及分式的混合运算,掌握实数的运算法则和绝对值的意义及分式的运算法则是解决本题的关键.17.(8分)甲、乙两个水池注满水,蓄水量均为36m3.工作期间需同时排水,乙池的排水速度是8m3/h.若排水3h,则甲池剩余水量是乙池剩余水量的2倍.(1)求甲池的排水速度.(2)工作期间,如果这两个水池剩余水量的和不少于24m3,那么最多可以排水几小时?【分析】(1)设甲池的排水速度是x m3/h,根据“36﹣3×甲池的排水速度=2×(36﹣3×乙池的排水速度)”列方程并求解即可;(2)设排水t小时,根据“t小时后这两个水池剩余水量的和≥24”列关于t的一元一次不等式并求解即可.【解答】解:(1)设甲池的排水速度是x m3/h.根据题意,得36﹣3x=2(36﹣3×8),解得x=4,∴甲池的排水速度是4m3/h.(2)设排水t小时.根据题意,得36×2﹣(4+8)t≥24,解得t≤4,∴最多可以排水4小时.【点评】本题考查一元一次方程和一元一次不等式的应用,根据题意列一元一次方程和一元一次不等式并求解是解题的关键.18.(8分)某校为了解七年级学生对消防安全知识掌握的情况,随机抽取该校七年级部分学生进行测试,并对测试成绩进行收集、整理、描述和分析(测试满分为100分,学生测试成绩x均为不小于60的整数,分为四个等级:D:60≤x<70,C:70≤x<80,B:80≤x<90,A:90≤x≤100),部分信息如下:信息一:信息二:学生成绩在B等级的数据(单位:分)如下:80,81,82,83,84,84,84,86,86,86,88,89.请根据以上信息,解答下列问题;(1)求所抽取的学生成绩为C等级的人数;(2)求所抽取的学生成绩的中位数;(3)该校七年级共有360名学生,若全年级学生都参加本次测试,请估计成绩为A等级的人数.【分析】(1)用B等级组人数除以40%可得样本容量,再用样本容量减去其它三个等级的人数可得C 等级的人数;(2)根据中位数的定义解答即可;(3)用360乘样本中成绩为A等级的人数所占比例即可.【解答】解:(1)样本容量为:12÷40%=30,30﹣1﹣12﹣10=7(人),即所抽取的学生成绩为C等级的人数为7人;(2)所抽取的学生成绩为C等级的人数为=85;(3)360×=120(人),答:该校七年级估计成绩为A等级的人数大约为120人.【点评】本题考查中位数以及用样本估计总体,解题的关键是熟练掌握基本知识,属于中考常考题型.19.(8分)某商场出售一种商品,经市场调查发现,日销售量y(件)与每件售价x(元)之间满足一次函数关系,部分数据如表所示:每件售价x/元…455565…日销售量y/件…554535…(1)求y与x之间的函数关系式(不要求写出自变量x的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价;如果不能,说明理由.【分析】(1)依据题意,设一次函数的关系式为y=kx+b,又结合表格数据图象过(45,55),(55,45),可得,求出k,b即可得解;(2)依据题意,销售额=x(﹣x+100)=﹣x2+100x,又销售额是2600元,从而可得x2﹣100x+2600=0,又Δ=(﹣100)2﹣4×2600=﹣400<0,进而可以判断得解.【解答】解:(1)由题意,设一次函数的关系式为y=kx+b,又结合表格数据图象过(45,55),(55,45),∴.∴.∴所求函数关系式为y=﹣x+100.(2)由题意,销售额=x(﹣x+100)=﹣x2+100x,又销售额是2600元,∴2600=﹣x2+100x.∴x2﹣100x+2600=0.∴Δ=(﹣100)2﹣4×2600=10000﹣10400=﹣400<0.∴方程没有解,故该商品日销售额不能达到2600元.【点评】本题主要一元二次方程的应用、一次函数的应用,解题时要熟练掌握并能灵活运用是关键.20.(8分)如图1,在水平地面上,一辆小车用一根绕过定滑轮的绳子将物体竖直向上提起.起始位置示意图如图2,此时测得点A到BC所在直线的距离AC=3m,∠CAB=60°,停止位置示意图如图3,此时测得∠CDB=37°(点C,A,D在同一直线上,且直线CD与地面平行),图3中所有点在同一平面内.定滑轮半径忽略不计,运动过程中绳子总长不变.(1)求AB的长;(2)求物体上升的高度CE(结果精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈ 1.73)【分析】(1)在Rt△ABC中,由∠CAB的度数求出∠ABC=30°,利用30°角所对的直角边等于斜边的一半求出AB的长即可;(2)EC的长即为BD﹣BA的长,求出BD,在Rt△BCD中,利用锐角三角函数定义求出BD的长,由(1)得到AB的长,上升高度CE即为AB变为BD的长,即CE=BD﹣BA,求出即可.【解答】解:(1)如图2,在Rt△ABC中,AC=3m,∠CAB=60°,∴∠ABC=30°,∴AB=2AC=6m,则AB的长为6m;(2)在Rt△ABC中,AB=6m,AC=3m,根据勾股定理得:BC===3m,在Rt△BCD中,∠CDB=37°,sin37°≈0.60,≈1.73,∴sin∠CDB=,即≈0.60,∴BD≈8.65m,∴CE=BD﹣BA=8.65﹣6=2.65≈2.7(m),则物体上升的高度CE约为2.7m.【点评】此题考查了解直角三角形的应用,锐角三角函数定义,勾股定理,熟练掌握各自的性质是解本题的关键.21.(8分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,点D在上,,点E在BA的延长线上,∠CEA=∠CAD.(1)如图1,求证:CE是⊙O的切线;(2)如图2,若∠CEA=2∠DAB,OA=8,求的长.【分析】(1)连接OC,根据三角形外角的性质证得∠DAB=∠ACE,根据同弧所对的圆周角相等得出∠ABC=∠DAB,根据直径所对的圆周角是直角得出∠ACB=90°,即可得出∠ABC+∠OAC=90°,再证∠OAC=∠OCA,即可得出∠ACE+∠OCA=90°,于是问题得证;(2)连接OD,设∠DAB=x,则∠CEA=∠CAD=2x,根据同弧所对的圆周角相等得出∠ABC=∠DAB =x,根据直径所对的圆周角是直角得出∠ACB=90°,即可得出x+2x+x=90°,从而求出x的值,最后根据弧长公式即可得解.【解答】(1)证明:如图1,连接OC,∵∠CAO是△ACE的一个外角,∴∠CAO=∠CEA+∠ACE,即∠CAD+∠DAB=∠CEA+∠ACE,∵∠CEA=∠CAD.∴∠DAB=∠ACE,∵,∴∠ABC=∠DAB,∴∠ABC=∠ACE,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ABC+∠OCA=90°,∴∠ACE+∠OCA=90°,即∠OCE=90°,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)解:如图2,连接OD,设∠DAB=x,∵∠CEA=2∠DAB,∴∠CEA=2x,∵∠CEA=∠CAD,∴∠CAD=2x,∵,∴∠ABC=∠DAB=x,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∴x+2x+x=90°,∴x=22.5°,即∠DAB=22.5°,∴∠BOD=2∠DAB=45°,∵OA=8,∴的长为=2π.【点评】本题考查了切线的判定与性质,圆周角定理及推论,弧长公式,熟练掌握这些知识点是解题的关键.22.(12分)如图,在△ABC中,∠ABC=90°,∠ACB=α(0°<α<45°).将线段CA绕点C顺时针旋转90°得到线段CD,过点D作DE⊥BC,垂足为E.(1)如图1,求证:△ABC≌△CED.(2)如图2,∠ACD的平分线与AB的延长线相交于点F,连接DF,DF的延长线与CB的延长线相交于点P,猜想PC与PD的数量关系,并加以证明.(3)如图3,在(2)的条件下,将△BFP沿AF折叠,在α变化过程中,当点P落在点E的位置时,连接EF.①求证:点F是PD的中点;②若CD=20,求△CEF的面积.【分析】(1)可证得∠D+∠DCE=90°,∠DCE+∠ACB=90°,从而∠ACB=∠D,进而证得△ABC ≌△CED;(2)可证得△ACF≌△DCF,从而∠A=∠PDC,进而证得∠PDC=∠DCE,从而得出PC=PD;(3)①由折叠得PF=EF,∠P=∠PEF,可证得∠PEF+∠DEF=90°,∠P+∠PDE=90°,从而∠PDE=∠DEF,从而得出EF=DF,进而得出PF=DF;②设CE=a,BC=DE=b,从而BE=BC﹣CE=b﹣a,可证得△PBF∽△PED,=,在Rt△∴,从而得出PE=2BE=2(b﹣a),BF=DE=,从而S△CEFPED中,根据勾股定理得出∠PED=90°,b2+[2(b﹣a)]2=(2b﹣a)2,从而得出b=3a,由∠DEC =90°得出a2+b2=202,从而得出a2+(3a)2=400,进一步得出结果.【解答】(1)证明:∵DE⊥BC,∴∠DEC=90°,∴∠D+∠DCE=90°,∵∠ABC=90°,∴∠ABC=∠DEC,∵线段CA绕点C顺时针旋转90°得到线段CD,∴∠ACD=90°,AC=CD,∴∠DCE+∠ACB=90°,∴∠ACB=∠D,∴△ABC≌△CED(AAS);(2)PC=PD,理由如下:∵CF是∠ACD的平分线,∴∠ACF=∠DCF,由(1)知,AC=CD,△ABC≌△CED,∴∠A=∠DCE,∵CF=CF,∴△ACF≌△DCF(SAS),∴∠A=∠PDC,∴∠PDC=∠DCE,∴PC=PD;(3)①∵△BFP沿AF折叠,点P落在点E,∴PF=EF,∠P=∠PEF,∵DE⊥BC,∴∠PED=90°,∴∠PEF+∠DEF=90°,∠P+∠PDE=90°,∴∠PEF+∠PDE=90°,∴∠PDE=∠DEF,∴EF=DF,∴PF=DF,∴点F是PD的中点;②解:设CE=a,BC=DE=b,∴BE=BC﹣CE=b﹣a,由①知,点F是PD的中点,∴PF=PD,∵∠ABC=∠PED=90°,∴BF∥DE,∴△PBF∽△PED,∴,∴PE=2BE=2(b﹣a),BF=DE=b,==,∴S△CEF∵∠PED=90°,DE=b,PE=2(b﹣a),PD=PC=PE+CE=2(b﹣a)+a=2b﹣a,∴b2+[2(b﹣a)]2=(2b﹣a)2,化简得,3a2﹣4ab+b2=0,∴b=a或b=3a,∵0°<α<45°,∴a=b舍去,∴b=3a,==,∴S△CEF∵∠DEC=90°,∴a2+b2=202,∴a2+(3a)2=400,∴a2=40,=,∴S△CEF∴△CEF的面积是30.【点评】本题考查了等腰三角形的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,解决问题的关键是熟练掌握有关基础知识.23.(13分)已知y1是自变量x的函数,当y2=xy1时,称函数y2为函数y1的“升幂函数”.在平面直角坐标系中,对于函数y1图象上任意一点A(m,n),称点B(m,mn)为点A“关于y1的升幂点”,点B在函数y1的“升幂函数”y2的图象上.例如:函数y1=2x,当时,则函数是函数y1=2x的“升幂函数”.在平面直角坐标系中,函数y1=2x的图象上任意一点A(m,2m),点B(m,2m2)为点A“关于y1的升幂点”,点B在函数y1=2x的“升幂函数”的图象上.(1)求函数的“升幂函数”y2的函数表达式.(2)如图1,点A在函数的图象上,点A“关于y1的升幂点”B在点A上方,当AB =2时,求点A的坐标.(3)点A在函数y1=﹣x+4的图象上,点A“关于y1的升幂点”为点B,设点A的横坐标为m.①若点B与点A重合,求m的值;②若点B在点A的上方,过点B作x轴的平行线,与函数y1的“升幂函数”y2的图象相交于点C,以AB,BC为邻边构造矩形ABCD,设矩形ABCD的周长为y,求y关于m的函数表达式;③在②的条件下,当直线y=t1与函数y的图象的交点有3个时,从左到右依次记为E,F,G,当直线y=t2与函数y的图象的交点有2个时,从左到右依次记为M,N,若EF=MN,请直接写出t2﹣t1的值.【分析】(1)根据题意直接列出式子即可;(2)根据条件得出y2=3,再根据AB=2建立方程即可;(3)①将A、B坐标用含有m的式子表示出,再根据AB重合时,横纵坐标相等建立关于m的方程,进而求解即可;②根据题意画出图形,再将线段用m表示出来,需要注意的是分类讨论;③第一种情况:如果EF和MN平行且相等,那这两条平行线间得距离等于两个顶点之间的竖直高度,或者等于P、Q两点间的竖直高度,分别令m=2和4得解,第二种情况:点M是抛物线y=﹣2m2+6m 的顶点,由M坐标推出N坐标,进而求出MN的长度,再通过MN=EF得出F的坐标,即可求解.【解答】(1),图象如图2所示.(2)如图3,∵,设,B(m,3).因为点B在点A的上方,当AB=2时,解得m=3.所以A(3,1).(3)①因为,所以A(m,﹣m+4),B(m,﹣m2+4m).如果点B与点A重合,那么﹣m+4=﹣m2+4m.整理,得m2﹣5m+4=0.解得m=1,或m=4.②由①可知,直线y=﹣x+4与抛物线y=﹣x2+4x有两个交点(1,3)和(4,0),如图4所示,函数的图象是开口向下的抛物线,对称轴是直线x=2.因为BC∥x轴,所以B、C两点关于直线x=2对称.如图4,当点B在点C右侧时,2<m<4,BC=2(m﹣2)=2m﹣4,如图5,当点B在点C左侧时,1<m<2,BC=2(2﹣m)=4﹣2m,由点B在点A的上方,得BA=(﹣m2+4m)﹣(﹣m+4)=﹣m2+5m﹣4,当2<m<4时,y=2[(2m﹣4)+(﹣m2+5m﹣4)]=﹣2m2+14m﹣16,当1<m<2时,y=2[(4﹣2m)+(﹣m2+5m﹣4)]=﹣2m2+6m.综上,y=2m2+14m﹣16或=﹣2m2+6m.③情形一:如图7,如果EF和MN平行且相等,那这两条平行线间得距离等于两个顶点之间的竖直高度,或者等于P、Q两点间的竖直高度.当m=2时,y=﹣2m2+6m=4,所以P(2,4).当m=4时,y=﹣2m2+14m﹣16=8,所以Q(4,8).所以t2﹣t1=8﹣4=4.情形2,如图7(局部,变形处理),点M是抛物线y=﹣2m2+6m的顶点.由,得,所以,第21页(共21页)所以点F 的横坐标,于是可得,所以.综上,t 2﹣t 1=4或3﹣2.。

辽宁丹东中考数学试题解析版

辽宁丹东中考数学试题解析版

辽宁省丹东市2011年中考数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的。

每小题3分,共24分)1、(2011?丹东)用科学记数法表示310000,结果正确的是( )A 、×104B 、×105C 、31×104D 、×106考点:科学记数法—表示较大的数。

专题:计算题。

分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.解答:解:用科学记数法表示数310 000为×105.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2、(2011?丹东)在一个不透明的口袋中装有10个除颜色外均相同的小球,其中5个红球,3个黑球,2个白球,从中任意摸出一球是红球的概率是( )A 、15B 、12C 、110D 、35 考点:概率公式。

专题:计算题。

分析:先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.解答:解:在一个不透明的口袋中装有10个除颜色外均相同的小球,其中5个红球,从中任意摸出一球是红球的概率是510=12. 故选B .点评:本题考查的是随机事件概率的求法.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn . 3、(2011?丹东)某一时刻,身髙的小明在阳光下的影长是,同一时刻同一地点测得某旗杆的影长是5m ,则该旗杆的高度是( )A 、B 、10mC 、20mD 、8m考点:相似三角形的应用。

专题:计算题。

分析:设该旗杆的高度为xm ,根据三角形相似的性质得到同一时刻同一地点物体的高度与其影长的比相等,即有:=x :5,然后解方程即可.解答:解:设该旗杆的高度为xm ,根据题意得,:=x :5,解得x=20(m ).即该旗杆的高度是20m .故选C .点评:本题考查了三角形相似的性质:相似三角形对应边的比相等.4、(2011?丹东)将多项式x 3﹣xy 2分解因式,结果正确的是( )A 、x (x 2﹣y 2)B 、x (x ﹣y )2C 、x (x+y )2D 、x (x+y )(x ﹣y )考点:提公因式法与公式法的综合运用。

辽宁省丹东市中考数学试卷(解析版)

辽宁省丹东市中考数学试卷(解析版)

辽宁省丹东市中考数学试卷(解析版)辽宁省丹东市中考数学试卷(解析版)第一部分:选择题(共40小题,每小题2分,满分80分)1. 某商品原价为300元,现以原价的3折出售,则现价为多少元?2. 若正数a、b的比为5:6,且a的倒数与b的倒数的和等于31/30,则a+b的和为多少?3. 若正方体每个面积减小60%,则新的表面积是原表面积的几分之几?4. 将一块积木按正六面体剖开,并去掉与底部平行的一层,华华剩下的是矩形,若正方形的边长是5 cm,则剩下的矩形的长和宽的比例是多少?5. 由4个2和2个6组成一个六位数,使得这个数能被8整除,且剩余2个数字的和最小,那么这个数是多少?6. 将一个边长为10 cm的正方体截去一个边长为4 cm的正方体,剩下的是一个几何图形,它的体积是多少?7. 甲乙两地相距200 km,两车同时从甲地、乙地出发,乙地有一辆车在甲车出发1小时后向甲地出发,并以时速80 km/h行驶,两车相遇在距离甲地40 km的地方,则甲车的时速是多少?8. 已知若正方形的面积增大24%,则边长增长的百分数为6%,则这个正方形的边长是多少?9. 若2x+5>1+x,则x的取值范围是?10. 若甲地海拔高度为1000 m,乙地比甲地低的高度是甲地海拔的2/5,且甲地与乙地的相对高度差为200 m,则乙地的相对海拔高度是多少?11. 2019年1月1日是星期二,那么2020年1月1日是星期几?12. 设两个相交的圆$O_1, O_2$半径分别为r, 2r,且相交弧AB为$O_1$的1/3,则弧AB所对的圆心角的度数是?13. 若把一个平面图形的面积扩大为原面积的9倍,则原边长为5 cm的图形扩大后的边长是多少?14. 一年有365天,若将365写成x,其中x代表某个数,则这个数字x是多少?15. 在矩形中,长的边长是宽的3倍,若周长是36 cm,则这个矩形的面积是多少?16. 若若方程3(x-a)=7-2(x-a)在x=a成立,那么a的值是多少?17. 一个长方体的长宽高依次增大为原来的2倍、3倍、4倍,它的体积变为原来的多少倍?18. 一个价格为1200元的商品,先涨价25%,后又降价25%,这个商品现在的价格是多少元?19. 若a:b=3:4,b:c=8:9,a+c=24,则b的值是多少?20. 已知函数y=2x-1,那么当x=3时,y的值是多少?第二部分:解答题(共20小题,共120分)21. 设AB为平行四边形ABCD的一条对角线,AB=6 cm,BC=8 cm,当为 $ \angle ABC $ 求 $ \angle ABC $ 的正弦值。

辽宁省丹东市中考数学试卷及答案

辽宁省丹东市中考数学试卷及答案

辽宁省丹东市中考数学试卷及答案(满分150分,考题时间120分钟)一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1. (11·丹东)用科学记数法表示310000,结果正确的是 ( ) A. 3.1×104 B. 3.1×105 C. 31×104 D. 0. 31×106【答案】B2. (11·丹东)在一个不透明的口袋中装有10个除了颜色外均相同的小球,其中5个红球,3个黑球,2个白球,从中任意摸出一球是红球的概率是 ( ) A.15 B. 12 C. 110 D. 35【答案】B3. (11·丹东)某一时刻,身高1.6m 的小明在阳光下的影长是0.4m.同一时刻同一地点,测得某旗杆的影长是5m ,则该旗杆的高度是 ( )A. 1.25mB. 10mC. 20mD. 8m 【答案】C4. (11·丹东)将多项式32x xy -分解因式,结果正确的是 ( ) A. 22()x x y - B. 2()x x y - C. 2()x x y + D.()()x x y x y +-【答案】D5. (11·丹东)一个正方体的每一个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“城字”相对的字是 ( )创联城四东丹A. 丹B. 东C. 创D.联 【答案】C6. (11·丹东)反比例函数ky x=的图像如图所示,则一次函数y kx k =+的图像大致是( )OyyOOyyOOyA B C D【答案】D7. (11·丹东)如果一组数据12,,,n x x x 的方差是3,则另一组数据125,5,,5n x x x +++的方差是 ( )A. 3B. 8C. 9D. 1 【答案】B8. (11·丹东)如图,在Rt △ABC 中,∠C=90°, BE 平分∠ABC ,ED 垂直平分AB 于D ,若AC=9,则AE 的值是 ( )EDCBAA. 63B. 43C. 6D. 4 【答案】C二、填空题(每小题3分,共24分) 9. (11·丹东)函数12y x =-的自变量x 的取值范围是______________. 【答案】2x ≠10. (11·丹东)不等式组21024x x +>⎧⎨≤⎩的整数解是 _______________.【答案】0,1或211. (11·丹东)已知:如图,四边形ABCD 是平行四边形,则图中相似的三角形有________对.FEDCBA【答案】3 12. (11·丹东)按一定规律排列的一列数,依次为1,4,7,….则第n 个数是_________. 【答案】32n -13. (11·丹东)一组数据:12,13,15,14,16,18,19,14.则这组数据的极差是____________. 【答案】7 14. (11·丹东)如图,将半径为3cm 的圆形纸片剪掉三分之一,余下部分围成一个圆锥的侧面,则这个圆锥的高是_____________.15. (11·丹东)已知:线段AB=3.5cm ,⊙A 和⊙B 的半径分别是1.5cm 和4cm ,则⊙A 和⊙B 的位置关系是____________. 【答案】相交 16. (11·丹东)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,那么:DPQ ABC S S ∆∆=______________.Q PECDBA【答案】1:16三、解答题(每小题8分,共16分)17. (11·丹东)(本题8分)计算:20|2|4sin 458-+-【答案】解:原式214122=+⨯-114=+ 54=18. (11·丹东)(本题8分)每个小方格是边长为1个单位长度的小正方形,梯形ABCD 在平面直角坐标系中的位置如图所示.(1)在平面直角坐标系中画出梯形ABCD 关于直线AD 的轴对称图形AB 1C 1D ;(2)点P 是y 轴上一个动点,请直接写出所有满足△POC 是等腰三角形的动点P 的坐标.xx 【答案】(1)如上图所示.(2)(0,6)、(0,-5)、(0,5)、(0,258)四、(每小题10分,共20分)19. (11·丹东)(本题10分)某学校为了解学生每周在饮料方面的花费情况进行了抽样调查,调查结果制成了条形统计图和扇形统计图.请你结合图中信息完成下列问题:(1)补全条形图.(2)本次抽样调查了多少名学生?(3)请求出抽样调查的数据的平均数,并直接写出中位数和人数.(4)扇形统计图中,花费20元的人数所在扇形圆心角度数是多少度?学生每周饮料花费条形统计图人数花费(元)51015202530510152025学生每周饮料花费扇形统计图72︒36︒54︒15元的人数20元的人数25元的人数5元的人数10元的人数o【答案】(1)如图所示学生每周饮料花费条形统计图人数花费(元)51015202530510152025o(2)100人 (3)14,15,20 (4)108°20. (11·丹东)(本题10分)数学课堂上,为了学习构成任意三角形三边需要满足的条件.甲组准备3根本条,长度分别是3cm 、8cm 、13cm ;乙组准备3根本条,长度分别是4cm 、6cm 、12cm.老师先从甲组再从乙组分别随机抽出一根本条,放在一起组成一组. (1)用画树状图法(或列表法)解析,并列出各组可能.(画树状图或列表及列出可能时不用写单位)(2)现在老师也有一根本条,长度为5cm ,与(1)中各组本条组成三角形的概率是多少? 【答案】(1)或(13,12)(8,12)(13,6)(8,6)(13,4)(8,4)(3,12)(3,6)(3,4)46121383乙甲1264461212641383开始所有可能为:(3,4)、(3,6)、(3,13)、(8,4)、(8,6)、(8,13)、 (13,4)、(13,6)、(13,12) (2)23五、(每小题10分,共20分)21. (11·丹东)(本题10分)数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD =2cm.经测量,得到其它数据如图所示.其中30CAH ∠=,60DBH ∠=,AB=10cm.请你根据以上数据计算GH 的长.1.73≈,要求结果精确到0.1m )B AEB A【答案】解:如上图所示,过D 点作DE ⊥AH 于点E ,设DE x = 则2CE x =+ 在Rt AEC Rt BED ∆∆和中,有tan 30,tan 60CE DEAE BE==∴2),AE x BE x=+=2)10x x+= ∴3x =∴2317.7GH CD DE m =+=+=≈22. (11·丹东)(本题10分)已知:如图,在Rt ABC ∆中,90ACB ∠=,以AC 为直径作⊙O 交AB 于点D. (1)若3tan ,64ABC AC ∠==,求线段BD 的长. (2)若点E 为线段BC 的中点,连接DE. 求证:DE 是⊙O 的切线.ECDBAOECDBAO【答案】(1)连结CD ,∵AC 为直径,∴90ADC ∠= ∵3tan ,64ABC AC ∠== ∴ BC =8 AB=10 ∴6824105CD ⨯==在Rt BCD ∆中,24,85CD BC == ∴325BD = (1)连结DO ,EO. ∵点E 为线段BC 的中点,∴EO 是ABC ∆的中位线.∴EO ⊥CD ∴ EO 是CD 的垂直平分线 ∴ EC=ED在Rt CEO Rt DEO ∆∆和中, ∵ CE DE CO DO EO EO =⎧⎪=⎨⎪=⎩∴CEO DEO ∆≅∆∴ 90EDO ECO ∠=∠= ∴ DE 是⊙O 的切线.六、(每小题10分,共10分) 23. (11·丹东)(本题10分)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕.两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?【答案】(1)设第一次购进x 件文具,则第二次购进2x 件.依题意有 1000(2.5)22500x x+•= 解得 100x = 经检验知100x =是原方程的解,所以 2200x =即则第二次购进200件.(2)由(1)知第一次购进文具的进价为 1000÷100=10元,第一次购进文具的进价为 10+2.5=12.5元 ∴ 文具店老板在这两笔生意中共盈利: (15-10)×100+(15-12.5)×200=1000元24. (11·丹东)(本题10分)某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费用1y 与包装盒数x 满足如图1所示的函数关系.方案二:租赁机器自己加工,所需费用2y (包括租赁机器的费用和生产包装盒的费用)与包装盒x 满足如图2所示的函数关系. 根据图像回答下列问题:(1)方案一中每个包装盒的价格是多少元?(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元? (3)请分别求出12,y y 与x 的函数关系式.(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由.x y O (盒)(元)y 22000030000图2100004000图1y 1(元)(盒)100500Oy x【答案】(1)500÷100=5(元)(2)20000元 、(30000-20000)÷4000=2.5元 (3)125, 2.520000y x y x ==+(3)当12y y = 则8000x = 即当购买包装盒的数量为8000盒时,方案一与方案二所需费用一样.当12y y > 则8000x > 即当购买包装盒的数量大于8000盒时,方案二更省钱.当12y y < 则8000x < 即当购买包装盒的数量小于8000盒时,方案一更省钱.七、(本题12分)25. (11·丹东)(本题12分)已知:正方形ABCD. (1)如图1,点E 、点F 分别在边A B 和AD 上,且AE=AF.此时,线段BE 、DF 的数量关系和位置关系分别是什么?请直接写出结论.(2)如图2,等腰直角三角形FAE 绕直角顶点A 顺时针旋转α∠,当090α<<时,连接BE 、DF ,此时(1)中结论是否成立,如果成立,请证明;如果不成立,请说明理由. (3)如图3,等腰直角三角形FAE 绕直角顶点A 顺时针旋转α∠,当90α=时,连接BE 、DF ,猜想当AE 与AD 满足什么数量关系时,直线DF 垂直平分BE.请直接写出结论. (4)如图4,等腰直角三角形FAE 绕直角顶点A 顺时针旋转α∠,当90180α<<时,连接BD 、DE 、EF 、FB 得到四边形BDEF ,则顺次连接四边形BDEF 各边中点所组成的四边形是什么特殊四边形?请直接写出结论.图3图4F EDCBAFEDCBAABCDEF图2图1FE DCBA【答案】(1)BE=DF 且BE ⊥DF (2)成立 HAB CDEFG证明:延长DF 交AB 于点H ,交BE 于点G. 在Rt DAF Rt BAE ∆∆和中, ∵DA BAAF AE=⎧⎨=⎩ ∴()Rt DAF Rt BAE HL ∆≅∆∴ ,DF BE ADF ABE =∠=∠ 又∵AHD BHG ∠=∠ ∴90DAH BGH ∠=∠=∴ BE=DF 且BE ⊥DF 仍成立(3)(21)AE AD =- (4)菱形 八、(本题14分)26. (11·丹东)(本题14分)已知:二次函数26(0)y ax bx a =++≠与x 轴交于A ,B 两点(点A 在点B 的左侧),点A 、点B 的横坐标是一元二次方程24120x x --=的两个根.(1)请直接写出点A 、点B 的坐标.(2)请求出该二次函数表达式及对称轴和顶点坐标.(3)如图1,在二次函数对称轴上是否存在点P ,使APC ∆的周长最小,若存在,请求出点P 的坐标;若不存在,请说明理由.(4)如图2,连接AC 、BC ,点Q 是线段OB 上一个动点(点Q 不与点O 、B 重合). 过点Q 作QD ∥AC 交于BC 点D ,设Q 点坐标(m ,0),当CDQ ∆面积S 最大时,求m 的值.DQ图2图1xyOABCC BAOyx【答案】(1)A (-2,0)、B (6,0)(2)将A (-2,0)、B (6,0)代入26y ax bx =++ 则426036660a b a b -+=⎧⎨++=⎩∴122a b ⎧=-⎪⎨⎪=⎩ 则21262y x x =-++ ∴对称轴为直线2x = 顶点为(2,8)P x=2CB A O yx(3)∵A 、B 两点关于对称轴 2x =对称,连结BC 交对称轴 2x =于点P ,则点P 即为所求. ∵B (6,0)、C (0,6) 所以过BC 两点的直线为:6y x =-+将2x =代入,则4y = ∴ P (2,4)(4)∵Q (m ,0) 0<m<6 ∴ AQ=2+m BQ=6-m116(2)3(2)22ACQ S OC AQ m m ∆∴=•=⨯⨯+=+ 11682422ABC S OC AB ∆=•=⨯⨯= QD ∥AC, BDQ ∴∆∽ABC ∆ 26()8BDQABC S m S ∆∆-∴= 2624()8BDQ m S ∆-∴=⨯ 226339243(2)24()(06)8822CDQ m S m m m m ∆-∴=-+-⨯=-++<< ∴当32232()8m =-=⨯-时,CDQ S ∆的面积最大. 即 m=2。

辽宁省丹东市2020年中考数学试题(解析版)

辽宁省丹东市2020年中考数学试题(解析版)

2020年丹东市初中毕业升学考试数学试卷一、选择题1.-5的绝对值等于( )A. -5B. 5C. 15-D. 15 【答案】B【解析】【分析】根据绝对值的概念即可得出答案.【详解】解:因为-5的绝对值等于5,所以B 正确;故选:B .【点睛】本题考查绝对值的算法,正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值为0.2.下面计算正确的是( )A. 3332a a a ⋅=B. 22423a a a +=C. 933a a a ÷=D. ()326327a a -=- 【答案】D【解析】【分析】根据整式的计算法则依次计算即可得出正确选项.【详解】解:A. 336a a a ⋅=,所以A 错误;B.22223a a a +=,所以B 错误;C.936a a a ÷=,所以C 错误;D.()326327a a -=-,所以D 正确;故答案选:D.【点睛】本题考查整式乘除法的简单计算,注意区分同底数幂相乘,底数不变,指数相加,而幂的乘方是底数不变,指数相乘,这两个要区分清楚;合并同类项的时候字母部分不变,系数进行计算.3.如图所示,该几何体的俯视图为( )A.B. C. D. 【答案】C【解析】【分析】 根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一些等宽的矩形,其中有两条宽是虚线,故选:C .【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.4.在函数93y x =-x 的取值范围是( ) A. 3x ≤B. 3x <C. 3x ≥D. 3x > 【答案】A【解析】【分析】 根据二次根式有意义,列不等式9-3x ≥0,求出x 的取值范围即可.【详解】解:根据二次根式有意义,所以,9-3x ≥0,解得,x ≤3.故选:A .【点睛】本题主要考查函数自变量的取值范围的知识点,二次根式中的被开方数必须是非负数,否则二次根式无意义.5.四张背面完全相同的卡片,正面分别印有等腰三角形、圆、平行四边形、正六边形,现在把它们的正面向下,随机的摆放在桌面上,从中任意抽出一张,则抽到的卡片正面是中心对称图形的概率是( ) A. 14 B. 12 C. 34 D. 1【答案】C【解析】【分析】由四张质地、大小、背面完全相同的卡片上,正面分别画有等腰三角形、圆、平行四边形、正六边形四个图案.中心对称图形的是圆、平行四边形,正六边形,直接利用概率公式求解即可求得答案.【详解】解:∵四张质地、大小、背面完全相同的卡片上,正面分别画有等腰三角形、圆、平行四边形、正六边形四个图案.中心对称图形的是圆、平行四边形,正六边形, ∴从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为:34. 故选:C .【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比. 6.如图,CO 是ABC 的角平分线,过点B 作//BD AC 交CO 延长线于点D ,若45A ∠=︒,80AOD ∠=︒,则CBD ∠的度数为( )A. 100°B. 110°C. 125°D. 135°【答案】B【解析】【分析】 先根据三角形的外角性质可求出35OCA ∠=︒,再根据角平分线的定义、平行线的性质可得35,35D BCD ∠=︒∠=︒,然后根据三角形的内角和定理即可得.【详解】45A ∠=︒,80AOD ∠=︒35AO O A D C A ∠-∠∴∠==︒CO 是ABC 的角平分线35BCD OCA ∠∴∠==︒//BD AC35D OCA ∠∴∠==︒则在BCD 中,180110CBD D BCD ∠=︒-∠-∠=︒故选:B .【点睛】本题考查了三角形的外角性质、角平分线的定义、平行线的性质、三角形的内角和定理,熟练运用各定理与性质是解题关键.7.如图,在四边形ABCD 中,//AB CD ,AB CD =,60B ∠=︒,83AD =,分别以B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点P 和Q ,直线PQ 与BA 延长线交于点E ,连接CE ,则BCE ∆的内切圆半径是( )A. 4B. 43C. 2D. 23【答案】A【解析】【分析】 分别以B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点P 和Q ,连接P ,Q 则PQ 为BC 的垂直平分线,可得EB=EC ,又∠B=60°,所以△EBC 为等边三角形,作等边三角形EBC 的内切圆,设圆心为M ,则M 在直线PQ 上,连接BM ,过M 作BC 垂线垂足为H ,在Rt △BMH 中,BH=12BC=12AD=43∠MBH=12∠B=30°,通过解直角三角形可得出MH 的值即为△BCE 的内切圆半径的长. 【详解】解:有题意得PQ 为BC 的垂直平分线,∴EB=EC ,∵∠B=60°,∴△EBC 为等边三角形,作等边三角形EBC 的内切圆,设圆心为M ,∴M 在直线PQ 上,连接BM ,过M 作MH 垂直BC 于H ,垂足为H ,∵83AD = ∴BH=12BC=12AD=43 , ∵∠MBH=12∠B=30°, ∴Rt △BMH 中,MH=BH×tan30°=43×33=4. ∴BCE ∆的内切圆半径是4.故选:A .【点睛】本题考查了线段垂直平分线定理,等边三角形的判定,等边三角形内切圆半径的求法,解直角三角形,解题关键在于理解题意,运用正确的方法求三角形内切圆半径.8.如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,点A 坐标为(1,0)-,点C 在(0,2)与(0,3)之间(不包括这两点),抛物线的顶点为D ,对称轴为直线2x =,有以下结论:①0abc >;②若点11,2M y ⎛⎫- ⎪⎝⎭,点27,2N y ⎛⎫ ⎪⎝⎭是函数图象上的两点,则12y y <;③3255a -<<-;④ADB ∆可以是等腰直角三形.其中正确的有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】根据二次函数的图象与系数的关系即可求出答案.【详解】解:①由开口可知:a <0,∴对称轴x=−2b a >0, ∴b >0,由抛物线与y 轴的交点可知:c >0,∴abc <0,故①错误; ②由于12-<2<72,且(12-,y 1)关于直线x=2的对称点的坐标为(92,y 1), ∵72<92, ∴y 1<y 2,故②正确,③∵−2b a=2, ∴b=-4a ,∵x=-1,y=0,∴a-b+c=0,∴c=-5a ,∵2<c <3,∴2<-5a <3, ∴3255a -<<-,故③正确 ④根据抛物线的对称性可知,AB=6, ∴132AB =, 假定抛物线经过(0,2),(-1,0),(5,0), 设抛物线的解析式为y=a(x+1)(x-5),则a=-25, ∴y=-25(x-2)2+185 ∵185>3 ∴ADB ∆不可以是等腰直角三形.故④错误.所以正确的是②③,共2个.【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型.二、填空题9.据有关报道,2020年某市斥资约5 800 000元改造老旧小区,数据5 800 000科学记数法表示为_________.【答案】5.8×106.【解析】【分析】绝对值较大的数利用科学记数法表示,一般形式为a ×10n ,指数n=原数位数-1,且1≤a <10.【详解】解:5800 000=5.8×106,故答案为:5.8×106.【点睛】此题主要考查了科学记数法-表示较大的数,关键是掌握把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,n 是正整数.10.因式分解:34mn mn -=_________.【答案】(2)(2)mn n n +-【解析】【分析】先提公因式,然后利用平方差公式进行因式分解,即可得到答案.【详解】解:324(4)(2)(2)mn mn mn n mn n n -=-=+-;故答案为:(2)(2)mn n n +-.【点睛】本题考查了因式分解,解题的关键是掌握因式分解的方法.11.一次函数2y x b =-+,且0b >,则它的图象不经过第_________象限.【答案】三【解析】【分析】根据一次函数的性质,即可得到答案.【详解】解:在一次函数2y x b =-+中,∵20-<,0b >,∴它图象经过第一、二、四象限,不经过第三象限;【点睛】本题考查了一次函数的性质,熟练掌握k 0<,0b >,经过第一、二、四象限是解题的关键. 12.甲、乙两人进行飞镖比赛,每人投5次,所得平均环数相等,其中甲所得环数的方差为5,乙所得环数如下:2,3,5,7,8,那么成绩较稳定的是_________(填“甲”或“乙”).【答案】甲【解析】【分析】求出乙所得环数的方差,然后和甲所得环数的方差进行比较即可.【详解】解:∵乙所得环数为:2,3,5,7,8, ∴乙所得环数的平均数为2357855++++=, ∴乙所得环数的方差为()()()()()22222225355575852655s -+-+-+-+-==, ∵2655<, ∴成绩较稳定的是甲,故答案为:甲.【点睛】本题考查了方差,掌握方差的计算方法,了解方差越小数据越稳定是解题的关键.13.关于x 的方程2(1)310m x x ++-=有两个实数根,则m 的取值范围是_________. 【答案】134m ≥-且1m ≠- 【解析】【分析】 根据一元二次方程的定义、根的判别式即可得.【详解】由题意得:这个方程是一元二次方程10m ∴+≠解得1m ≠- 又关于x 的方程2(1)310m x x ++-=有两个实数根 ∴此方程的根的判别式234(1)0m ∆=++≥ 解得134m ≥-综上,m的取值范围是134m≥-且1m≠-故答案为:134m≥-且1m≠-.【点睛】本题考查了一元二次方程的定义与根的判别式,理解题意,掌握一元二次方程的定义与根的判别式是解题关键.14.如图,矩形ABCD的边AB在x轴上,点C在反比例函数6yx=的图象上,点D在反比例函数kyx=的图象上,若5sin5CAB∠=,4cos5OCB∠=,则k=_________.【答案】-10【解析】【分析】设C(x,6x),根据4cos5OCB∠=求出OB,BC,再根据5sin5CAB∠=求出AC,由勾股定理求出AB,从而得出AO,得到D的坐标,进而求出k的值.【详解】解:设C(x,6x)(x>0),OB x∴=,6BCx=,∵四边形ABCD是矩形,90ABC∴∠=︒,AD BC=,22226OC OB BC xx⎛⎫∴=+=+ ⎪⎝⎭4cos5OCB∠=,45BCOC∴=226456xxx=⎛⎫+ ⎪⎝⎭,解得,132 2x=,232 2x=-(舍去),32OB∴=,2232BC==,5sin CAB∠=,55BCAC∴=,即2255AC=,210AC∴=,2242AB AC BC∴=-=,35422222AO∴=-=,52,222D⎛⎫∴-⎪⎝⎭,∵D在函数kyx=的图象上,5222102k∴=-⨯=-.故答案为:-10.【点睛】此题是一道综合性较强的题目,将解直角三角形和用待定系数法求函数解析式结合起来,有一定难度.15.如图,在四边形ABCD中,AB BC⊥,AD AC⊥,AD AC=,105BAD∠=︒,点E和点F分别是AC和CD的中点,连接BE,EF,BF,若8CD=,则BEF∆的面积是_________.【答案】3【解析】【分析】由题可得△ACD 为等腰直角三角形,CD=8,可求出AD=AC=点E 和点F 分别是AC 和CD 的中点,根据中位线定理和直角三角形斜边中线定理可得到EF=12AD ,BE=12AC ,从而得到EF=EB ,又105BAD ∠=︒,得∠CAB=15°,∠CEB=30°进一步得到∠FEB=120°,又△EFB 为等腰三角形,所以∠EFB=∠EBF=30°,过E 作EH 垂直于BF 于H 点,在Rt △EFH 中,解直角三角形求出EH ,FH,以BF 为底,EH 为高,即可求出△BEF 的面积. 【详解】解:∵AD AC ⊥,AD AC =,∴△ADC 为等腰直角三角, ∵CD=8,∴AD=AC=2CD= ∵E,F 为AC ,DC 的中点,∴FE ∥AD ,EF=12AD=∴BE=12AC=, ∵AD=AC ,∴EF=EB ,△EFB 为等腰三角形, 又∵EF ∥AD , ∴EF ⊥AC , ∴∠FEC=90°, 又EB=EA ,∴∠EAB=∠EBA=105°-90°=15°, ∴∠CEB=30°, ∴∠FEB=120°, ∴∠EFB=∠EBF=30°, 过E 作EH 垂直于BF 于H 点, ∴BH=FH , 在Rt △EFH 中, ∵∠EFH=30°,∴EH=EF·sin30°=×12,FH=EF·cos30°=32×22=6 , ∴BF=2×6=26, ∴S BEF =12BF·EH=12×26×2=23 , 故答案为:23.【点睛】本题考查了等腰三角形的性质,三角形中位线定理,直角三角形斜边中线定理,解直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年辽宁省丹东市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.﹣5的绝对值等于( )A .﹣5B .5C .−15D .15 2.下面计算正确的是( )A .a 3•a 3=2a 3B .2a 2+a 2=3a 4C .a 9÷a 3=a 3D .(﹣3a 2)3=﹣27a 63.如图所示,该几何体的俯视图为( )A .B .C .D .4.在函数y =√9−3x 中,自变量x 的取值范围是( )A .x ≤3B .x <3C .x ≥3D .x >35.四张背面完全相同的卡片,正面分别印有等腰三角形、圆、平行四边形、正六边形,现在把它们的正面向下,随机的摆放在桌面上,从中任意抽出一张,则抽到的卡片正面是中心对称图形的概率是( )A .14B .12C .34D .16.如图,CO 是△ABC 的角平分线,过点B 作BD ∥AC 交CO 延长线于点D ,若∠A =45°,∠AOD =80°,则∠CBD 的度数为( )A .100°B .110°C .125°D .135°7.如图,在四边形ABCD 中,AB ∥CD ,AB =CD ,∠B =60°,AD =8√3,分别以B 和C为圆心,以大于12BC 的长为半径作弧,两弧相交于点P 和Q ,直线PQ 与BA 延长线交于点E ,连接CE ,则△BCE 的内切圆半径是( )A .4B .4√3C .2D .2√38.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,点A 坐标为(﹣1,0),点C 在(0,2)与(0,3)之间(不包括这两点),抛物线的顶点为D ,对称轴为直线x =2.有以下结论:①abc >0;②若点M (−12,y 1),点N (72,y 2)是函数图象上的两点,则y 1<y 2; ③−35<a <−25;④△ADB 可以是等腰直角三角形.其中正确的有( )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)9.据有关报道,2020年某市斥资约5800000元改造老旧小区,数据5800000用科学记数法表示为 .10.因式分解:mn 3﹣4mn = .11.一次函数y =﹣2x +b ,且b >0,则它的图象不经过第 象限.12.甲、乙两人进行飞镖比赛,每人投5次,所得平均环数相等,其中甲所得环数的方差为5,乙所得环数如下:2,3,5,7,8,那么成绩较稳定的是(填“甲”或“乙”).13.关于x的方程(m+1)x2+3x﹣1=0有两个实数根,则m的取值范围是.14.如图,矩形ABCD的边AB在x轴上,点C在反比例函数y=6x的图象上,点D在反比例函数y=kx的图象上,若sin∠CAB=√55,cos∠OCB=45,则k=.15.如图,在四边形ABCD中,AB⊥BC,AD⊥AC,AD=AC,∠BAD=105°,点E和点F分别是AC和CD的中点,连接BE,EF,BF,若CD=8,则△BEF的面积是.16.如图,在矩形OAA1B中,OA=3,AA1=2,连接OA1,以OA1为边,作矩形OA1A2B1使A1A2=23OA1,连接OA2交A1B于点C;以OA2为边,作矩形OA2A3B2,使A2A3=23OA2,连接OA3交A2B1于点C1;以OA3为边,作矩形OA3A4B3,使A3A4=23OA3,连接OA4交A3B2于点C2;…按照这个规律进行下去,则△C2019C2020A2022的面积为.三、解答题(每小题8分,共16分)17.(8分)先化简,再求代数式的值:(4xx−2−xx+2)÷xx2−4,其中x=cos60°+6﹣1.18.(8分)如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,点A,B,C的坐标分别为A(1,2),B(3,1),C(2,3),先以原点O为位似中心在第三象限内画一个△A1B1C1.使它与△ABC位似,且相似比为2:1,然后再把△ABC绕原点O逆时针旋转90°得到△A2B2C2.(1)画出△A1B1C1,并直接写出点A1的坐标;(2)画出△A2B2C2,直接写出在旋转过程中,点A到点A2所经过的路径长.四、(每小题10分,共20分)19.(10分)某校为了解疫情期间学生居家学习情况,以问卷调查的形式随机调查了部分学生居家学习的主要方式(每名学生只选最主要的一种),并将调查结果绘制成如图不完整的统计图.种类A B C D E学习方式老师直播教学课程国家教育云平台教学课程电视台播放教学课程第三方网上课程其他根据以上信息回答下列问题:(1)参与本次问卷调查的学生共有人,其中选择B类型的有人.(2)在扇形统计图中,求D所对应的圆心角度数,并补全条形统计图.(3)该校学生人数为1250人,选择A、B、C三种学习方式大约共有多少人?20.(10分)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是偶数的概率.五、(每小题10分,共20分)21.(10分)为帮助贫困山区孩子学习,某学校号召学生自愿捐书,已知七、八年级同学捐书总数都是1800本,八年级捐书人数比七年级多150人,七年级人均捐书数量是八年级人均捐书数量的1.5倍.求八年级捐书人数是多少?22.(10分)如图,已知△ABC,以AB为直径的⊙O交AC于点D,连接BD,∠CBD的平分线交⊙O于点E,交AC于点F,且AF=AB.(1)判断BC所在直线与⊙O的位置关系,并说明理由;(2)若tan∠FBC=13,DF=2,求⊙O的半径.六、(每小题10分,共20分)23.(10分)如图,小岛C和D都在码头O的正北方向上,它们之间距离为6.4km,一艘渔船自西向东匀速航行,行驶到位于码头O的正西方向A处时,测得∠CAO=26.5°,渔船速度为28km/h,经过0.2h,渔船行驶到了B处,测得∠DBO=49°,求渔船在B处时距离码头O有多远?(结果精确到0.1km)(参考数据:sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50,sin49°≈0.75,cos49°≈0.66,tan49°≈1.15)24.(10分)某服装批发市场销售一种衬衫,衬衫每件进货价为50元.规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:售价x(元/件)606570销售量y(件)140013001200(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围)(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?七、(本题12分)25.(12分)已知:菱形ABCD和菱形A′B′C′D′,∠BAD=∠B′A′D′,起始位置点A在边A′B′上,点B在A′B′所在直线上,点B在点A的右侧,点B′在点A′的右侧,连接AC和A′C′,将菱形ABCD以A为旋转中心逆时针旋转α角(0°<α<180°).(1)如图1,若点A与A′重合,且∠BAD=∠B′A′D′=90°,求证:BB′=DD′.(2)若点A与A′不重合,M是A′C′上一点,当MA′=MA时,连接BM和A′C,BM和A′C所在直线相交于点P.①如图2,当∠BAD=∠B′A′D′=90°时,请猜想线段BM和线段A′C的数量关系及∠BPC的度数.②如图3,当∠BAD=∠B′A′D′=60°时,请求出线段BM和线段A′C的数量关系及∠BPC的度数.③在②的条件下,若点A与A′B′的中点重合,A′B′=4,AB=2,在整个旋转过程中,当点P与点M重合时,请直接写出线段BM的长.八、(本题14分)26.(14分)如图1,在平面直角坐标系中,抛物线y=−12x2+bx+c与x轴交于A,B两点,A点坐标为(﹣2,0),与y轴交于点C(0,4),直线y=−12x+m与抛物线交于B,D两点.(1)求抛物线的函数表达式.(2)求m的值和D点坐标.(3)点P是直线BD上方抛物线上的动点,过点P作x轴的垂线,垂足为H,交直线BD于点F,过点D作x轴的平行线,交PH于点N,当N是线段PF的三等分点时,求P点坐标.(4)如图2,Q是x轴上一点,其坐标为(−45,0).动点M从A出发,沿x轴正方向以每秒5个单位的速度运动,设M的运动时间为t(t>0),连接AD,过M作MG⊥AD于点G,以MG所在直线为对称轴,线段AQ经轴对称变换后的图形为A′Q′,点M在运动过程中,线段A′Q′的位置也随之变化,请直接写出运动过程中线段A′Q′与抛物线有公共点时t的取值范围.2020年辽宁省丹东市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.﹣5的绝对值等于()A.﹣5B.5C.−15D.15解:﹣5的绝对值|﹣5|=5.故选:B.2.下面计算正确的是()A.a3•a3=2a3B.2a2+a2=3a4C.a9÷a3=a3D.(﹣3a2)3=﹣27a6解:因为a3•a3=a6≠2a3,故选项A计算不正确;2a2+a2=3a2≠3a4,故选项B计算不正确;a9÷a3=a6≠a3,故选项C计算不正确;(﹣3a2)3=﹣27a6,故选项D计算正确;故选:D.3.如图所示,该几何体的俯视图为()A.B.C.D.解:该几何体的俯视图为故选:C.4.在函数y=√9−3x中,自变量x的取值范围是()A.x≤3B.x<3C.x≥3D.x>3解:根据题意得:9﹣3x ≥0,解得:x ≤3.故选:A .5.四张背面完全相同的卡片,正面分别印有等腰三角形、圆、平行四边形、正六边形,现在把它们的正面向下,随机的摆放在桌面上,从中任意抽出一张,则抽到的卡片正面是中心对称图形的概率是( )A .14B .12C .34D .1解:∵从这4张卡片中任意抽取一张共有4种等可能结果,其中抽到的卡片正面是中心对称图形的是圆、平行四边形、正六边形这3种结果,∴抽到的卡片正面是中心对称图形的概率是34, 故选:C .6.如图,CO 是△ABC 的角平分线,过点B 作BD ∥AC 交CO 延长线于点D ,若∠A =45°,∠AOD =80°,则∠CBD 的度数为( )A .100°B .110°C .125°D .135°解:∵CO 是△ABC 的角平分线,∴∠DCB =∠DCA .∵BD ∥AC ,∴∠A =∠DBA =45°,∠D =∠ACD =∠DCB .∵∠AOD =∠D +∠DBA ,∴∠D =∠AOD ﹣∠DBA=80°﹣45°=35°.∴∠DCB =35°.∵∠D +∠DCB +∠DBC =180°,。

相关文档
最新文档