双向可控硅结构原理及应用
双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅(Bilateral Triode Thyristor,简称BTT)是一种特殊的可控硅器件,其工作原理和应用领域在电力电子领域具有重要意义。
本文将详细介绍双向可控硅的工作原理,并提供相应的原理图。
一、双向可控硅的工作原理双向可控硅是一种四层PNPN结构的半导体器件。
它由两个PN结组成,每一个PN结都有一个控制极和一个主极。
其工作原理如下:1. 静态工作原理:当双向可控硅两个主极之间的电压为正向时,即正向工作状态,两个PN结之间的结电容会妨碍电流的流动,双向可控硅处于关断状态。
当双向可控硅两个主极之间的电压为反向时,即反向工作状态,两个PN结之间的结电容充电,当电压达到一定的阈值时,双向可控硅会进入导通状态。
2. 动态工作原理:当双向可控硅处于导通状态时,惟独当两个主极之间的电流方向与PN结的导通方向一致时,双向可控硅才干正常导通。
当双向可控硅导通后,惟独当两个主极之间的电流方向与PN结的导通方向相反时,双向可控硅才干正常关断。
二、双向可控硅的原理图下面是一种常见的双向可控硅的原理图,用于说明其电路连接方式和控制方式。
```+----|>|----|>|----+| || || |+----|<|----|<|----+```在上述原理图中,两个箭头表示双向可控硅的两个主极,箭头方向表示电流的流动方向。
两个箭头之间的线段表示PN结。
三、双向可控硅的应用领域双向可控硅由于其双向导通的特性,在电力电子领域有广泛的应用。
以下是一些常见的应用领域:1. 交流电控制:双向可控硅可以用于交流电的控制,例如交流电的调光、机电的调速等。
2. 电力系统:双向可控硅可以用于电力系统中的电压和电流控制,例如电力调度、电力传输等。
3. 电力电子变换器:双向可控硅可以用于电力电子变换器中的电流控制,例如直流-交流变换器、交流-直流变换器等。
4. 光伏发电系统:双向可控硅可以用于光伏发电系统中的电流控制,例如光伏逆变器、光伏充电控制器等。
双向可控硅结构原理及应用

双向可控硅结构原理及应用双向可控硅(BTR)是一种半导体器件,常用于交流电路中的电力控制和转换。
它包含两个PN结的二极管,通过控制发射极电流来实现对电流的控制。
双向可控硅的工作原理如下:当发射极电流为零时,BTR处于关断状态,两个PN结都正向偏置。
当正向电压施加在结P1-N2上时,结P1-N2导通,形成一个PNPN结构,此时电流在BTR上开始流动。
当BTR被激活(发射极电流增大),整个结构开始导通,电流正常传输。
当电流通过零点时,BTR会自动关闭,因为BTR的极间电容会阻断电流。
双向可控硅主要有三种工作模式:正向基本模式、反向基本模式和反向脉冲模式。
正向基本模式:当BTR处于关断状态时,施加正向电压,当电流达到触发电流时,BTR将被激活,形成导通状态。
一旦BTR导通,就可以实现晶闸管和电流管的控制,可以控制交流电的电力转换。
反向基本模式:与正向基本模式相反,当BTR处于关断状态时,施加反向电压,当电流达到触发电流时,BTR将被激活。
在正向基本模式下无法实现的应用中,反向基本模式可以用于电力控制和转换。
反向脉冲模式:在反向基本模式下,当电流通过BTR时,施加一个脉冲电压,可以使BTR重复导通和关断,实现更精确的控制。
双向可控硅具有许多应用领域。
以下是一些常见的应用:1.交流电路控制:双向可控硅可以用于控制交流电路中的电流和功率,如照明控制、电动机控制和电压调节等。
2.变频调速:通过控制双向可控硅的导通时间和关断时间,可以实现电动机的变频调速,以满足不同负载要求。
3.电器控制和保护:双向可控硅可以用于电器控制和保护电路,如电压保护、过载保护和短路保护等。
4.电力系统:在电力系统中,双向可控硅可以用于电力控制和转换,如电力因数校正、电能调度和电力传输等。
5.电动车充电:双向可控硅可以用于电动车充电系统中,实现对电动车的充电和放电控制,提高充电效率。
6.数码产品:双向可控硅还可以用于数码产品的电源控制和电流保护,增强产品的稳定性和安全性。
双向可控硅应用原理

双向可控硅应用原理双向可控硅(also known as bidirectional thyristor or triac)是一种具有双向导电性能的电子元件,它在电路中可以同时控制正向电流和反向电流。
双向可控硅常用于交流电路中,可以实现两个方向的电流控制,广泛应用于家用电器、照明设备、电动工具等领域。
双向可控硅的原理基于PNPN(正负正负)结构的硅材料,它由四个不同区域组成:P区、N区、P区和N区。
正向的输入电压通常施加在P 区与N区之间,而控制端可以通过一个小电流信号来控制双向可控硅的导通和截止。
在正向电压作用下,当控制端施加一个大于开启电压的电流信号时,双向可控硅将导通,并将电流传导到回路中。
在这种情况下,双向可控硅的导通方式类似于普通的单向可控硅。
当控制信号去除或变小到一个特定的水平时,双向可控硅将自动切断。
然而,在反向电压作用下,双向可控硅呈现出截然不同的特性。
当应用于N区和P区之间时,反向电流会使得双向可控硅自动导通,无需控制信号。
这种特性允许双向可控硅能够导电两个方向的电流。
双向可控硅的应用主要基于它的双向导电特性。
通过在交流电源和负载之间串联一个双向可控硅,可以实现对交流电流的精确控制。
使用一个外部控制信号,可以通过控制双向可控硅的导通和截止来改变交流电路的功率和电流。
这种控制方式被广泛应用于调光、电压调节和频率控制等场合。
双向可控硅的应用也面临一些挑战。
由于其导通角度较小,因此只有部分正弦半周期存在导通的可能。
因此,在高频和高电压应用中,它的效果可能会受到限制。
此外,双向可控硅在导通和截止时存在一定的开关损耗,可能会导致能量浪费和过热。
总之,双向可控硅是一种具有双向导电特性的电子元件,通过控制电流信号来实现对交流电流的精确控制。
它的应用广泛,特别是在家用电器和照明设备中。
然而,它的效果可能受到频率和电压的限制,并存在一定的开关损耗。
双向可控硅的工作原理

双向可控硅的工作原理双向可控硅是一种常用的电子元件,可实现电流的双向控制,广泛应用于各种电力电子设备之中。
在实际应用中,双向可控硅的工作原理非常关键,因此本文将详细介绍双向可控硅的工作原理。
一、双向可控硅的结构双向可控硅的结构如下图所示:双向可控硅包括四个外接引脚:主极(Anode,A)、发射极1(Gate 1,G1)、发射极2(Gate 2,G2)和阴极(Cathode,K)。
主极和阴极是整个器件的两个主要节点,G1和G2用于控制两个 PN 结的导通,从而实现电流的正反向控制。
二、双向可控硅的电路模型为了更好地理解双向可控硅的工作原理,可以采用等效电路模型进行分析,如下图所示:在等效电路模型中,主极和阴极之间用电阻 R 代表器件的一些固有电阻,PN1 和PN2 分别表示两个 PN 结。
G1 和 G2 分别与 PN1 和 PN2 相连,用电流源 ig1 和 ig2代表控制电流。
Ia 表示主极和阴极之间的电流,控制电流 ig1 和 ig2 经过一定逻辑运算得到电流 iPN1 和 iPN2,分别控制 PN1 和 PN2 的导通与截止。
三、双向可控硅的工作原理1. 双向可控硅的导通当双向可控硅的主极为正极,阴极为负极,此时 PN1 和 PN2 的结电压为零,即二极管电压低于正向导通电压。
在控制引脚 G1 和 G2 中,如果同时施加正脉冲信号,就可以使 iPN1 和 iPN2 都大于零,从而使 PN1 和 PN2 同步导通,实现电流的流动。
此时,主极和阴极间的电流按这个方向通过整个器件,双向可控硅处于正向导通状态。
2. 双向可控硅的截止在正向导通状态下,只需要阻断 G1 或 G2 中的任意一个 PN 结即可实现截止状态。
在正向导通状态下,如果断开 G1 电压源,电流将重新从 G2 流入 PN2,PN2 将继续导通。
PN1 会立即截止,导致电流被阻断。
同样,如果断开 G2 电压源,电流将重新从 G1 流入PN1,PN1 将继续导通,但是 PN2 变为截止状态,导致电流被阻断。
双向可控硅工作原理及应用

双向可控硅工作原理及应用双向可控硅(also known as Bidirectional Triode Thyristor,简称BTT)是一种常用的电力控制元件,其工作原理基于可控硅的结构和性能。
与普通的可控硅相比,双向可控硅还具备双向控制的能力,即可以在正向和反向的工作电压下触发和控制。
双向可控硅的结构与常用的可控硅相似,由四层半导体材料构成,分别是P-N-P-N的结构。
它通常由两个普通的可控硅反并联而成,使得正向和反向都能够触发和控制。
双向可控硅的工作原理如下:当正向工作电压施加在双向可控硅的正向P-N结上时,如果触发电流超过一定的阈值,则电流在P-N结之间形成导通通道,电压降低,双向可控硅的正向电流流过。
同时,当反向工作电压施加在双向可控硅的反向P-N结上时,如果触发电流超过一定的阈值,则电流在P-N结之间形成导通通道,电压降低,双向可控硅的反向电流流过。
通过控制正向和反向的触发电流,可以实现对双向可控硅的双向可控性。
双向可控硅的应用非常广泛,以下是一些主要的应用领域:1. 交流电源控制:由于双向可控硅可以同时控制正向和反向电流,因此特别适用于交流电源控制。
它可以用于电子变压器、电源电压调节、电能质量控制等方面。
2. 交流调光:双向可控硅可以用于交流调光,调整照明设备的亮度。
通过控制正向和反向的触发脉冲,可以实现对照明设备的调光效果,提高照明效果和节能效果。
3. 电动机控制:双向可控硅可以用于电动机的控制,实现对电动机的启动、停止、正转和反转等操作。
通过控制正向和反向的触发电流和电压,可以实现对电动机的精确控制。
4. 温度控制:双向可控硅可以用于温度控制,通过控制加热元件的工作周期,可以实现温度的控制。
例如,将双向可控硅应用于电炉控制,可以实现对电炉的温度控制。
5. 电力电子开关:双向可控硅可以用作电力电子开关,控制电流和电压的开关状态。
例如,将双向可控硅应用于交流电压调节器中,可以实现对电压的平滑调节和控制。
双向可控硅控制电路

双向可控硅控制电路引言:双向可控硅(Bidirectional Thyristor),简称BTT,是一种半导体器件,常用于交流电源的开关控制电路。
本文将介绍双向可控硅控制电路的工作原理、应用领域以及设计要点。
一、工作原理双向可控硅是一种四层或五层PNPN晶体管结构,具有双向导电特性。
它通过控制控制极和门极之间的电压,实现对电流的控制。
双向可控硅的工作原理与单向可控硅相似。
当控制极为正向,或门极和控制极间有正向的压力时,双向可控硅将变为正向导通的状态。
当控制极为反向,或门极和控制极间有反向的压力时,双向可控硅将变为反向导通的状态。
双向可控硅在交流电路中的应用较为广泛。
其常见的控制模式有两种:半波控制和全波控制。
在半波控制中,只有交流电的一个半周期通过可控硅;而在全波控制中,交流电的两个半周期均能通过可控硅。
二、应用领域1. 交流电调光双向可控硅在家庭照明和舞台灯光等场合中被广泛应用于交流电调光控制。
通过改变双向可控硅的导通时长和导通角,可以实现对灯光亮度的调整,满足不同场合的照明需求。
2. 交流电机调速由于典型的交流电机是不能直接调速的,因此需要通过双向可控硅控制电路来实现调速。
通过改变双向可控硅的导通和断开时间,可以控制交流电机的转速。
3. 交流电能控制双向可控硅在交流电能控制领域有着广泛应用。
通过双向可控硅控制电路,可以实现对交流电能的开关调节,提高电能的利用效率,并能够实现电网的防护和电能质量控制。
三、设计要点1. 选择适当的双向可控硅根据实际需求和控制要求,选择合适的双向可控硅,包括最大电流、最大电压和最大功率等参数。
2. 控制电路设计双向可控硅的控制电路通常由触发电路、门电流限制电路和保护电路等组成。
触发电路用于控制双向可控硅的导通和断开,门电流限制电路用于限制门极电流的大小,保护电路用于保护双向可控硅免受过流、过热和过压等不利因素的影响。
3. 热管理在设计双向可控硅控制电路时,需要考虑散热问题。
双向可控硅mac97a6详解及其的应用电路

双向可控硅mac97a6详解及其的应用电路引言:双向可控硅mac97a6是一种常用的功率半导体器件,它在电力控制和调节中扮演着重要的角色。
它具有双向触发特性,可以用来控制交流电路中的功率开关。
在本文中,我们将深入探讨双向可控硅mac97a6的基本原理、特性及其在电路中的应用。
一、双向可控硅mac97a6的基本原理1. 双向可控硅mac97a6的结构:双向可控硅mac97a6是由两个晶闸管反向并联组成,其结构简单而有效。
它的触发特性使得它能够在正负半周均能进行导通和关断。
2. 双向可控硅mac97a6的工作原理:当双向可控硅mac97a6的控制端处于导通状态时,只有当施加的触发脉冲正负半周达到一定电压时,双向可控硅mac97a6才能导通,实现功率的控制和变换。
3. 双向可控硅mac97a6的特性:双向可控硅mac97a6具有较高的工作频率、耐高压、低功耗等特点,使得它在电路中具有广泛的应用前景。
二、双向可控硅mac97a6的应用电路1. 交流电路中的应用:双向可控硅mac97a6常常被用在交流电路中,如交流调压器、交流调速器等。
它通过对电压进行控制,使得交流电路在不同负载条件下能够自动调节输出电压和频率,实现电力的高效利用。
2. 电磁场中的应用:双向可控硅mac97a6还可以被应用在电磁场控制中,如变压器、感应加热等设备中。
通过对电路的控制,可以实现电磁场的精确调节,保证设备的稳定运行。
三、个人观点和理解双向可控硅mac97a6作为一种重要的功率半导体器件,在电力控制和调节领域具有重要的地位。
它的双向触发特性使得它能够适用于不同的电路和场合,实现精确的功率控制和调节。
在未来,随着电力电子技术的不断发展,双向可控硅mac97a6的应用领域将会进一步拓展,为电力系统的稳定运行和高效利用提供更多可能。
总结本文从双向可控硅mac97a6的基本原理、特性到其在电路中的应用进行了全面的阐述,希望能够为读者提供一个深入了解和掌握这一重要器件的机会。
双向可控硅作用与原理

双向可控硅作用与原理
双向可控硅,也称为双向可控整流器,是一种常用的电子元件,用于控制电流的通断。
它的原理是基于PN结的特性,通过控制输入端的触发器信号,可以实现对电流的正向和反向导通。
在正向导通状态下,当输入端接收到触发器信号时,双向可控硅的PN结被击穿,形成一个低阻抗通路,电流可以从正极流向负极,实现正向导通。
而在反向导通状态下,当输入端再次接收到触发器信号时,双向可控硅的PN结被击穿,形成一个反向低阻抗通路,电流可以从负极流向正极,实现反向导通。
双向可控硅具有以下几个特点:
1. 反向电压抑制能力强:双向可控硅的PN结可以承受较高的反向电压,因此在电路中可以起到很好的反向保护作用。
2. 控制灵活可靠:通过改变输入端的触发器信号,可以实现对双向可控硅的导通和截止控制,从而实现对电流的控制。
3. 体积小、工作效率高:双向可控硅的结构紧凑,体积小,适用于集成化设计。
同时,由于其导通和截止控制能力强,工作效率也相对较高。
4. 应用广泛:双向可控硅广泛应用于电力电子领域,如变频器、电动机控制、照明设备等。
它可以实现对电流的精确控制,提高电路
的效率和稳定性。
总的来说,双向可控硅是一种重要的电子元件,通过控制输入端的触发器信号,可以实现对电流的正向和反向导通。
它具有控制灵活可靠、体积小、工作效率高等特点,广泛应用于电力电子领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双向可控硅结构原理及应用时间:2010-01-19 09:58:05 来源:作者:普通晶闸管(VS)实质上属于直流控制器件。
要控制交流负载,必须将两只晶闸管反极性并联,让每只SCR控制一个半波,为此需两套独立的触发电路,使用不够方便。
双向晶闸管是在普通晶闸管的基础上发展而成的,它不仅能代替两只反极性并联的晶闸管,而且仅需一个触发电路,是目前比较理想的交流开关器件。
其英文名称TRIAC即三端双向交流开关之意。
构造原理尽管从形式上可将双向晶闸管看成两只普通晶闸管的组合,但实际上它是由7只晶体管和多只电阻构成的功率集成器件。
小功率双向晶闸管一般采用塑料封装,有的还带散热板,外形如图l所示。
典型产品有BCMlAM(1A/600V)、BCM3AM(3A/600V)、2N6075(4A/600V),MAC218-10(8A/800V)等。
大功率双向晶闸管大多采用RD91型封装。
双向晶闸管的主要参数见附表。
双向晶闸管的结构与符号见图2。
它属于NPNPN五层器件,三个电极分别是T1、T2、G。
因该器件可以双向导通,故除门极G以外的两个电极统称为主端子,用T1、T2。
表示,不再划分成阳极或阴极。
其特点是,当G极和T2极相对于T1,的电压均为正时,T2是阳极,T1是阴极。
反之,当G极和T2极相对于T1的电压均为负时,T1变成阳极,T2为阴极。
双向晶闸管的伏安特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。
检测方法下面介绍利用万用表RXl档判定双向晶闸管电极的方法,同时还检查触发能力。
1.判定T2极由图2可见,G极与T1极靠近,距T2极较远。
因此,G—T1之间的正、反向电阻都很小。
在用RXl档测任意两脚之间的电阻时,只有在G-T1之间呈现低阻,正、反向电阻仅几十欧,而T2-G、T2-T1之间的正、反向电阻均为无穷大。
这表明,如果测出某脚和其他两脚都不通,就肯定是T2极。
,另外,采用TO—220封装的双向晶闸管,T2极通常与小散热板连通,据此亦可确定T2极。
2.区分G极和T1极(1)找出T2极之后,首先假定剩下两脚中某一脚为Tl极,另一脚为G极。
(2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。
接着用红表笔尖把T2与G短路,给G极加上负触发信号,电阻值应为十欧左右(参见图4(a)),证明管子已经导通,导通方向为T1一T2。
再将红表笔尖与G极脱开(但仍接T2),若电阻值保持不变,证明管子在触发之后能维持导通状态(见图4(b))。
(3)把红表笔接T1极,黑表笔接T2极,然后使T2与G短路,给G极加上正触发信号,电阻值仍为十欧左右,与G极脱开后若阻值不变,则说明管子经触发后,在T2一T1方向上也能维持导通状态,因此具有双向触发性质。
由此证明上述假定正确。
否则是假定与实际不符,需再作出假定,重复以上测量。
显见,在识别G、T1,的过程中,也就检查了双向晶闸管的触发能力。
如果按哪种假定去测量,都不能使双向晶闸管触发导通,证明管于巳损坏。
对于lA的管子,亦可用RXl0档检测,对于3A及3A以上的管子,应选RXl档,否则难以维持导通状态。
典型应用双向晶闸管可广泛用于工业、交通、家用电器等领域,实现交流调压、电机调速、交流开关、路灯自动开启与关闭、温度控制、台灯调光、舞台调光等多种功能,它还被用于固态继电器(SSR)和固态接触器电路中。
图5是由双向晶闸管构成的接近开关电路。
R为门极限流电阻,JAG为干式舌簧管。
平时JAG断开,双向晶闸管TRIAC也关断。
仅当小磁铁移近时JAG吸合,使双向晶闸管导通,将负载电源接通。
由于通过干簧管的电流很小,时间仅几微秒,所以开关的寿命很长.图6是过零触发型交流固态继电器(AC-SSR)的内部电路。
主要包括输入电路、光电耦合器、过零触发电路、开关电路(包括双向晶闸管)、保护电路(RC吸收网络)。
当加上输入信号VI(一般为高电平)、并且交流负载电源电压通过零点时,双向晶闸管被触发,将负载电源接通。
固态继电器具有驱动功率小、无触点、噪音低、抗干扰能力强,吸合、释放时间短、寿命长,能与TTL\CMOS电路兼容,可取代传统的电磁继电器。
双向可控硅原理与应用普通晶闸管(VS)实质上属于直流控制器件。
要控制交流负载,必须将两只晶闸管反极性并联,让每只SCR控制一个半波,为此需两套独立的触发电路,使用不够方便。
双向晶闸管是在普通晶闸管的基础上发展而成的,它不仅能代替两只反极性并联的晶闸管,而且仅需一个触发电路,是目前比较理想的交流开关器件。
其英文名称TRIAC即三端双向交流开关之意。
[p=30, 2, left][b]构造原理[/b][/p]尽管从形式上可将双向晶闸管看成两只普通晶闸管的组合,但实际上它是由7只晶体管和多只电阻构成的功率集成器件。
小功率双向晶闸管一般采用塑料封装,有的还带散热板,外形如图l所示。
典型产品有BCMlAM(1A/600V)、BCM3AM(3A/600V)、2N6075(4A/600V),MAC218-10(8A/800V)等。
大功率双向晶闸管大多采用RD91型封装。
双向晶闸管的结构与符号见图2。
它属于NPNPN五层器件,三个电极分别是T1、T2、G。
因该器件可以双向导通,故除门极G以外的两个电极统称为主端子,用T1、T2。
表示,不再划分成阳极或阴极。
其特点是,当G极和T2极相对于T1,的电压均为正时,T2是阳极,T1是阴极。
反之,当G极和T2极相对于T1的电压均为负时,T1变成阳极,T2为阴极。
双向晶闸管的伏安特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。
[p=30, 2, center][img]/wwwroot/pic/digi/20061017171251596.gif[/img][/p][b]检测方法[/b]下面介绍利用万用表RXl档判定双向晶闸管电极的方法,同时还检查触发能力。
1.判定T2极由图2可见,G极与T1极靠近,距T2极较远。
因此,G—T1之间的正、反向电阻都很小。
在用RXl 档测任意两脚之间的电阻时,只有在G-T1之间呈现低阻,正、反向电阻仅几十欧,而T2-G、T2-T1之间的正、反向电阻均为无穷大。
这表明,如果测出某脚和其他两脚都不通,就肯定是T2极。
,另外,采用TO—220封装的双向晶闸管,T2极通常与小散热板连通,据此亦可确定T2极。
[p=30, 2, center][img]/wwwroot/pic/digi/20061017171328826.gif[/img][/p]2.区分G极和T1极(1)找出T2极之后,首先假定剩下两脚中某一脚为Tl极,另一脚为G极。
(2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。
接着用红表笔尖把T2与G短路,给G极加上负触发信号,电阻值应为十欧左右(参见图4(a)),证明管子已经导通,导通方向为T1一T2。
再将红表笔尖与G极脱开(但仍接T2),若电阻值保持不变,证明管子在触发之后能维持导通状态(见图4(b))。
[p=30, 2, center][img]/wwwroot/pic/digi/20061017171350268.gif[/img][/p]3)把红表笔接T1极,黑表笔接T2极,然后使T2与G短路,给G极加上正触发信号,电阻值仍为十欧左右,与G极脱开后若阻值不变,则说明管子经触发后,在T2一T1方向上也能维持导通状态,因此具有双向触发性质。
由此证明上述假定正确。
否则是假定与实际不符,需再作出假定,重复以上测量。
显见,在识别G、T1,的过程中,也就检查了双向晶闸管的触发能力。
如果按哪种假定去测量,都不能使双向晶闸管触发导通,证明管于巳损坏。
对于lA的管子,亦可用RXl0档检测,对于3A及3A以上的管子,应选RXl档,否则难以维持导通状态。
[p=30, 2, left][b]典型应用[/b][/p]双向晶闸管可广泛用于工业、交通、家用电器等领域,实现交流调压、电机调速、交流开关、路灯自动开启与关闭、温度控制、台灯调光、舞台调光等多种功能,它还被用于固态继电器[url=/ProductShop/ShowClass.asp?ClassID=107][color=#0000ff][/c olor][/url](SSR)和固态接触器电路中。
图5是由双向晶闸管构成的接近开关电路。
R为门极限流电阻,JAG为干式舌簧管。
平时JAG断开,双向晶闸管TRIAC也关断。
仅当小磁铁移近时JAG吸合,使双向晶闸管导通,将负载电源接通。
由于通过干簧管的电流很小,时间仅几微秒,所以开关的寿命很长.图6是过零触发型交流固态继电器AC-SSR)的内部电路。
主要包括输入电路、光电耦合器、过零触发电路、开关电路(包括双向晶闸管)、保护电路(RC吸收网络)。
当加上输入信号VI(一般为高电平)、并且交流负载电源电压通过零点时,双向晶闸管被触发,将负载电源接通。
固态继电器[url=/ProductShop/ShowClass.asp?ClassID=107][color=#0000ff][/c olor][/url]具有驱动功率小、无触点、噪音低、抗干扰能力强,吸合、释放时间短、寿命长,能与TTL\CMOS电路兼容,可取代传统的电磁继电器[url=/ProductShop/ShowClass.asp?ClassID=107][color=#0000ff][/c olor][/url]。
双向可控硅所属分类:半导体半导体器件物理学生活科学摘要:双向可控硅是在普通可控硅的基础上发展而成的,它不仅能代替两只反极性并联的可控硅,而且仅需一个触发电路,是比较理想的交流开关器件。
其英文名称TRIAC即三端双向交流开关之意。
提问编辑摘要双向可控硅所属分类:半导体半导体器件物理学生活科学摘要:双向可控硅是在普通可控硅的基础上发展而成的,它不仅能代替两只反极性并联的可控硅,而且仅需一个触发电路,是比较理想的交流开关器件。
其英文名称TRIAC即三端双向交流开关之意。
提问编辑摘要目录[隐藏]∙ 1 产品命名∙ 2 元件简介∙ 3 产品分类∙ 4 封装形式∙ 5 构造原理∙ 6 产品特性∙7 触发电路∙8 工作原理∙9 产品判别∙10 测量方法∙11 参数符号∙12 伏安特性∙13 检测方法∙14 黄金规则∙15 典型应用∙16 产品区别∙17 注意事项∙18 产品展示双向可控硅-产品命名双向可控硅双向可控硅为什么称为“TRIAC”?三端:TRIode(取前三个字母)交流半导体开关:ACsemiconductorswitch(取前两个字母)以上两组名词组合成“TRIAC”中文译意“三端双向可控硅开关”。
由此可见“TRIAC”是双向可控硅的统称。
双向:Bi-directional(取第一个字母)控制:Controlled(取第一个字母)整流器:Rectifier(取第一个字母)再由这三组英文名词的首个字母组合而成:“BCR”中文译意:双向可控硅。