双向可控硅的原理-二三极管原理
双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅(Bilateral Triode Thyristor,简称BTT)是一种特殊的可控硅器件,其工作原理和应用领域在电力电子领域具有重要意义。
本文将详细介绍双向可控硅的工作原理,并提供相应的原理图。
一、双向可控硅的工作原理双向可控硅是一种四层PNPN结构的半导体器件。
它由两个PN结组成,每一个PN结都有一个控制极和一个主极。
其工作原理如下:1. 静态工作原理:当双向可控硅两个主极之间的电压为正向时,即正向工作状态,两个PN结之间的结电容会妨碍电流的流动,双向可控硅处于关断状态。
当双向可控硅两个主极之间的电压为反向时,即反向工作状态,两个PN结之间的结电容充电,当电压达到一定的阈值时,双向可控硅会进入导通状态。
2. 动态工作原理:当双向可控硅处于导通状态时,惟独当两个主极之间的电流方向与PN结的导通方向一致时,双向可控硅才干正常导通。
当双向可控硅导通后,惟独当两个主极之间的电流方向与PN结的导通方向相反时,双向可控硅才干正常关断。
二、双向可控硅的原理图下面是一种常见的双向可控硅的原理图,用于说明其电路连接方式和控制方式。
```+----|>|----|>|----+| || || |+----|<|----|<|----+```在上述原理图中,两个箭头表示双向可控硅的两个主极,箭头方向表示电流的流动方向。
两个箭头之间的线段表示PN结。
三、双向可控硅的应用领域双向可控硅由于其双向导通的特性,在电力电子领域有广泛的应用。
以下是一些常见的应用领域:1. 交流电控制:双向可控硅可以用于交流电的控制,例如交流电的调光、机电的调速等。
2. 电力系统:双向可控硅可以用于电力系统中的电压和电流控制,例如电力调度、电力传输等。
3. 电力电子变换器:双向可控硅可以用于电力电子变换器中的电流控制,例如直流-交流变换器、交流-直流变换器等。
4. 光伏发电系统:双向可控硅可以用于光伏发电系统中的电流控制,例如光伏逆变器、光伏充电控制器等。
双向可控硅的工作原理及原理图

双向可控硅得工作原理及原理图双向可控硅得工作原理1、可控硅就是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它瞧作由一个PNP管与一个NPN管所组成当阳极A加上正向电压时,BG1与BG2管均处于放大状态。
此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。
因为BG2得集电极直接与BG1得基极相连,所以ib1=ic2。
此时,电流ic2再经BG1放大,于就是BG1得集电极电流ic1=β1ib1=β1β2ib2。
这个电流又流回到BG2得基极,表成正反馈,使ib2不断增大,如此正向馈循环得结果,两个管子得电流剧增,可控硅使饱与导通.由于BG1与BG2所构成得正反馈作用,所以一旦可控硅导通后,即使控制极G得电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅就是不可关断得。
由于可控硅只有导通与关断两种工作状态,所以它具有开关特性,这种特性需要一定得条件才能转化2,触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区得空穴时入N2区,N2区得电子进入P2区,形成触发电流IGT。
在可控硅得内部正反馈作用(见图2)得基础上,加上IGT得作用,使可控硅提前导通,导致图3得伏安特性OA 段左移,IGT越大,特性左移越快。
TRIAC得特性ﻫ什么就是双向可控硅:IAC(TRI—ELECTRODEACSWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。
TRIAC为三端元件,其三端分别为T1(第二端子或第二阳极),T 2(第一端子或第一阳极)与G(控制极)亦为一闸极控制开关,与SCR最大得不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。
因为它就是双向元件,所以不管T1 ,T2得电压极性如何,若闸极有信号加入时,则T1,T2间呈导通状态;反之,加闸极触发信号,则T1,T2间有极高得阻抗。
双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅(Bilateral Switching Thyristor,简称BRT)是一种常用的电子器件,它可以在两个方向上进行控制和导通。
本文将详细介绍双向可控硅的工作原理及原理图。
一、工作原理双向可控硅由四个PN结组成,它的结构与普通的可控硅相似。
双向可控硅的两个PN结被称为主结,另外两个PN结被称为辅助结。
主结的结构与普通的PN结相同,而辅助结则是由NPN和PNP两个晶体管组成。
当双向可控硅的两个主结之间施加正向电压时,主结之间的电流将被导通。
此时,辅助结中的PNP晶体管处于饱和状态,起到了辅助导通的作用。
当施加反向电压时,主结之间的电流将被阻断。
双向可控硅的控制是通过控制辅助结中的NPN晶体管来实现的。
当NPN晶体管的基极电流大于一定阈值时,NPN晶体管将处于饱和状态,从而导致辅助结中的PNP晶体管饱和,主结之间的电流将被导通。
当NPN晶体管的基极电流小于阈值时,NPN晶体管将截止,导致辅助结中的PNP晶体管截止,主结之间的电流将被阻断。
二、原理图以下是双向可控硅的原理图示意图:```+-----+| |A ----| |---- C| |+-----+| |B D```在原理图中,A和C分别代表双向可控硅的两个主结,B和D分别代表辅助结中的NPN和PNP晶体管。
三、应用场景双向可控硅由于其双向导通的特性,在电子电路中有着广泛的应用。
以下是几个常见的应用场景:1. 交流电控制:双向可控硅可以用于交流电的控制,例如调光、电机控制等。
通过控制双向可控硅的导通和阻断,可以实现对交流电的精确控制。
2. 电子开关:双向可控硅可以作为电子开关使用,用于控制电路的开关状态。
通过控制双向可控硅的导通和阻断,可以实现电路的开关控制。
3. 电压调整:双向可控硅可以用于电压的调整和稳定。
通过控制双向可控硅的导通和阻断,可以调整电路中的电压值,实现对电压的精确控制。
四、总结双向可控硅是一种常用的电子器件,具有双向导通的特性。
光耦双向可控硅

光耦双向可控硅光耦双向可控硅是一种常用的半导体器件,它具有双向导通能力和隔离保护功能。
本文将从以下几个方面对光耦双向可控硅进行详细介绍。
一、光耦双向可控硅的基本概念光耦双向可控硅(Bilateral Triode Thyristor,BTT)是一种集成了三极管和双向可控硅(Triac)的半导体器件。
它具有两个PNP结和一个NPN结,可以实现正向和反向电流的导通。
同时,它还具有隔离保护功能,可以有效地隔离高压电路和低压电路。
二、光耦双向可控硅的结构与工作原理1. 结构光耦双向可控硅由两部分组成:输入端和输出端。
输入端包括一个LED发光二极管和一个NPN晶体管,输出端包括一个Triac。
2. 工作原理当输入端施加正向电压时,LED发光二极管发出红外线信号照射到输出端的Triac门极上,使其触发,并使其导通。
此时,输出端的A1、A2两个引脚之间的电路就会形成一条导通通路,从而使负载得到电源供电。
反之,当输入端施加反向电压时,LED发光二极管不发光,Triac无法触发,输出端不导通。
三、光耦双向可控硅的特点1. 双向导通能力光耦双向可控硅具有双向导通能力,可以实现正向和反向电流的导通。
这种特性使得它在交流电路中能够起到很好的作用。
2. 隔离保护功能光耦双向可控硅具有隔离保护功能,可以有效地隔离高压电路和低压电路。
这种特性使得它在工业自动化、家用电器等领域广泛应用。
3. 触发灵敏度高光耦双向可控硅的LED发光二极管具有较高的灵敏度,只需要很小的输入信号就可以触发输出端的Triac。
4. 体积小、重量轻光耦双向可控硅体积小、重量轻,在应用中非常方便。
四、光耦双向可控硅的应用领域1. 家用电器光耦双向可控硅在家用电器中的应用非常广泛,如电热水器、电吹风、微波炉等。
2. 工业自动化光耦双向可控硅在工业自动化中的应用也很广泛,如机床控制、PLC系统等。
3. 照明控制光耦双向可控硅可以用于照明控制,如灯光调节、定时开关等。
双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅(Bilateral Switch)是一种常用的半导体器件,它具有双向导通的特性,可以在两个方向上控制电流的流动。
在电子电路中,双向可控硅常用于交流电的控制和开关电路中。
一、双向可控硅的工作原理双向可控硅由两个PN结组成,其中一个PN结正向偏置,另一个PN结反向偏置。
当双向可控硅的正向电压超过其额定触发电压时,正向PN结会发生击穿,形成一个电流通路,此时双向可控硅处于导通状态。
当正向电压降低到一定程度时,正向PN结会恢复正常,双向可控硅进入封锁状态,不导电。
双向可控硅的工作原理可以通过以下几个步骤来解释:1. 初始状态:双向可控硅处于封锁状态,两个PN结都没有击穿,不导电。
2. 正向触发:当正向电压超过双向可控硅的额定触发电压时,正向PN结会发生击穿,形成一个电流通路。
此时,双向可控硅进入导通状态,电流可以从正向PN结流向负向PN结。
3. 反向触发:当反向电压超过双向可控硅的额定触发电压时,反向PN结会发生击穿,形成一个电流通路。
此时,双向可控硅同样处于导通状态,电流可以从负向PN结流向正向PN结。
4. 关断状态:当正向电压降低到一定程度时,正向PN结恢复正常,双向可控硅进入封锁状态,不导电。
同样地,当反向电压降低到一定程度时,反向PN结恢复正常,双向可控硅同样进入封锁状态,不导电。
二、双向可控硅的原理图双向可控硅的原理图如下所示:```+---|>|---|<|---+| |+---|<|---|>|---+```在原理图中,上方的箭头表示正向电流的流动方向,下方的箭头表示反向电流的流动方向。
双向可控硅由两个PN结组成,其中一个PN结正向偏置,另一个PN 结反向偏置。
通过控制正向电压和反向电压的大小,可以实现对双向可控硅的导通和封锁状态的控制。
三、双向可控硅的应用双向可控硅在电子电路中有广泛的应用。
以下是几个常见的应用场景:1. 交流电控制:双向可控硅可以用于交流电的控制,例如调光灯、电动窗帘等。
双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅(Bilateral Switching Thyristor,简称BST)是一种具有双向导通能力的半导体器件。
它在电力控制、电子调光、机电控制等领域有广泛的应用。
本文将详细介绍双向可控硅的工作原理及原理图。
一、工作原理双向可控硅由四个PN结组成,分别是两个P区和两个N区。
它具有两个控制极,即门极G和门极G'。
当G极和G'极之间施加正向电压时,双向可控硅处于导通状态;当G极和G'极之间施加反向电压时,双向可控硅处于关断状态。
在导通状态下,当正向电压施加在A极,负向电压施加在K极时,双向可控硅处于正向导通状态;当正向电压施加在K极,负向电压施加在A极时,双向可控硅处于反向导通状态。
换言之,双向可控硅可以实现双向导通。
双向可控硅的导通状态由控制极G和G'之间的电压决定。
当控制极G和G'之间的电压超过一定阈值时,双向可控硅将开始导通。
此时,只需保持控制极之间的电压在一定范围内,双向可控硅将向来保持导通状态。
二、原理图下面是一种常见的双向可控硅的原理图:```+-------+| |A--+ +--K| |G--+ +--G'| |+-------+```在上述原理图中,A极和K极分别表示双向可控硅的两个电极,G极和G'极分别表示双向可控硅的两个控制极。
三、应用示例1. 电力控制:双向可控硅可以用于电力控制领域,如电炉温控、电动机控制等。
通过控制控制极G和G'之间的电压,可以实现对电力的精确控制。
2. 电子调光:双向可控硅可以用于电子调光领域,如室内照明控制、舞台灯光控制等。
通过控制控制极G和G'之间的电压,可以实现对灯光亮度的调节。
3. 机电控制:双向可控硅可以用于机电控制领域,如直流机电控制、交流机电控制等。
通过控制控制极G和G'之间的电压,可以实现对机电的启停和转速控制。
以上仅为双向可控硅的工作原理及原理图的简要介绍。
双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅的工作原理1、可控硅就是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它瞧作由一个PNP管与一个NPN管所组成当阳极A加上正向电压时,BG1与BG2管均处于放大状态。
此时,如果从控制极G 输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。
因为BG2的集电极直接与B G1的基极相连,所以ib1=ic2。
此时,电流ic2再经BG1放大,于就是BG1的集电极电流ic1=β1ib1=β1β2ib2。
这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱与导通。
由于BG1与BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅就是不可关断的。
由于可控硅只有导通与关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化2,触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。
在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。
TRIAC的特性什么就是双向可控硅:IAC(TRI-ELECTRODE AC SWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。
TRI AC为三端元件,其三端分别为T1(第二端子或第二阳极),T 2(第一端子或第一阳极)与G(控制极)亦为一闸极控制开关,与SCR最大的不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。
因为它就是双向元件,所以不管T1 ,T2的电压极性如何,若闸极有信号加入时,则T1 ,T2间呈导通状态;反之,加闸极触发信号,则T1 ,T2间有极高的阻抗。
双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅的工作原理1、可控硅就是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它瞧作由一个PNP管与一个NPN管所组成当阳极A加上正向电压时,BG1与BG2管均处于放大状态。
此时,如果从控制极G 输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。
因为BG2的集电极直接与B G1的基极相连,所以ib1=ic2。
此时,电流ic2再经BG1放大,于就是BG1的集电极电流ic1=β1ib1=β1β2ib2。
这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱与导通。
由于BG1与BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅就是不可关断的。
由于可控硅只有导通与关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化2,触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。
在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。
TRIAC的特性什么就是双向可控硅:IAC(TRI-ELECTRODE AC SWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。
TRI AC为三端元件,其三端分别为T1(第二端子或第二阳极),T 2(第一端子或第一阳极)与G(控制极)亦为一闸极控制开关,与SCR最大的不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。
因为它就是双向元件,所以不管T1 ,T2的电压极性如何,若闸极有信号加入时,则T1 ,T2间呈导通状态;反之,加闸极触发信号,则T1 ,T2间有极高的阻抗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尽管从形式上可将双向可控硅看成两只普通可控硅的组合,但实际上它是由7只晶体管和多只电阻构成的功率集成器件。
小功率双向可控硅一般采用塑料封装,有的还带散热板,外形如图l所示。
典型产品有BCMlAM(1A/600V)、BCM3AM(3A/600V)、2N6075(4A/600V),MAC218-10(8A/800V)等。
大功率双向可控硅大多采用RD91型封装。
双向可控硅的主要参数见附表。
双向可控硅的结构与符号见图2。
它属于NPNPN五层器件,三个电极分别是T1、T2、G。
因该器件可以双向导通,故除门极G以外的两个电极统称为主端子,用T1、T2。
表示,不再划分成阳极或阴极。
其特点是,当G极和T2极相对于T1,的电压均为正时,T2是阳极,T1是阴极。
反之,当G极和T2 极相对于T1的电压均为负时,T1变成阳极,T2为阴极。
双向可控硅的伏安特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。
检测方法下面介绍利用万用表RXl档判定双向可控硅电极的方法,同时还检查触发能力。
1.判定T2极由图2可见,G极与T1极靠近,距T2极较远。
因此,G—T1之间的正、反向电阻都很小。
在肦Xl档测任意两脚之间的电阻时,只有在G-T1之间呈现低阻,正、反向电阻仅几十欧,而T2-G、T2-T1之间的正、反向电阻均为无穷大。
这表明,如果测出某脚和其他两脚都不通,就肯定是T2极。
,另外,采用TO—220封装的双向可控硅,T2极通常与小散热板连通,据此亦可确定T2极。
2.区分G极和T1极(1)找出T2极之后,首先假定剩下两脚中某一脚为Tl极,另一脚为G极。
(2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。
接着用红表笔尖把T2与G短路,给G极加上负触发信号,电阻值应为十欧左右(参见图4 (a)),证明管子已经导通,导通方向为T1一T2。
再将红表笔尖与G极脱开(但仍接T2),若电阻值保持不变,证明管子在触发之后能维持导通状态(见图 4(b))。
(3)把红表笔接T1极,黑表笔接T2极,然后使T2与G短路,给G极加上正触发信号,电阻值仍为十欧左右,与G极脱开后若阻值不变,则说明管子经触发后,在T2一T1方向上也能维持导通状态,因此具有双向触发性质。
由此证明上述假定正确。
否则是假定与实际不符,需再作出假定,重复以上测量。
显见,在识别G、T1,的过程中,也就检查了双向可控硅的触发能力。
如果按哪种假定去测量,都不能使双向可控硅触发导通,证明管于巳损坏。
对于lA的管子,亦可用RXl0档检测,对于3A及3A以上的管子,应选RXl档,否则难以维持导通状态。
典型应用双向可控硅可广泛用于工业、交通、家用电器等领域,实现交流调压、电机调速、交流开关、路灯自动开启与关闭、温度控制、台灯调光、舞台调光等多种功能,它还被用于固态继电器(SSR)和固态接触器电路中。
图5是由双向可控硅构成的接近开关电路。
R为门极限流电阻,JAG为干式舌簧管。
平时JAG断开,双向可控硅TRIAC也关断。
仅当小磁铁移近时JAG吸合,使双向可控硅导通,将负载电源接通。
由于通过干簧管的电流很小,时间仅几微秒,所以开关的寿命很长.图6是过零触发型交流固态继电器(AC-SSR)的内部电路。
主要包括输入电路、光电耦合器、过零触发电路、开关电路(包括双向可控硅)、保护电路 (RC吸收网络)。
当加上输入信号VI(一般为高电平)、并且交流负载电源电压通过零点时,双向可控硅被触发,将负载电源接通。
固态继电器具有驱动功率小、无触点、噪音低、抗干扰能力强,吸合、释放时间短、寿命长,能与TTL\CMOS 电路兼容,可取代传统的电磁继电器。
双向可控硅的原理TRIAC的特性什么是双向可控硅:IAC(TRI-ELECTRODE AC SWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。
TRIAC为三端元件,其三端分别为T1(第二端子或第二阳极),T 2(第一端子或第一阳极)和G(控制极)亦为一闸极控制开关,与SCR最大的不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。
因为它是双向元件,所以不管T1,T2的电压极性如何,若闸极有信号加入时,则T1 ,T2间呈导通状态;反之,加闸极触发信号,则T1 ,T2间有极高的阻抗。
ab126计算公式大全(a)符号 (b)构造图1 TRIAC二.TRIAC的触发特性: 838电子由于TRIAC为控制极控制的双向可控硅,控制极电压V G极性与阳极间之电压V T1T2四种组合分别如下:(1). V T1T2为正, V G为正。
(2). V T1T2为正, V G为负。
(3). V T1T2为负, V G为正。
(4). V T1T2为负, V G为负。
一般最好使用在对称情况下(1与4或2与3),以使正负半周能得到对称的结果,最方便的控制方法则为1与4之控制状态,因为控制极信号与V T1T2同极性。
图2 TRIAC之V-I特性曲线如图2所示为TRIAC之V-I特性曲线,将此图与SCR之VI特性曲线比较,可看出TRIAC的特性曲线与SCR类似,只是TRIAC正负电压均能导通,所以第三象限之曲线与第一象限之曲线类似,故TRIAC可视为两个SCR反相并联TRIAC之T1-T2的崩溃电压亦不同,亦可看出正负半周的电压皆可以使TRIAC导通,一般使TRIAC 截止的方法与SCR相同,即设法降低两阳极间之电流到保持电流以下TRIAC即截止。
三.TRIAC之触发:TRIAC的相位控制与SCR很类似,可用直流信号,交流相位信号与脉波信号来触发,所不同者是V T1-T2负电压时,仍可触发TRIAC。
四. TRIAC的相位控制:TRIAC的相位控制与SCR很类似,但因TRIAC能双向导通之故,在正负半周均能触发、可作为全波功率控制之用,因此TRIAC除具有SCR的优点,更方便于交流功率控制,图3(a)为TRIAC相位控制电路,只适当的调整RC时间常数即可改变它的激发角,图3(b),(c)分别是激发角为30度时的VT1-T2及负载的电压波形,一般TRIAC所能控制的负载远比SCR小,大体上而言约在600V,40A以下。
(A)(B)AC两端电压波形(C)两端电压波形五 .触发装置:TRIAC之触发电路与SCR类似,可以用RC电路配合UJT、PUT、DIAC等元件组成的触发电路来触发,这些元件的触发延迟角。
都可由改变电路所使用的电阻值来调整,其变化范围在0°~180°之间,正负半周均能导通,而在工业电力控制上,常以电压回授来调整触发延迟角,用以代表负载实际情况的电压回授,启动系统做良好的闭回路控制。
这种由回授来控制触发延迟角,常由UJT或TCA785来完成。
实验:应用电路说明如图所示,利用TCA785所组成之TRIAC相位控制电路,其动作原理与SCR之TCA785相位控制电路相似,由于TRIAC在电源正负半周均能导通,所以第14脚(控制正半周之激发角)与第15脚(控制负半周之激发角),均必须使用。
由VR1之改变以改变第11脚之控制电压值,则可调整激发角以控制灯泡之亮度。
利用TCA785做TRIAC之相位控制可控硅元件的工作原理及基本特性1、工作原理可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示图1 可控硅等效图解图当阳极A加上正向电压时,BG1和BG2管均处于放大状态。
此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。
因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。
此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。
这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。
由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。
由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1表1 可控硅导通和关断条件状态条件说明从关断到导通1、阳极电位高于是阴极电位2、控制极有足够的正向电压和电流两者缺一不可维持导通1、阳极电位高于阴极电位2、阳极电流大于维持电流两者缺一不可从导通到关断1、阳极电位低于阴极电位2、阳极电流小于维持电流任一条件即可2、基本伏安特性可控硅的基本伏安特性见图2图2 可控硅基本伏安特性(1)反向特性当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。
此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR 段所示,弯曲处的电压URO叫“反向转折电压”。
此时,可控硅会发生永久性反向击穿。
图3 阳极加反向电压(2)正向特性当控制极开路,阳极上加上正向电压时(见图4),J1、J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,图3的特性发生了弯曲,如特性OA段所示,弯曲处的是UBO 叫:正向转折电压图4 阳极加正向电压由于电压升高到J2结的雪崩击穿电压后,J2结发生雪崩倍增效应,在结区产生大量的电子和空穴,电子时入N1区,空穴时入P2区。
进入N1区的电子与由P1区通过J1结注入N1区的空穴复合,同样,进入P2区的空穴与由N2区通过J3结注入P2区的电子复合,雪崩击穿,进入N1区的电子与进入P2区的空穴各自不能全部复合掉,这样,在N1区就有电子积累,在P2区就有空穴积累,结果使P2区的电位升高,N1区的电位下降,J2结变成正偏,只要电流稍增加,电压便迅速下降,出现所谓负阻特性,见图3的虚线AB段。
这时J1、J2、J3三个结均处于正偏,可控硅便进入正向导电状态---通态,此时,它的特性与普通的PN结正向特性相似,见图2中的BC段3、触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。
在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。
图5 阳极和控制极均加正向电压光电耦合器件简介光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。
光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。