双向可控硅的原理,二三极管原理

合集下载

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅(Bilateral Triode Thyristor,简称BTT)是一种特殊的可控硅器件,其工作原理和应用领域在电力电子领域具有重要意义。

本文将详细介绍双向可控硅的工作原理,并提供相应的原理图。

一、双向可控硅的工作原理双向可控硅是一种四层PNPN结构的半导体器件。

它由两个PN结组成,每个PN结都有一个控制极和一个主极。

其工作原理如下:1. 静态工作原理:当双向可控硅两个主极之间的电压为正向时,即正向工作状态,两个PN结之间的结电容会阻碍电流的流动,双向可控硅处于关断状态。

当双向可控硅两个主极之间的电压为反向时,即反向工作状态,两个PN结之间的结电容充电,当电压达到一定的阈值时,双向可控硅会进入导通状态。

2. 动态工作原理:当双向可控硅处于导通状态时,只有当两个主极之间的电流方向与PN结的导通方向一致时,双向可控硅才能正常导通。

当双向可控硅导通后,只有当两个主极之间的电流方向与PN结的导通方向相反时,双向可控硅才能正常关断。

二、双向可控硅的原理图下面是一种常见的双向可控硅的原理图,用于说明其电路连接方式和控制方式。

```+----|>|----|>|----+| || || |+----|<|----|<|----+```在上述原理图中,两个箭头表示双向可控硅的两个主极,箭头方向表示电流的流动方向。

两个箭头之间的线段表示PN结。

三、双向可控硅的应用领域双向可控硅由于其双向导通的特性,在电力电子领域有广泛的应用。

以下是一些常见的应用领域:1. 交流电控制:双向可控硅可以用于交流电的控制,例如交流电的调光、电机的调速等。

2. 电力系统:双向可控硅可以用于电力系统中的电压和电流控制,例如电力调度、电力传输等。

3. 电力电子变换器:双向可控硅可以用于电力电子变换器中的电流控制,例如直流-交流变换器、交流-直流变换器等。

4. 光伏发电系统:双向可控硅可以用于光伏发电系统中的电流控制,例如光伏逆变器、光伏充电控制器等。

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅(Bidirectional Thyristor)是一种半导体器件,也称为反向可控晶闸管或双向晶闸管。

它可以在电路中控制电流方向,并能够在两个方向上导电。

本文将探讨双向可控硅的工作原理及原理图。

一、工作原理双向可控硅由四个层结构组成,其结构如下:从上图中可以看出,双向可控硅有两个PN结,每个PN结中有一个P层和一个N层。

双向可控硅中的三个引脚分别是Anode、Cathode 和Gate。

Anode 和Cathode 被用于控制电流的方向,而Gate 用于控制电流的大小。

当Gate 电压为0V,双向可控硅处于阻断状态,不允许电流通过。

当Gate 上升到一定电压(通常是0.5V到1.5V)时,由于Gate 与Anode 之间存在一种物理现象,即PN 结反向击穿,Gate 电流开始流动并执行电路中的功能。

此时,双向可控硅的阻抗变得非常小,允许电流从Anode 流向Cathode。

当Gate 电压再次降低到0V时,双向可控硅仍然保持导通状态,直到Anode-Cathode 电压降至其维持电压(通常为5V)以下并持续几个毫秒。

当Anode-Cathode电压降至零时,双向可控硅恢复到阻断状态。

双向可控硅最常用于交流电路中,因为它可以在两个方向上导电。

它允许电流从Anode 流入Cathode 以及从Cathode 流入Anode。

这意味着双向可控硅可以用作交流电控制器。

例如,在灯光控制中,双向可控硅可用于调节灯光的亮度。

二、原理图下面是一个双向可控硅的原理图:在上图中,交流电源连接到电路中的双向可控硅。

一个变压器被用来将AC电源分成两半,每半AC 电压的峰值与其他半波相同但相反。

这就是我们所说的半波电压。

每个半波电压都通过一个双向可控硅,从而在两个方向上控制电流。

Gate 引脚连接到一个变阻器(不显示在图中),它可以用来控制电流的大小。

由于交流电源的极性不是定量的,因此交流电源的一半被连接到电路中的第一个双向可控硅,另一半被连接到电路中的第二个双向可控硅。

光耦双向可控硅

光耦双向可控硅

光耦双向可控硅光耦双向可控硅是一种常用的半导体器件,它具有双向导通能力和隔离保护功能。

本文将从以下几个方面对光耦双向可控硅进行详细介绍。

一、光耦双向可控硅的基本概念光耦双向可控硅(Bilateral Triode Thyristor,BTT)是一种集成了三极管和双向可控硅(Triac)的半导体器件。

它具有两个PNP结和一个NPN结,可以实现正向和反向电流的导通。

同时,它还具有隔离保护功能,可以有效地隔离高压电路和低压电路。

二、光耦双向可控硅的结构与工作原理1. 结构光耦双向可控硅由两部分组成:输入端和输出端。

输入端包括一个LED发光二极管和一个NPN晶体管,输出端包括一个Triac。

2. 工作原理当输入端施加正向电压时,LED发光二极管发出红外线信号照射到输出端的Triac门极上,使其触发,并使其导通。

此时,输出端的A1、A2两个引脚之间的电路就会形成一条导通通路,从而使负载得到电源供电。

反之,当输入端施加反向电压时,LED发光二极管不发光,Triac无法触发,输出端不导通。

三、光耦双向可控硅的特点1. 双向导通能力光耦双向可控硅具有双向导通能力,可以实现正向和反向电流的导通。

这种特性使得它在交流电路中能够起到很好的作用。

2. 隔离保护功能光耦双向可控硅具有隔离保护功能,可以有效地隔离高压电路和低压电路。

这种特性使得它在工业自动化、家用电器等领域广泛应用。

3. 触发灵敏度高光耦双向可控硅的LED发光二极管具有较高的灵敏度,只需要很小的输入信号就可以触发输出端的Triac。

4. 体积小、重量轻光耦双向可控硅体积小、重量轻,在应用中非常方便。

四、光耦双向可控硅的应用领域1. 家用电器光耦双向可控硅在家用电器中的应用非常广泛,如电热水器、电吹风、微波炉等。

2. 工业自动化光耦双向可控硅在工业自动化中的应用也很广泛,如机床控制、PLC系统等。

3. 照明控制光耦双向可控硅可以用于照明控制,如灯光调节、定时开关等。

双向可控硅工作原理

双向可控硅工作原理

双向可控硅工作原理
双向可控硅(SCR)是一种半导体器件,它具有双向导通特性和可控性,被广
泛应用于电力控制和电子调节领域。

本文将从双向可控硅的工作原理入手,为大家详细介绍其结构、工作特性及应用范围。

首先,让我们来了解一下双向可控硅的结构。

双向可控硅由四层半导体材料构成,分别是P型半导体、N型半导体、P型半导体和N型半导体。

其中,P型半导
体和N型半导体之间夹杂着一层绝缘层,构成PNPN的结构。

这种结构使得双向
可控硅具有双向导通的特性,即可以实现正向和反向的导通状态。

接下来,我们来探讨一下双向可控硅的工作原理。

当双向可控硅的控制极施加
一个触发脉冲时,只要脉冲的幅值大于一定的触发电压,双向可控硅就会进入导通状态。

在导通状态下,双向可控硅的两个外部引线之间就会出现一个很小的电压降,从而使得电流得以通过。

而一旦控制极上的触发脉冲停止,双向可控硅将会一直保持导通状态,直到通过它的电流降至零或者反向电压超过其关断电压为止。

另外,双向可控硅还具有可控性的特点。

通过控制极施加不同的触发脉冲,可
以实现对双向可控硅的导通和关断进行精确控制。

这种可控性使得双向可控硅在电力控制和电子调节领域有着广泛的应用。

例如,在交流电调节电路中,双向可控硅可以通过控制触发脉冲的相位和宽度,实现对交流电压的精确调节。

总的来说,双向可控硅以其双向导通特性和可控性,在电力控制和电子调节领
域有着重要的应用价值。

通过本文的介绍,相信大家对双向可控硅的工作原理有了更深入的了解,希望能够为相关领域的工程师和研究人员提供一些参考和帮助。

双向可控硅工作原理

双向可控硅工作原理

双向可控硅工作原理
双向可控硅(Bilateral Controllable Silicon, BCS)是一种电子元件,其工作原理基于PNPN结构和电流控制特性。

在正向偏置条件下,当传导方向形成一个闭合回路时,双向可控硅将开始导电。

当控制电流超过触发电流(Gate Trigger Current, Igt)时,双向可控硅进入导通状态。

此时,正向电压可以正常通过双向可控硅,从而使其导通。

在反向偏置条件下,双向可控硅处于高阻态(非导通状态),即使施加正向电压,也无法使其导通。

要使双向可控硅恢复到非导通状态,需要将反向电压加到一个临界值(反向陡度电压,Rate of Rise of Blocking Voltage,
dv/dt)。

当反向电压达到这个临界值时,双向可控硅将自动恢复到高阻态,从而停止导电。

双向可控硅的工作原理非常适用于需要控制电流方向的交流电路。

通过控制控制电流的触发电压和导通方式,可以实现对电路的开关和控制。

这使得双向可控硅在许多应用中具有很高的灵活性和可调性。

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅的工作原理1、可控硅就是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它瞧作由一个PNP管与一个NPN管所组成当阳极A加上正向电压时,BG1与BG2管均处于放大状态。

此时,如果从控制极G 输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。

因为BG2的集电极直接与B G1的基极相连,所以ib1=ic2。

此时,电流ic2再经BG1放大,于就是BG1的集电极电流ic1=β1ib1=β1β2ib2。

这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱与导通。

由于BG1与BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅就是不可关断的。

由于可控硅只有导通与关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化2,触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。

在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。

TRIAC的特性什么就是双向可控硅:IAC(TRI-ELECTRODE AC SWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。

TRI AC为三端元件,其三端分别为T1(第二端子或第二阳极),T 2(第一端子或第一阳极)与G(控制极)亦为一闸极控制开关,与SCR最大的不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。

因为它就是双向元件,所以不管T1 ,T2的电压极性如何,若闸极有信号加入时,则T1 ,T2间呈导通状态;反之,加闸极触发信号,则T1 ,T2间有极高的阻抗。

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅(bidirectional controlled silicon)是一种常用的电子元件,广泛应用于电力电子领域。

其工作原理基于硅中的PN结,通过控制门极电压和正向或反向的触发脉冲,来控制双向可控硅的导通与断开。

双向可控硅由四个层组成,中间是一个PNPN的结构。

首先是“P”区,它是一个P型的半导体材料,它与“P”区连接的叫做“N”区,是一个N型的半导体材料。

双向可控硅的另一侧有一个N型区域,这个N型区域也被称为门极区,它是由P型材料连接的。

最后,位于门极区域之外的是一个P型的区域,称为辅助区或附加区。

双向可控硅的工作与普通的可控硅相似,但具有双向导通特性。

当双向可控硅的控制电压超过它的触发电压时,它会进入导通状态。

在导通状态下,电流可以从一个端口流入另一个端口。

当控制电压降低到一个较低的水平时,双向可控硅会恢复到关断状态。

这是双向可控硅的一个基本工作原理。

但是,为了更好地理解双向可控硅的原理以及其应用,我们需要详细了解它的电路原理图。

双向可控硅的电路原理图如下所示:``` +---------+ || Anode -----| P2-N1 |------ Cathode || Cathode ----| N2-P1 |------ Anode || Gate -----| P2-N1 | | | Aux------| P2 - N2| | |```将上面的电路原理图分为两个部分,每个部分由一个PNPN结构和一个PN结组成。

左右两个部分在结构和原理上是相同的。

在左侧的部分,当触发脉冲施加在门极上时,N2电极与P1电极之间的PN结会启动导通,电流可以从阳极流入阴极。

而右侧的部分同样适用,只是电流的方向相反。

在实际应用中,双向可控硅常用于交流电源的控制,如变频调速、电流和电压的调整等。

它也广泛应用于照明、电动机控制、电力调度等领域。

总结起来,双向可控硅是一种重要的电子元件,其工作原理基于硅中的PN结,通过控制门极电压和触发脉冲来控制导通和断开。

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅(SCR)是一种半导体器件,常用于交流电路中的功率控制和开关。

它具有双向导通性,可以控制交流电路中的电流,从而实现电路的开关和调节。

本文将介绍双向可控硅的工作原理及原理图。

一、双向可控硅的基本结构1.1 门极:双向可控硅的门极用于控制器件的导通和关断。

1.2 主极:主极是双向可控硅的两个极性端,用于连接电路中的电源和负载。

1.3 控制电路:控制电路通过对门极施加控制信号,控制双向可控硅的导通和关断。

二、双向可控硅的工作原理2.1 导通状态:当双向可控硅的门极接收到正向触发脉冲时,器件将进入导通状态,电流可以从主极1流向主极2。

2.2 关断状态:当双向可控硅的门极接收到负向触发脉冲时,器件将进入关断状态,电流无法通过器件。

2.3 双向导通性:双向可控硅具有双向导通性,可以控制交流电路中的电流方向。

三、双向可控硅的应用3.1 交流电源控制:双向可控硅常用于交流电源控制中,可以实现对电路的精确调节和开关控制。

3.2 电动机控制:双向可控硅可以控制电动机的启动、停止和速度调节,广泛应用于工业控制领域。

3.3 灯光调节:双向可控硅可以用于调节灯光的亮度,实现灯光的调光功能。

四、双向可控硅的原理图4.1 主极1:连接电源的正极。

4.2 主极2:连接电路中的负载。

4.3 门极:用于接收控制信号。

五、双向可控硅的优点5.1 高效率:双向可控硅具有低导通压降和高导通能力,能够实现高效的电路控制。

5.2 可靠性:双向可控硅的结构简单,工作稳定可靠,长寿命。

5.3 灵活性:双向可控硅可以实现对电路的精确控制,适用于各种功率控制和开关应用。

总结:双向可控硅是一种重要的半导体器件,具有双向导通性和精确控制能力,广泛应用于交流电路中的功率控制和开关。

掌握双向可控硅的工作原理及原理图,对于电路设计和控制具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

尽管从形式上可将双向可控硅瞧成两只普通可控硅的组合,但实际上它就是由7只晶体管与多只电阻构成的功率集成器件。

小功率双向可控硅一般采用塑料封装,有的还带散热板,外形如图l所示。

典型产品有BCMlAM(1A/600V)、BCM3AM(3A/600V)、2N6075(4A/600V),MAC218-10(8A/800V)等。

大功率双向可控硅大多采用RD91型封装。

双向可控硅的主要参数见附表。

双向可控硅的结构与符号见图2。

它属于NPNPN五层器件,三个电极分别就是T1、T2、G。

因该器件可以双向导通,故除门极G以外的两个电极统称为主端子,用T1、T2。

表示,不再划分成阳极或阴极。

其特点就是,当G极与T2极相对于T1,的电压均为正时,T2就是阳极,T1就是阴极。

反之,当G极与T2 极相对于T1的电压均为负时,T1变成阳极,T2为阴极。

双向可控硅的伏安特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。

检测方法下面介绍利用万用表RXl档判定双向可控硅电极的方法,同时还检查触发能力。

1、判定T2极由图2可见,G极与T1极靠近,距T2极较远。

因此,G—T1之间的正、反向电阻都很小。

在肦Xl档测任意两脚之间的电阻时,只有在G-T1之间呈现低阻,正、反向电阻仅几十欧,而T2-G、T2-T1之间的正、反向电阻均为无穷大。

这表明,如果测出某脚与其她两脚都不通,就肯定就是T2极。

,另外,采用TO—220封装的双向可控硅,T2极通常与小散热板连通,据此亦可确定T2极。

2.区分G极与T1极(1)找出T2极之后,首先假定剩下两脚中某一脚为Tl极,另一脚为G极。

(2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。

接着用红表笔尖把T2与G 短路,给G极加上负触发信号,电阻值应为十欧左右(参见图4 (a)),证明管子已经导通,导通方向为T1一T2。

再将红表笔尖与G极脱开(但仍接T2),若电阻值保持不变,证明管子在触发之后能维持导通状态(见图4(b))。

(3)把红表笔接T1极,黑表笔接T2极,然后使T2与G短路,给G极加上正触发信号,电阻值仍为十欧左右,与G极脱开后若阻值不变,则说明管子经触发后,在T2一T1方向上也能维持导通状态,因此具有双向触发性质。

由此证明上述假定正确。

否则就是假定与实际不符,需再作出假定,重复以上测量。

显见,在识别G、T1,的过程中,也就检查了双向可控硅的触发能力。

如果按哪种假定去测量,都不能使双向可控硅触发导通,证明管于巳损坏。

对于lA的管子,亦可用RXl0档检测,对于3A及3A以上的管子,应选RXl档,否则难以维持导通状态。

典型应用双向可控硅可广泛用于工业、交通、家用电器等领域,实现交流调压、电机调速、交流开关、路灯自动开启与关闭、温度控制、台灯调光、舞台调光等多种功能,它还被用于固态继电器(SSR)与固态接触器电路中。

图5就是由双向可控硅构成的接近开关电路。

R为门极限流电阻,JAG为干式舌簧管。

平时JAG断开,双向可控硅TRIAC也关断。

仅当小磁铁移近时JAG吸合,使双向可控硅导通,将负载电源接通。

由于通过干簧管的电流很小,时间仅几微秒,所以开关的寿命很长、图6就是过零触发型交流固态继电器(AC-SSR)的内部电路。

主要包括输入电路、光电耦合器、过零触发电路、开关电路(包括双向可控硅)、保护电路(RC 吸收网络)。

当加上输入信号VI(一般为高电平)、并且交流负载电源电压通过零点时,双向可控硅被触发,将负载电源接通。

固态继电器具有驱动功率小、无触点、噪音低、抗干扰能力强,吸合、释放时间短、寿命长,能与TTL\CMOS电路兼容,可取代传统的电磁继电器。

双向可控硅的原理TRIAC的特性什么就是双向可控硅:IAC(TRI-ELECTRODE AC SWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。

TRIAC为三端元件,其三端分别为T1(第二端子或第二阳极),T 2(第一端子或第一阳极)与G(控制极)亦为一闸极控制开关,与SCR最大的不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。

因为它就是双向元件,所以不管T1 ,T2的电压极性如何,若闸极有信号加入时,则T1 ,T2间呈导通状态;反之,加闸极触发信号,则T1 ,T2间有极高的阻抗。

ab126计算公式大全(a)符号(b)构造图1 TRIAC二、TRIAC的触发特性: 838电子由于TRIAC为控制极控制的双向可控硅,控制极电压V G极性与阳极间之电压V T1T2四种组合分别如下:(1)、V T1T2为正, V G为正。

(2)、V T1T2为正, V G为负。

(3)、V T1T2为负, V G为正。

(4)、V T1T2为负, V G为负。

一般最好使用在对称情况下(1与4或2与3),以使正负半周能得到对称的结果,最方便的控制方法则为1与4之控制状态,因为控制极信号与V T1T2同极性。

图2 TRIAC之V-I特性曲线如图2所示为TRIAC之V-I特性曲线,将此图与SCR之VI特性曲线比较,可瞧出TRIAC的特性曲线与SCR类似,只就是TRIAC正负电压均能导通,所以第三象限之曲线与第一象限之曲线类似,故TRIAC可视为两个SCR反相并联TRIAC 之T1-T2的崩溃电压亦不同,亦可瞧出正负半周的电压皆可以使TRIAC导通,一般使TRIAC截止的方法与SCR相同,即设法降低两阳极间之电流到保持电流以下TRIAC即截止。

三、TRIAC之触发:TRIAC的相位控制与SCR很类似,可用直流信号,交流相位信号与脉波信号来触发,所不同者就是V T1-T2负电压时,仍可触发TRIAC。

四、TRIAC的相位控制:TRIAC的相位控制与SCR很类似,但因TRIAC能双向导通之故,在正负半周均能触发、可作为全波功率控制之用,因此TRIAC除具有SCR的优点,更方便于交流功率控制,图3(a)为TRIAC相位控制电路,只适当的调整RC时间常数即可改变它的激发角,图3(b),(c)分别就是激发角为30度时的VT1-T2及负载的电压波形,一般TRIAC所能控制的负载远比SCR小,大体上而言约在600V,40A 以下。

(A)(B)AC两端电压波形(C)两端电压波形五、触发装置:TRIAC之触发电路与SCR类似,可以用RC电路配合UJT、PUT、DIAC等元件组成的触发电路来触发,这些元件的触发延迟角。

都可由改变电路所使用的电阻值来调整,其变化范围在0°~180°之间,正负半周均能导通,而在工业电力控制上,常以电压回授来调整触发延迟角,用以代表负载实际情况的电压回授,启动系统做良好的闭回路控制。

这种由回授来控制触发延迟角,常由UJT或TCA785来完成。

实验:应用电路说明如图所示,利用TCA785所组成之TRIAC相位控制电路,其动作原理与SCR 之TCA785相位控制电路相似,由于TRIAC在电源正负半周均能导通,所以第14脚(控制正半周之激发角)与第15脚(控制负半周之激发角),均必须使用。

由VR1之改变以改变第11脚之控制电压值,则可调整激发角以控制灯泡之亮度。

利用TCA785做TRIAC之相位控制可控硅元件的工作原理及基本特性1、工作原理可控硅就是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它瞧作由一个PNP管与一个NPN管所组成,其等效图解如图1所示图1 可控硅等效图解图当阳极A加上正向电压时,BG1与BG2管均处于放大状态。

此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。

因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。

此时,电流ic2再经BG1放大,于就是BG1的集电极电流ic1=β1ib1=β1β2ib2。

这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱与导通。

由于BG1与BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G 的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅就是不可关断的。

由于可控硅只有导通与关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1表1 可控硅导通与关断条件状态条件说明从关断到导通1、阳极电位高于就是阴极电位2、控制极有足够的正向电压与电流两者缺一不可维持导通1、阳极电位高于阴极电位2、阳极电流大于维持电流两者缺一不可从导通到关断1、阳极电位低于阴极电位2、阳极电流小于维持电流任一条件即可2、基本伏安特性可控硅的基本伏安特性见图2图2 可控硅基本伏安特性(1)反向特性当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。

此时只能流过很小的反向饱与电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。

此时,可控硅会发生永久性反向击穿。

图3 阳极加反向电压(2)正向特性当控制极开路,阳极上加上正向电压时(见图4),J1、J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,图3的特性发生了弯曲,如特性OA段所示,弯曲处的就是UBO叫:正向转折电压图4 阳极加正向电压由于电压升高到J2结的雪崩击穿电压后,J2结发生雪崩倍增效应,在结区产生大量的电子与空穴,电子时入N1区,空穴时入P2区。

进入N1区的电子与由P1区通过J1结注入N1区的空穴复合,同样,进入P2区的空穴与由N2区通过J3结注入P2区的电子复合,雪崩击穿,进入N1区的电子与进入P2区的空穴各自不能全部复合掉,这样,在N1区就有电子积累,在P2区就有空穴积累,结果使P2区的电位升高,N1区的电位下降,J2结变成正偏,只要电流稍增加,电压便迅速下降,出现所谓负阻特性,见图3的虚线AB段。

这时J1、J2、J3三个结均处于正偏,可控硅便进入正向导电状态---通态,此时,它的特性与普通的PN结正向特性相似,见图2中的BC段3、触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。

在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT 越大,特性左移越快。

图5 阳极与控制极均加正向电压光电耦合器件简介光电偶合器件(简称光耦)就是把发光器件(如发光二极体)与光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光与光—电的转换器件。

相关文档
最新文档