高等数学第10章课后习题答案(科学出版社)

合集下载

《高等数学教程》第十章多元函数微分法习题参考答案

《高等数学教程》第十章多元函数微分法习题参考答案

《高等数学教程》第十章 多元函数微分法 习题参考答案10-1 (A)1.)()(y x xy +2.x xy xy y x 2)()(++5.(1)}012),({2>+-x y y x ; (2)}0,0),({>->+y x y x y x ; (3)}4,10),({222x y y x y x ≤<+<; (4)}0,0,0),,({>>>z y x z y x ; (5)},0,0),({2y x y x y x ≥≥≥; (6)}1,0,0),({22<+≥>-y x x x y y x ; (7)},),({+∞≤≤-∞+∞≤≤∞-y x y x ; (8)}2,0),({x y x y x π≤≠;(9)}),,({22222R z y x r z y x ≤++<; (10)}0,0),,({22222≠+≥-+y x z y x z y x .6.(1)2ln ; (2)0; (3)∞+;(4)41- (5)不存在; (6)0(7)0 (8)e 9.(1)在)0,0(点不连续(2)在0≠+y x 上所有),(y x 点均连续 (3) 在)0,0(点不连续10-1 (B)1.21x +2.1,22-+=+=x y z x x f3.yy x +-1)1(210-2 (A)1.(1)52(2)1,2ln 22+ (3)3334,3,2e e e2. 13.(1)x y x yz y y x x z 23323,3-=∂∂-=∂∂ (2)221,1vu u v s u v v u s -=∂∂-=∂∂ (3))ln(21,)ln(21xy y y z xy x x z =∂∂=∂∂ (4))]2sin()[cos()],2sin()[cos(xy xy x y z xy xy y x z -=∂∂-=∂∂ (5)y x yx y z y x y x z 2csc 2,csc 222-=∂∂=∂∂ (6)]1)1[ln()1(,1)1(2xyxy xy xy y z xy y xy x z y y++++=∂∂++=∂∂ (7)x x zy z u x z y u x z y x u z yz y y zln ,1,21⋅-=∂∂=∂∂=∂∂-(8)zz x z z z y x y x y x z u y x y x z y u y x y x z x u 22121)(1)ln()(,)(1)(,)(1)(-+--=∂∂-+--=∂∂-+-=∂∂-- 6.4π 7.6π 10.(1)2222812y x x z -=∂∂,2222812x y yz -=∂∂,xy y x z 162-=∂∂∂ (2)22222)(2y x xy x z +=∂∂,22222)(2y x xy y z +-=∂∂,2222222)(y x x y x z +-=∂∂ (3)y y x z x 222ln =∂∂,222)1(--=∂∂x y x x yz ,)ln 1(12y x y y x z x +=∂∂∂- (4))sin()cos(222y x x y x xz+-+=∂∂,)sin(22y x x yz+-=∂∂, )sin()cos(2y x x y x y x z +-+=∂∂∂. 11. 2;2;0;012.023=∂∂∂y x z ,2231y y x z -=∂∂∂.10-2 (B)2.74arctan , )74arctan(-.10-3 (A)1.(1)dy y x dx y y )11()1(2-++;(2))(1dy dx xye x x y--;(3)xdz yx xdy zx dx yzx yz yz yz ln ln 1⋅+⋅+- (4)])1()1[(22)(dy x yx dx y x y eyx x y -+-+- 2.(1)dy dx 3231+ (2)dy dx 5252-3. 0.25e4. (1)2.95 (2)0.005 (3)2.039 (4)0.50235. -5厘米6. 55.3立方厘米10-3 (B)1.xdy e ydx e du yxyx ⋅+⋅=--222210-4 (A)1.)sin (cos cos sin 32θθθθρ-=∂∂pz]cos )sin 2(cos sin )cos 2[(sin 223θθθθθθρθ-+-=∂∂z2.)]23ln(2233[22y x xy x x y x z ---=∂∂]23)23[ln(22yx y y x x y y z ---=∂∂ 3.]2[244)(22yx y x x e x z xyy x -+=∂∂+ ]2[244)(22xyx y y e y z xyy x -+=∂∂+ 4.])()(cos[])(3))((21[322xyz xz yz xy z y x yz xyz z y zx yz xy xu++++++⋅+++++=∂∂ ])()(cos[])(3))((21[322xyz xz yz xy z y x xz xyz z x zx yz xy yu++++++⋅+++++=∂∂ ])()(cos[])(3)(21[3222xyz xz yz xy z y x xy xyz zx yz xy zu++++++⋅++++=∂∂ 5.)6(cos 22sin 2t t e t t -- 6.232)43(1)41(3t t t ---7.xx e x x e 221)1(++ 8.11sin 2++⋅a a x e ax9.)ln 1(1x y x xzy x y +=∂∂-+,x x y z y x y 2ln +=∂∂ 11.(1)'2'12f ye xf xzxy +=∂∂,'2'12f xe yf y z xy +-=∂∂ (2)'11f y x u =∂∂,'2'121f z f y x y u +-=∂∂,'22f zy z u -=∂∂ (3)'3'2'1yzf yf f x u ++=∂∂,'3'2xzf xf y u +=∂∂,'3xyf zu=∂∂ (4))1('yz y f x u ++⋅=∂∂,)('xz x f x u +⋅=∂∂,xy f xu⋅=∂∂' 14.(1)''2'2242f x f x z +=∂∂,''24xyf y x z =∂∂∂,''2'2242f y f yz +=∂∂(2)''222''12''112212f yf y f x z ++=∂∂ '22''22''12221)1(f y f y f y x y x z -+-=∂∂∂ ''2242'23222f yx f y x y z +=∂∂ (3)''2222''123''114'222442f y x f xy f y yf xz +++=∂∂''1223''223''113'2'1252222f y x yf x f xy xf yf yx z ++++=∂∂∂ ''224''123''1122'122442f x yf x f y x xf yz +++=∂∂ (4)''33)(2''12''112'1'322cos 2cos sin f e xf e xf f x f e xz y x y x y x ++++++⋅-=∂∂''33)(2''32''13''12'32sin cos sin cos f e yf e xf e yf x f e yx z y x y x y x y x +++++-+-=∂∂∂ ''33)(2''23''222'2'322sin 2sin cos f e yf e yf f y f e y z y x y x y x ++++-+⋅-=∂∂10-4 (B)1. )1()()()(212122121ψψϕψϕϕψψϕψϕϕ'+'+'-'=∂∂'-'+'+'=∂∂xx y z x yy x z 2. vvuv uu xv xu v u v u x yf x f xy x xf f x xf xf f y x zyf f f x f x z2222)2(22)2(+++++++=∂∂∂+++=∂∂3. z t y f z f z u x t y f x y f x f x u ∂∂∂∂∂∂+∂∂=∂∂∂∂∂∂∂∂+∂∂∂∂+∂∂=∂∂ψϕψϕϕ.10-5 (A)1.xy y e y x 2cos 2--;2.-1;3.xxy x y xy y ln ln 22--. 4.xy xyz xyz yz x z --=∂∂,xyxyz xyzxz y z --=∂∂2 5.z x zx z +=∂∂,)(2z x y z y z +=∂∂ 6. zy y z zxe x z x cos 3,cos 252-=∂∂-=∂∂ 7.dy dx xee x dz xy z xy z ++-+=----1)1(1 8.322224)()2(xy z y x xyz z z ---⋅ 9.32232)(22xy e e z y z xy ze y z z z --- 10. 2 11. 2 12.(1))13(2)16(++-=z y z x dx dy ,13+=z x dx dz (2)y x z y dz dx --=, yx x z dz dy --= (3)y x u y x u -+-=∂∂, y x y v y u -+-=∂∂; y x x u x v -+=∂∂, yx xv y v -+=∂∂10-5 (B)5.32)()()(v u u vv v uv u uv v uu u v u v uu u uv F F F F F F F F F F F F F F F F F -⋅-⋅+⋅+⋅---⋅-⋅ 7.'1'2'2'1'1'2'2'1)12)(1()12(g f yvg xf g f yvg uf x u------=∂∂ '1'2'2'1'1'1'1)12)(1()1(g f yvg xf uf xf g x v----+=∂∂8.1)cos (sin sin +-=∂∂v v e v x u u ,1)cos (sin cos +--=∂∂v v e v y u u ]1)cos (sin [cos +--=∂∂v v e u e v x v u u ,]1)cos (sin [sin +-+=∂∂v v e u e v y v uu 10-61.321+2.32 3.)(2122b a ab+ 4.2948 5. 5 6.14227.1412 8.202020000zy x z y x ++++9. }6,2,3{)0,0,0(--=gradf , }0,3,6{)1,1,1=(gradf10-71.切线方程:222111)12(-=-=--z y x π 法平面方程:422+=++πz y x2.切线方程:8142121-=--=-z y x 法平面方程:011682=-+-z y x 3.切线方程:000211z z z y m y y x x --=-=- 法平面方程:0)(21)()(00000=---+-z z z y y y m x x 4.切线方程:1191161--=-=-z y x 法平面方程:024916=--+z y x5.)1,1,1(1---P 及)271,91,31(2--P7.(1)切平面方程:042=-+y x法线方程:⎪⎩⎪⎨⎧=-=-02112z y x(2)切平面方程:22π=+-z y x , 法线方程:241111π-=--=-z y x(3)切平面方程:002002002202020)()()(1z z z c y y y b x x x a c z z b y y a x x -=-=-=++, 8.2112±=+-z y x 9.)3,1,3(--,133113-=+=+z y x 11.223cos =r10-8])4(21)4(22)[2sin()4(22222)2sin(.122ππηξπ-+-++--++=+y y x x y x y x其中 ).10()4(4<<-+==θπθπηθξy x ,])1(2)1(313)1[ln(!)2(!21.23322232y y x y x x y e y xy y z ηηηξξ+++-++++-+= 其中 ).10(,<<==θθηθξy x ,1021.1.3 10)!1()(!)(.4)(10<<++++=++=+∑θθy x n nk k yx e n y x k y x e10-9(A)1.(1)驻点)0,0(;极大点)0,0((2)驻点)2,2(),0,2(),2,0(),0,0(;极大点)0,0(;极小点(2,2).(3)驻点)0,2(),0,76(-;极大点)0,716(;极小点)0,2(-.2.(1)极小值:3231313),(a a a f =; (2)极小值:0)1,1(=-f ; (3)极大值:8)2,2(=-f ;(4)极小值:2)1,21(ef -=-.3.极大值:41)21,21(=z .4.当两边都是2e 时,可取得最大周界.5.当长、宽、都是32k ,而高为3221k 时,表面积最小. 6. 购买A 原料100吨, 购买B 原料25吨,可使生产量达到最大值. 7. 368. .3,521==D D 利润 125)3,5(=L 9.X=15(千克), Y=10(千克)10. (1) 当电台广告费用万元),(75.01=x 当报纸广告费用万元),(25.12=x 时可使利润最大。

高等数学高教版课后习题答案

高等数学高教版课后习题答案
4
5 x 2
ax
C4 e
4
ax
(a 0) ;
(9) y (C1 C2 x) sin x (C3 C4 x) cos x ; (10) y C1 C2 x (C3 C4 x)e x 。 2. (1) y
1 7 5 (2) y e 3 x e 3 x ; sin 2 x ; 2 6 6
25.提示:微分方程的解为 y 其中 k 为常数。
1 x 26.函数 f 满足的微分方程 y 2 (2 xy x 2 y ) ,特解: y 。 3 1 x3
§ 3 二阶线性微分方程 1. (1) y C1e 3 x C2 e 2 x ; (2) y C1e 3 x C2 e 3 x ; (3) y C1 cos 2 x C2 sin 2 x ; (4) y (C1 C 2 x)e ; (5) y (C1 C2 x)e 3 x ; (6) y C1e 4 x C2 ; (7) y C1 C2 e 3 x C3 e 2 x ; (8) y C1 cos 4 a x C2 sin 4 a x C3 e
x 3 3 3 2 e ; (3) y (4) y 2e 2 x 4 xe 2 x ; cos x sin x 2 3 2
(5) y
29 x 6 6 x 1 1 e e ; (6) y e 2 x 。 7 7 2 2
3. y C1e x C2 x x 2 1 。 4. y C1e x C2 (1 2 x) 。 5. y x sin x cos x ln(cos x) C1 cos x C2 sin x 。
(3) y ( x C ) cos x ; (4) y e 2 x Ce x ; (5) y 1 Ce x ; (6) y

高等数学下第十章答案

高等数学下第十章答案

一、单项选择题1---5 DCCCA 6---10 DBCAB 11---15 CDBDA 16---20 ABC CD 21—25 BCAA D 26---30 DAABB二、填空题1.1y x=2.312x x y C e C e =+3.2212x xy C e C xe --=+ 4. 2121cos 4x y e x C x C =+++ 5. 3121sin 3y x x C x C =+++ 6.22x y e =7. 3 8. 412112x C x C ++ 9. 1y x= 10.2.y x = 11.sin ln sin xy x y e==或 12.21122y x =+ 13.2x y e = 14.52sin 3220x y x x =-+++ 15. 42x y x=+ 三、计算题1. 求微分方程sin cos 0y x y x '-=的通解. 解 sin .y C x =其中常数C 可以是任意实数.2. 求微分方程 2331y y y x '''--=+的通解.解 通解为31213xx y C eC e x -=+-+3. 求微分方程220xy y x '+-=的通解及满足初始条件(2)2y =的特解. 解 方程的通解为 2Cy x =.特解为2244x y x =+ . 4. 求微分方程 543y y y x '''-+=的通解.解 通解为412121516xxx y C e C e+=++5. 求微分方程sin ln y x y y '=的通解及满足初始条件()2y e π=的特解.解 为原方程的通解ln ln sin y x C =+,特解为ln ln sin 1y x =- .6. 求微分方程 32y y y x '''-+=的通解.解 通解为212234xxx y C e C e+=++.7. 求微分方程3(2)2(1)xx y y e x '+-=+的通解及满足初始条件(0)1y =的特解. 解:通解为:22(2)(2)xy e x C x =+++ 特解为223(2)(2)4xy e x x =+-+ 8. 求微分方程 222y y y x '''-+=的一个特解. 解:特解为*22812y x x =++9. 求微分方程4(2)2(2)x y y x '+=++的通解及满足初始条件(0)1y =的特解. 解: 原非齐次线性方程的通解为:2221(2)(2)(2)2y x x x C x =++++特解为22211(2)(2)(2)24y x x x x =++++ 10. 求微分方程 2233y y y x '''-+=的一个特解. 解:特解为*24239y x x =++ 11. 求微分方程42xy y e '-=的通解.解 通解为 2212x x y e e C ⎛⎫=+ ⎪⎝⎭.12. 求方程440y y y '''-+=的通解及满足条件()()001y y '==的特解。

(完整word版)高等数学第10章课后习题答案(科学出版社)

(完整word版)高等数学第10章课后习题答案(科学出版社)
; .
于是所求的曲面积分为
.
(2) ,其中 为旋转抛物面 介于 之间部分的下侧。
解由两类曲面积分之间的联系,可得

在曲面 上,有



再依对坐标的曲面积分的计算方法,得

注意到



(3) ,其中 为 , 的上侧;
解 在 面上的投影为半圆域 , ,
=
= =
由对称性 = , =
∴原式= =
(4) ,其中 是由平面 , , , 所围成的四面体的表面的外侧。

其中 为上半球面 , , ,故

其中 是 在 坐标面上的投影区域,利用极坐标计算此二重积分,于是得
= ,
是一个无界函数的反常积分,按反常积分的计算方法可得



解法2设球面方程为 ,定直径在 轴上,依题意得球面上点 的密度为 ,从而得球面的质量为 ,由轮换对称性可知: ,故有

2设某流体的流速为 ,求单位时间内从圆柱 : ( )的内部流向外侧的流量(通量)。
,其中 从 变到 ,


解法2作有向线段 ,其方程为
,其中 从 变到 ,
则有向曲线 与有向线段 构成一条分段光滑的有向闭曲线,设它所围成的闭区域为 ,由格林公式,有







3.计算 ,其中 为平面 在第一卦限中的部分;
解 将曲面 投影到 面上,得投影区域为 ,此时曲面方程可表示为

于是


4. 计算 ,其中 是球面 的上半部分并取外侧;
解如右图所示,因为闭曲面取外侧,所以 取下侧, 取后侧, 取左侧, 取上侧。于是

大一下册高数习题册答案第10章

大一下册高数习题册答案第10章

重积分§ 1 二重积分的概念与性质 1、由二重积分的几何意义求二重积分的值dxdy y x I D⎰⎰+=22 其中D 为:422≤+y x( dxdy y x I D⎰⎰+=22=πππ3162.4..312.4.=-) 2、设D 为圆域,0,222>≤+a a y x 若积分dxdy y x a D⎰⎰--222=12π,求a 的值。

解:dxdy y x a D⎰⎰--222=3.34.21a π 81=a3、设D 由圆,2)1()2(22围成=-+-y x 求⎰⎰Ddxdy 3解:由于D 的面积为π2, 故⎰⎰Ddxdy 3=π64、设D :}10,53|),{(≤≤≤≤y x y x ,⎰⎰⎰⎰+=+=DDdxdy y x I dxdy y x I 221)][ln(,)ln(,比较1I , 与2I 的大小关系解:在D 上,)ln(y x +≤ 2)][ln(y x +,故1I ≤2I5、 设f(t)连续,则由平面 z=0,柱面 ,122=+y x 和曲面2)]([xy f z =所围的立体的体积,可用二重积分表示为⎰⎰≤+=1:222)]([y x D dxdy xy f V6、根据二重积分的性质估计下列积分的值⎰⎰Dydxdy x 22sin sin ππ≤≤≤≤y x D 0,0:(≤0⎰⎰Dydxdy x 22sin sin 2π≤)7、设f(x,y)为有界闭区域D :222a y x ≤+上的连续函数,求 ⎰⎰→Da dxdy y x f a ),(1lim20π解:利用积分中值定理及连续性有)0,0(),(lim ),(1lim820f f dxdy y x f a a D a ==→→⎰⎰ηξπ§ 2 二重积分的计算法1、设⎰⎰+=Ddxdy y xI 1,其中D 是由抛物线12+=x y 与直线y=2x ,x=0所围成的区域,则I=( )A : 212ln 3ln 87+-- B : 212ln 3ln 89-+C : 212ln 3ln 89-- D : 412ln 3ln 89--2、设D 是由不等式1≤+y x 所确定的有界区域,则二重积分⎰⎰+Ddxdy y x )(为( )A :0B : 31C :32D : 13、设D 是由曲线xy=1与直线x=1,x=2及y=2所围成的区域,则二重积分 ⎰⎰Dxy dxdy ye 为( )A :e e e 212124-- B :21242121e e e e -+-C :e e 21214+ D :2421e e -4、 设f(x,y)是连续函数,则二次积分dy y x f dx x x ⎰⎰++-2111),(为( )A dx y x f dy dx y x f dy y y ⎰⎰⎰⎰----+112111102),(),( B dx y x f dy y ⎰⎰--1110),(C dx y x f dy dx y x f dy y y ⎰⎰⎰⎰-----+112111102),(),( D dx y x f dy y ⎰⎰---11202),(5、设有界闭域D 1、D 2关于oy 轴对称,f 是域D=D 1+D 2上的连续函数,则二重积分⎰⎰Ddxdy y x f )(2为( )A ⎰⎰1),(22D dxdy y x f B ⎰⎰22),(4D dxdy y x fC ⎰⎰1),(42D dxdy y x f D⎰⎰22),(21D dxdy y x f 6、设D 1是由ox 轴、oy 轴及直线x+y=1所围成的有界闭域,f 是域D:|x|+|y|≤1上的连续函数,则二重积分⎰⎰Ddxdy y x f )(22为( )A ⎰⎰1),(222D dxdy y x f B ⎰⎰1),(422D dxdy y x fC ⎰⎰1),(822D dxdy y x f D⎰⎰1),(2122D dxdy y x f7、.设f(x,y)为连续函数,则⎰⎰a xdy y x f dx 0),(为( )A ⎰⎰a a ydx y x f dy 0),( B ⎰⎰a yadx y x f dy 0),(C ⎰⎰a y dx y x f dy 0),( D ⎰⎰a xdx y x f dy 0),(8、求 ⎰⎰=Ddxdy yx I 22 ,其中 :D 由x=2,y=x,xy=1所围成. (49)9、设I=⎰⎰31ln 0),(xdy y x f dx ,交换积分次序后I 为:I=⎰⎰31ln 0),(xdy y x f dx =⎰⎰3ln 03),(y edx y x f dy10、改变二次积分的次序: ⎰⎰⎰⎰-+4240200),(),(xx dy y x f dx dy y x f dx = ⎰⎰21221xxdx ydx x11、设 D={(x,y)|0≤x ≤1,0≤y ≤1} ,求⎰⎰+Dy x dxdy e 的值解:⎰⎰+Dyx dxdy e=⎰⎰⎰⎰-==+121101)1())((e dy e dx e dy edx y xl yx12设 I=⎰⎰--Ddxdy y x R 222,其中D 是由x 2+y 2=Rx 所围城的区域,求I (331R π)13、计算二重积分⎰⎰-+Ddxdy y x |4|22,其中D 是圆域922≤+y x解:⎰⎰-+Ddxdy y x |4|22==-+-⎰⎰⎰⎰rdr r d rdr r d ππθθ2032220202)4()4(241π 14、计算二重积分⎰⎰Dy xdxdy e },m ax{22,其中D={(x,y)| 0≤x ≤1,0≤y ≤1}解: ⎰⎰Dy xdxdy e }22,max{=1101022-=+⎰⎰⎰⎰e dx e d dy e dx yy xx y15、计算二重积分⎰⎰++Ddxdy yx yx 22,D :.1,122≥+≤+y x y x 解:⎰⎰++D dxdy yx y x 22=24)sin (cos 201sin cos 12πθθθπθθ-=+⎰⎰+rdr r r d§ 3 三重积分1、设Ω是由x=0,y=0,z=0及x+2y+z=1所围成的空间有界域,则⎰⎰⎰Ωxdxdydz 为( )A ⎰⎰⎰--12101y x y xdz d dx B ⎰⎰⎰---2102101y yx xdy dz dxC ⎰⎰⎰---2102101x yx xdz dy dx D ⎰⎰⎰10110xdz dy dx2、设Ω是由曲面x 2+y 2=2z,及z=2所围成的空间有界域,在柱面坐标系下将三重积分⎰⎰⎰Ωdxdydz z y x f ),,(表示为累次积分,I=( )A ⎰⎰⎰120202ρπθρθρρθz)dz ,sin ,cos f(d d B ⎰⎰⎰220202ρπρθρθρρθdz z),sin ,cos f(d dC ⎰⎰⎰2022202ρπρθρθρρθdz z),sin ,cos f(d d D ⎰⎰⎰20220dz z),sin ,cos f(d d ρθρθρρθπ3、设Ω是由1222≤++z y x 所确定的有界闭域,求三重积分⎰⎰⎰Ωdv e z ||解:⎰⎰⎰Ωdv e z ||=⎰⎰⎰--≤+111||222)(z y x z dz dxdy e =2⎰=-122)1(ππdz z e z 4、设Ω是由曲面z=xy, y=x, x=1 及z=0所围成的空间区域,求⎰⎰⎰Ωdxdydz z xy 32(1/364)5、设Ω是球域:1222≤++z y x ,求⎰⎰⎰Ω++++++dxdydz z y x z y x z 1)1ln(222222 (0) 6、计算⎰⎰⎰+Qdxdydz y x )(22 其中Ω为:平面z=2与曲面2222z y x =+所围成的区域 (π564) 7、计算⎰⎰⎰Qzdxdydz x 2其中Ω是由平面z=0,z=y,y=1以及y=x 2所围成的闭区域(2/27))8、设函数f(u)有连续导数,且f(0)=0,求dxdydz z y x f t tz y x t )(1lim 222222240⎰⎰⎰≤++→++π解:dxdydz z y x f tt z y x t ⎰⎰⎰≤++→++222222240(1lim π =)0(')(4limsin )(1lim 42022040f t drr f r dr r r f d d ttt tt ==⎰⎰⎰⎰→→ϕϕθπππ§4 重积分的应用1、(1)、由面积22y x +=2x, 22y x +=4x,y=x,y=0所围成的图形面积为( )A )2(41+πB )2(21+πC )2(43+π D 2+π(2) 、位于两圆θρsin 2=与θρsin 4=之间,质量分布均匀的薄板重心坐标是( )A (0,35)B (0,36)C (0,37) D (0,38)(3)、由抛物面x y z 422=+和平面x=2所围成的质量分布均匀的物体的重心坐标是 ( )A (0,0,34)B (0,0,35) C (0,0,45) D (0,0,47)(4)、 质量分布均匀(密度为μ)的立方体所占有空间区域:}10,10,10|),,{(≤≤≤≤≤≤=Ωz y x z y x ,该立方体到oz 轴的转动惯量I Z =( )A 31μB 32μC μD 34μ2、求均匀上半球体(半径为R)的质心解:显然质心在z 轴上,故x=y=0,z=⎰⎰⎰Ω=831R zdv V 故质心为(0,0,R 38)4、 曲面2213y x z --=将球面25222=++z y x 分割成三部分,由上至下依次记 这三部分曲面的面积为 s 1, s 2, s 3, 求s 1:s 2:s 3解:π102559222=--=⎰⎰≤+dxdy y x y x 1S π2025516222=--=⎰⎰≤+dxdy y x y x 3Sπ70=2S5、求曲面xy Rz =包含在圆柱222R y x =+内部的那部分面积 解:3)122(2222222R dxdy R y x R R y x π-=++=⎰⎰≤+S6、求圆柱体Rx y x 222≤+包含在抛物面Rz y x 222=+和xoy 平面之间那部分立体的体积解:43)(2132222R dxdy y x R Rx y x π=+=⎰⎰≤+V 第九章 自测题一、选择题: (40分) 1、⎰⎰-x dy y x f dx 1010),(=( )A ⎰⎰-1010),(dx y x f dy x B ⎰⎰-xdx y x f dy 1010),( C ⎰⎰11),(dx y x f dy D ⎰⎰-ydx y x f dy 101),(.2、设D 为222a y x ≤+,当=a ( )时,π=--⎰⎰Ddxdy y x a 222. A 1 B 323 C 343 D 321 3、设⎰⎰+=Ddxdy y x I )(22,其中D 由222a y x =+所围成,则I =( B ).A 40220a rdr a d aπθπ=⎰⎰ B 4022021a rdr r d aπθπ=⋅⎰⎰;C 3022032a dr r d a πθπ=⎰⎰ D 402202a adr a d a πθπ=⋅⎰⎰.4、设Ω是由三个坐标面与平面z y x -+2=1所围成的空间区域,则⎰⎰⎰Ωxdxdydz =( ).A481 B 481- C 241 D 241- .5 、设Ω是锥面,0(222222>+=a by a x c z )0,0>>c b 与平面c z y x ===,0,0所围成的空间区域在第一卦限的部分,则⎰⎰⎰Ωdxdydz z xy=( ). A c b a 22361 B b b a 22361 C a c b 22361D ab c 361.6、计算⎰⎰⎰Ω=zdv I ,1,222=+=Ωz y x z 为围成的立体,则正确的为( )和()A ⎰⎰⎰=101020zdz rdr d I πθ B ⎰⎰⎰=11020rzdz rdr d I πθC ⎰⎰⎰=11020rrdr dz d I πθ D ⎰⎰⎰=zzrdr d dz I 02010πθ.7、曲面22y x z +=包含在圆柱x y x 222=+内部的那部分面积=s ( )A π3B π2C π5D π22.8、由直线2,2,2===+y x y x 所围成的质量分布均匀(设面密度为μ)的平面薄板,关于x 轴的转动惯量x I =( ).A μ3B μ5C μ4D μ6二、计算下列二重积分:(20分)1、⎰⎰-Dd y x σ)(22,其中D 是闭区域:.0,sin 0π≤≤≤≤x x y (9402-π)2、⎰⎰Dd xyσarctan ,其中D 是由直线0=y 及圆周1,42222=+=+y x y x ,x y =所围成的在第一象 限内的闭区域 . (2643π) 3、⎰⎰+-+Dd y x y σ)963(2,其中D 是闭区 域:222R y x ≤+ (2494R R ππ+)4、⎰⎰-+Dd y x σ222,其中D :322≤+y x . (.25π) 三、作出积分区域图形并交换下列二次积分的次序: (15分)1、⎰⎰⎰⎰-+yydx y x f dy dx y x f dy 30312010),(),( (⎰⎰-xxdy y x f dx 3220),()2、⎰⎰-+21110),(x xdy y x f dx (⎰⎰⎰⎰-+2220211),(),(y y y dx y x f dy dx y x f dy )3、⎰⎰θθθθ0)sin ,cos (rdr r r f d a (⎰⎰θθθθ0)sin ,cos (rdr r r f d a)四、计算下列三重积分:(15分)1、Ω+⎰⎰⎰Ω,)cos(dxdydz z x y :抛物柱面x y =2,,π=+==z x o z o y 及平面所围成的区域 (21162-π) 2、,)(22⎰⎰⎰Ω+dv z y 其中Ω是由xoy 平面上曲线x y 22=绕x 轴旋转而成的曲面与平面5=x 所围 (π3250) 五、(5分)求平面1=++czb y a x 被三坐标面所割出的有限部分的面积 .(22222221a c c b b a ++)六、(5分)设)(x f 在]1,0[上连续,试证:310101])([61)()()(⎰⎰⎰⎰=dx x f dxdydz z f y f x f x y x 0)0(,)()()()(,)()(1==='=⎰⎰F dx x f t F x f x F dt t f x F x且则=⎰⎰⎰101)()()(x yx dxdydz z f y f x f =-⎰⎰dy x F y F y f dx x f x11)]()()[()(dx x F F x F x F F x f )}()1()()]()1((21){[(2122⎰+--=)1(21)1(61)1(21333F F F -+=)1(613F。

高等数学 课后习题答案 第十章

高等数学 课后习题答案 第十章

习题十1. 根据二重积分性质,比较ln()d Dx y σ+⎰⎰与2[ln()]d Dx y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形;(2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x+y=1与x+y=2之间,显然有图10-112x y ≤+≤从而0l n ()1x y ≤+<故有2l n ()[l n ()]x y x y +≥+ 所以2l n ()d [l n ()]dDDx y x yσσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2 从而 ln(x+y)>1 故有2l n ()[l n ()]x y x y +<+ 所以2l n ()d [l n ()]dDDx y x yσσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值:(1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}DI x y D x y x y σ==≤≤≤≤⎰⎰;(3)2222(49)d ,{(,)|4}DI x y D x y x y σ=++=+≤⎰⎰.解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而04xy ≤≤.从而2≤≤故2d DD σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而d Dσσ=⎰⎰(σ为区域D 的面积),由σ=4得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d DDDx y σσσ≤≤⎰⎰⎰⎰⎰⎰即220sin sin d d DDx y σσσ≤≤=⎰⎰⎰⎰而2πσ=所以2220sin sin d πDx y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以 22229494()925x y x y ≤++≤++≤故229d (49)d 25d DDDx y σσσ≤++≤⎰⎰⎰⎰⎰⎰即 229(49)d 25Dx y σσσ≤++≤⎰⎰而2π24πσ=⋅=所以 2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值:(1)222(,{(,)|};Da D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,Da σ-⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3D a a σ=⎰⎰(2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰4. 设f(x ,y)为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f(x ,y)为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x0,y0)为圆心,r 为半径的圆盘,所以当0r→时,00(,)(,),x y ξη→于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d Df x y σ⎰⎰化为累次积分:(1){(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥(3)2{(,)|,2,2}D x y y y x x x =≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yDy f x y y f x y xσ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y=x-2与抛物线x=y2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y Dyf x y y f x y xσ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y=2x 与曲线2y x =的交点(1,2),与x=2的交点为(2,4),曲线2y x =与x=2的交点为(2,1),区域D 可表示为22,1 2.y x x x ≤≤≤≤图10-5所以2221(,)d d (,)d xDxf x y x f x y yσ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序:(1)2220d (,)d yy y f x y x⎰⎰; (2)eln 1d (,)d xx f x y y⎰⎰;(3)1320d (,)d y y f x y x-⎰; (4)πsin 0sin2d (,)d xxx f x y y-⎰⎰;(5)123301d (,)d d (,)d yyy f x y y y f x y x-+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以22242d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D:1e,0ln.x y x≤≤≤≤如图10-7所示.图10-7D亦可表示为:01,e e,yy x≤≤≤≤所以e ln1e100ed(,)d d(,)dyxx f x y y y f x y x=⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y≤≤≤≤-如图10-8所示.图10-8D亦可看成D1与D2的和,其中D1:201,0,x y x≤≤≤≤D2:113,0(3).2x y x≤≤≤≤-所以2113213(3)200010d(,)d d(,)d d(,)dy x xy f x y x x f x y y x f x y y--=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D为:0π,sin sin.2xx y x≤≤-≤≤如图10-9所示.图10-9D亦可看成由D1与D2两部分之和,其中D1:10,2arcsinπ;y y x-≤≤-≤≤D2:01,arcsinπarcsin.y y x y≤≤≤≤-所以πsin 0π1πarcsin 0sin12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx yyx f x y y y f x y x y f x y x----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D1与D2两部分组成,其中 D1:01,02,y x y ≤≤≤≤ D2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤-所以()123323012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y--+=⎰⎰⎰⎰⎰⎰7. 求下列立体体积:(1)旋转抛物面z=x2+y2,平面z=0与柱面x2+y2=ax 所围; (2)旋转抛物面z=x2+y2,柱面y=x2及平面y=1和z=0所围. 解:(1)由二重积分的几何意义知,所围立体的体积V=22()d d Dx y x y+⎰⎰其中D :22{(,)|}x y x y ax +≤由被积函数及积分区域的对称性知,V=2122()d d D x y x y+⎰⎰,其中D1为D 在第一象限的部分.利用极坐标计算上述二重积分得cos πππcos 344442220001132d d 2d cos d π4232a a V r r r a a θθθθθθ====⎰⎰⎰⎰.(2) 由二重积分的几何意义知,所围立体的体积22()d d ,DV x y x y =+⎰⎰其中积分区域D 为xOy 面上由曲线y=x2及直线y=1所围成的区域,如图10-11所示.图10-11D 可表示为:211, 1.x x y -≤≤≤≤所以21122221()d d d ()d DxV x y x y x x y y-=+=+⎰⎰⎰⎰2111232461111188d ()d .333105x x y y x x x x x --⎡⎤=+=+--=⎢⎥⎣⎦⎰⎰ 8. 计算下列二重积分:(1)221d d ,:12,;Dx x y D x y x y x ≤≤≤≤⎰⎰(2)e d d ,x yDx y ⎰⎰D 由抛物线y2=x,直线x=0与y=1所围;(3)d ,x y ⎰⎰D 是以O(0,0),A(1,-1),B(1,1)为顶点的三角形;(4)cos()d d ,{(,)|0π,π}Dx y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx Dx xx x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000e d d d e d d e d()xx x y y y y yD xx y y x y y y ==⎰⎰⎰⎰⎰⎰ 21111ed (e 1)d e d d y x y y yy y y y y y y y==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰(3) 积分区域D 如图10-13所示.图10-13 D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxx x y x y x y xx --⎡==+⎢⎣⎰⎰⎰⎰⎰112300ππ1πd .2236x x x ==⋅=⎰ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x xx x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224sin (1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d xx x ⎰求不出来,故应改变积分次序。

(完整版)高等数学II练习册-第10章答案

(完整版)高等数学II练习册-第10章答案

(完整版)⾼等数学II练习册-第10章答案习题10-1 ⼆重积分的概念与性质1.根据⼆重积分的性质,⽐较下列积分的⼤⼩:(1)2()D x y d σ+??与3()Dx y d σ+??,其中积分区域D 是圆周22(2)(1)2x y -+-=所围成;(2)ln()Dx y d σ+??与2[ln()]Dx y d σ+??,其中D 是三⾓形闭区域,三顶点分别为(1,0),(1,1),(2,0);2.利⽤⼆重积分的性质估计下列积分的值:(1)22sin sin DI x yd σ=,其中{(,)|0,0}D x y x y ππ=≤≤≤≤;(2)22(49)DI x y d σ=++??,其中22{(,)|4}D x y x y =+≤.(3).DI =,其中{(,)|01,02}D x y x y =≤≤≤≤解 (),f x y =Q 2,在D 上(),f x y 的最⼤值()14M x y ===,最⼩值()11,25m x y ====故0.40.5I ≤≤习题10-2 ⼆重积分的计算法1.计算下列⼆重积分:(1)22()Dx y d σ+??,其中{(,)|||1,||1}D x y x y =≤≤;(2)cos()Dx x y d σ+??,其中D 是顶点分别为(0,0),(,0)π和(,)ππ的三⾓形闭区域。

2.画出积分区域,并计算下列⼆重积分:(1)x y De d σ+??,其中{(,)|||1}D x y x y =+≤(2)22()Dxy x d σ+-??,其中D 是由直线2y =,y x =及2y x =所围成的闭区域。

3.化⼆重积分(,)DI f x y d σ=为⼆次积分(分别列出对两个变量先后次序不同的两个⼆次积分),其中积分区域D 是:(1)由直线y x =及抛物线24y x =所围成的闭区域;(2)由直线y x =,2x =及双曲线1(0)y x x=>所围成的闭区域。

高数答案第10章

高数答案第10章

第 10 章 (之1)(总第53次)* 1. 设 a b a b ==+=2232,,,则(,)a b ∧= .答:65π. ** 2.设向量 a 与 b 不平行,c a b =+,则(,)(,) a c b c ∧∧=的充分必要条件为 .答:||||b a =.** 3.设直线L 经过点0P 且平行于向量a , 点0P 的径向量为0r ,设P 是直线L 的任意一点,试用向量0r ,a 表示点P 的径向量r . 解:∵a P P ||0, ∴a t P P=0, 而P P r r 00+=,∴a t r r+=0∴P 点的径向量为 a t r+0.** 4.设 3,2==b a ,a 与b 的夹角等于π32,求:(1)b a ⋅; (2))2()23(b a b a +⋅-; (3)b a )(; (4)b a 23-.解:(1)〉〈=⋅b a b a a ,cos b 332cos 32-=⨯⨯=π.(2)()()b a b a223+⋅-b a b a 44322+-=()3634342322-=-⨯+⨯-⨯=.(3)()133-=-=⋅=bb a a b.(4)()()b a b a b a 2323232-⋅-=-b a b a124922-+=()108312342922=-⨯-⨯+⨯=,3610823==-b a.** 5.设5,4==b a ,a 与b 的夹角等于π31,求:(1)b a b a -+)(;(2)b a 25+与b a -的夹角.解:(1)()()b a ba b a--=-⋅2b a b a 222-+=213cos 5425422=⨯⨯-+=π,∴21=-b a,()()()b a b a b a ba ba--+=+⋅-2122b a -=215422-=7213-=. (2)()()b a ba-+⋅25b a b a 32522--=03cos543524522=⨯⨯-⨯-⨯=π,∴向量b a b a-+,25垂直.** 6. 若a ,b 为非零向量,且b a b a -=+,试证b a ⊥.解:b a b a -=+,∴ 22b a b a -=+,∴()()()()b a ba b a ba --=++⋅⋅,∴b a b a b a b a222222-+=++, ∴0=⋅b a, ∴b a⊥.***7.用向量的方法证明半圆的圆周角必是直角. 解:如图所示,AC 为直径,B 为圆周上任一点, =→--OA →---OC , ||→--OB ==→--||OA ||→--OC ,则有 →--AB →--=OB →---OA ,→--CB →--=OB →---OC →--=OB →--+OA ,→--AB →--⋅CB →--=OB (⋅→---)OA →--OB ()→--+OA 0||||22=-=→--→--OA OB ,∴ 半圆的圆周角必为直角.第 10 章(之2)(总第54次)B教学内容:§10.2空间直角坐标系与向量代数1.填空题*(1) 点A (2,-3,-1)关于点M (3,1,-2)的对称点是______ .答:(4,5,3-)**(2) 设平行四边形ABCD 的三个顶点为A B C (,,),(,,),(,,)231243313----,则 D 点为______ . 答:(5,8,7--)**(3) 已知{}{}a b z =-=-45314,,,,,,且 a b a b +=-,则z =______ .答:8-**2. A,B 两点的坐标分别为)1,3,(),,5,2(--q p ,线段AB 与y 轴相交且被y 轴平分,求qp ,之值及交点坐标.解:令AB 与y 轴相交于C 点,即C 为AB 的中点,则C 点的坐标为 )21,235,22(+-+-p q , 又C 点在y 轴上,所以021,022=+=+-p q,即 1,2-==p q , 故C 点的坐标为)0,1,0(,即交点的坐标为)0,1,0(.**3.设A,B 两点的坐标分别为()()1,0,1,1,2,0-.求 (1)向量AB 的模; (2)向量AB 的方向余弦; (3)使AB AC 2=的C 点坐标.解:(1)}2,2,1{-=, 则32)2(1222=+-+=,所以的模为3. (2)32cos ,32cos ,31cos =-==r βα.(3) 设C 的坐标为(x ,y ,z ),由2-= 则2)2(1)2(10=-+-⨯+=x , 2)2(1)2(02-=-+-⨯+=y , 3)2(1)2(1)1(=-+-⨯+-=z ,所以C 点的坐标为)3,2,2(-.**4. 求q p ,的值,使向量}4,,2{-p 与},0,1{q -平行,再求一组使此两向量垂直的q p ,值. 解:向量}4,,2{-=p u 与},0,1{q v -=平行,即:v uλ=,∴q p 4012-==-, ∴2,0==q p , 向量u 与v 垂直时,0=⋅v u, ∴()()04012=⨯-+⨯+-⨯q p . ∴21-=q , p 为任意值.**5.求作用于某点三个力}5,4,3{},4,3,2{},3,2,1{321-=--==F F F 之合力的大小及方向.解:321F F F F ++=合{}{}{}{}4,1,25,4,34,3,23,2,1=-+--+=,合力的大小 21412222=++=合F,214cos ,211cos ,212cos ===γβα,其中γβα,,分别为合F与x 轴,y 轴,z 轴的夹角.** 6.试在xy 平面上求一与 }1,1,1{=a 成正交的向量.解:设所求向量为 {}z y x b ,,=, ∵ 在xy 平面上,∴0=z , 且 0=⋅b a,即:{}{}01,1,10,,=⋅y x , ∴0=+y x ,y x -=,取 1,1-==y x , ∴ 向量 {}0,1,1-=b 与 {}1,1,1=a 正交. ** 7.设}2,2,1{-=a ,}4,0,3{-=b ,求:(1)j a⋅; (2)k b ⨯;(3))()2(b a b a -⋅+; (4))3()(b a b a -⨯+.解:(1)2)22(-=⋅+-=⋅j k j i j a . (2)j k i k k i k b 33)43(-=⨯=⨯-=⨯.(3))}4(2,2,31{}422),2(2,312{)()2(----⋅-⨯-⨯+⨯=-⋅+b a b a260)2()4()2(5}6,2,2{}0,4,5{-=⨯+-⨯-+-⨯=--⋅-=. (4)}24,40,32{}10,6,0{}2,2,4{)3()(---=-⨯--=-⨯+. ** 8.设}1,1,0{-=a ,}1,1,2{-=b ,求:(1)a b b a )(,)(; (2)a 与b 的夹角. 解:(1)11)1()2(}1,1,2{}1,1,0{)(22-=+-+-⋅-==b a ;(){}{}()2111,1,01,1,222-=-+-⋅-=⋅=aa b b a;(2)θcos =⋅, 即 θc o s 222⨯⨯=-, 则 22cos -=θ, 又 πθ≤≤0,所以 43πθ=,即a 与的夹角为43π.** 9.在yz 平面内求模为10的向量b ,使它和向量 k j i a 348+-= 垂直.解:∵ 向量b在yz 平面内, ∴ 可设坐标为 {}z y ,,0,∵ a b ⊥, ∴ 0=⋅a b,即:{}{}03,4,8,,0=-⋅z y , ∴034=+-z y ,又 1022=+=z y b , ∴6,8==y z , 或 6,8-=-=y z ,∴向量b的坐标为:{}8,6,0 或 {}8,6,0--.*** 10. 试证明∑∑∑===≥⋅31312312i ii i ii iba ba.其中321,,a a a 及321,,b b b 为任意实数.解:设b a,的坐标分别为{}{}321321,,,,,b b b a a a ,b a b a b a b a⋅≤〉〈⋅=⋅,cos ,即:232221232221332211b b b a a a b a b a b a ++⋅++≤++,∴∑∑∑===≥⋅31312312i ii i ii iba ba.第 10 章(之3)(总第55次)教学内容:§10.3平面与直线[10.3.1]**1.解下列各题(1) 平行于x 轴,且过点)2,1,3(-=P 及)0,1,0(=Q 的平面方程是______ . 答:y z +=1(2) 与xOy 坐标平面垂直的平面的一般方程为______ . 答:Ax By d A B ++=+≠0022()(3) 过点)1,2,1(=P 与向量k j S k j i S--=--=21,32平行的平面方程为_____ .答:x y z -+=0(4) 点 )1,2,6(0-=M 到平面 0622=++-z y x 的距离为=d ___________. 解: ()()222161222622=+-++-⨯+⨯-=d .(5)平面3360x y --=是 ( ) (A )平行于xOy 平面 (B )平行于 z 轴,但不通过 z 轴 (C )垂直于y 轴(D )通过z 轴答:B**2.填表讨论一般方程0=+++D Cz Bx Ax 中,系数A,B,C,D 中有一个或数个等于零的解:0=+++D Cz By Ax , (1)0,0≠=ABD C 平行于z 轴(不包括过z 轴)的平面.(2)0,0≠⋅==C B D A 过x 轴的平面(不包括过y 轴、z 轴的平面).(3))0(,0,022≠⋅≠+==B A B A D C 过z 轴的平面. (4)0,0==≠C A B 平面垂直于y 轴.3.在下列各题中,求出满足给定条件的平面方程:**(1)过点()2,3,1--=P 及()1,2,0-=Q 且平行于向量{}1,1,2--=l;解:所求平面的法向量n垂直于向量{}1,1,2--=l 与由点()2,3,1--=P 与点()1,2,0-=Q 构成的向量{}1,1,1-=,故取{}1,3,2112111=---=⨯=kj i l n.故可得所求平面方程为 ()()()023312=++-++z y x , 即 0532=-++z y x .**(2)过z 轴且垂直于平面0723=+--z y x ; 解:平面0723=+--z y x 的法向量 {}1,2,3--=n ,故所求平面法向量n与0n 垂直,与z 轴正交,故可取{}0,3,21123--=--=⨯=kj i k n n ,所求平面过z 轴,故此平面必经过原点()0,0,0, 故可得所求平面方程为 0032=+--z y x , 即 032=+y x .**(3)垂直于yz 坐标面,且过点()2,0,4-=P 和()7,1,15=Q ;解:由题意可知()2,0,4-=P 、()7,1,15=Q ,所以{}9,1,1=PQ .又由题意可知所求平面法向量 n即与x 轴垂直,又与向量PQ 垂直,故可取{}1,9,0001911-==⨯=kj i i PQ n, 故可得所求平面方程为:()()()02109=+-+-z y , 即: 029=--z y .***4.自点)5,3,2(0-=P 分别向各坐标面作垂线,求过三个垂足的平面方程. 解:垂足分别为:)0,3,2(=A 、)5,3,0(-=B 和)5,0,2(-=C ,所以}5,3,0{},5,0,2{--=--=AC AB平面法向量为}6,10,15{530502--=----=⨯=kj i n故平面方程为:15106600x y z +--= .*** 5. 过两点)3,4,0(-=M 和)3,4,6(-=N 作平面,使之不过原点,且使其在坐标轴上截距之和等于零,求此平面方程. 解:设平面方程为:x a y b z a b+-+=1,由于它过M N ,两点,则⎪⎩⎪⎨⎧=+--=++1346134ba b a b a b 解得:a b ==-326,,,故平面方程为: 2366x y z --= 或 63218x y z +-=. **6. 判断下列各组平面相对位置,是平行,垂直还是相交,重合.(1)ππ1221022430:,:x y z x y z -+-=-+-=(2)ππ122210220:,:x y z x y z ---=+-=解:(1)ππ12,法向量分别为n n n n 12211122242=-=-={,,},{,,}取π1上一点(,,)100,显然不在π2上,故ππ12,平行,不重合. (2)ππ12,法向量分别为n n n n 12212211220=--=-⋅={,,},{,,},故n n 21,垂直,从而ππ12,垂直.第 10 章(之4)(总第56次)教学内容:§10.3平面与直线[10.3.2,10.3.3]**1.解下列各题:(1) 过点M M 12321102(,,),(,,)--的直线方程为⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ . 答:x y z +=-=--14221(2) 直线x y z x y z -+-=+-+=⎧⎨⎩2302260在xOz 坐标面上的交点为=P ____________,并利用该点的坐标,写出此直线的对称式方程和参数方程.答: )3,0,0(=P .对称式方程为x y z 3435==-,参数方程为⎪⎩⎪⎨⎧+===3543t z t y tx(3)直线kzy a x =-=+21在平面3=-+z y x 上的充要条件是=a ______,=k _____. 答:2-=a ,3=k .因为点)0,1,(a P -=在平面上,直线的方向向量{}k l ,2,1=→与平面的法向量{}1,1,1-=→n 必须垂直.**2.求经过点)2,0,3(-=A 且与两个平面1=+z x 及1=++z y x 同时平行的直线方程.解:所求直线L 的方向向量 {}1,0,11=⊥n l,且 {}1,1,12=⊥n l ,∴ 可取 {}1,0,111110121-==⨯=k j i n n l,∴ 所求直线方程为:2013-==-+z yx .**3.求经过点)0,1,2(-=A 且与两条直线z y x ==及11201-=-=+zy x 同时垂直的直线方程.解:所求直线L 的方向向量 {}1,1,11=⊥l l ,且 {}1,1,02-=⊥l l,∴可取{}1,1,211011121-=-=⨯=kj i l l l,∴所求直线方程为:z y x =+=--1122. **4. 求出过点)3,4,1(--=A 且与下列两条直线⎩⎨⎧-=+=+-53142:1y x z y x L ⎪⎩⎪⎨⎧+-=--=+=tz t y tx L 23142:2均垂直的直线方程.解:⎩⎨⎧-=+=+-53142:1y x z y x L,{}1,4,211-=⊥n l,{}0,3,121=⊥n l∴ 可取 {}10,1,3211-=⨯=n n l,23114223114223142:2+=-+=-⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=-+=-⇒⎪⎩⎪⎨⎧+-=--=+=z y x t z t y tx t z t y t x L ,∴ 可取 {}2,1,42-=l ,1l l ⊥,且2l l⊥.∴ 可取 {}1,46,1221-=⨯=l l l,∴所求直线方程为13464121--=+=+z y x . **5.求通过点()5,1,20-=M 且与直线12131-=-=+zy x 相交并垂直的直线方程. 解法一:直线132131:1--=-=+z y x L 上取一点()0,1,11-=M ,过点0M 与直线1L 的平面π的法向量n ,则1l n ⊥ 且 10M M n ⊥,∴{}{}{}6,12,105,0,31,2,3101-=-⨯-=⨯M M l ,故n 可取为 {}3,6,5-=n .因所求直线L 过点0M 点且与1L 相交,故L 亦在平面π上,故 {}28,14,0,1--=⨯⊥n l n l , 故可取 {}2,1,0=l.故所求直线方程为251102+=-=-z y x . 解法二:过点0M 作垂直于直线1L 的平面π:()()()051223=+--+-z y x ,即01323=--+z y x直线1L 与平面π的交点M 的坐标满足: ⎪⎩⎪⎨⎧-====⇒⎪⎩⎪⎨⎧=-=-=+=--+13211213101323z y x t t zy x z y x∴M 点坐标为()1,3,2-,∴{}4,2,00=M , ∴所求直线方程为:251102+=-=-z y x .** 6. 试求k 值,使两条直线7144933:,33541:21+=--=+--=+=-z y x L z y k x L 相交. 解:将第二条直线的参数方程⎪⎩⎪⎨⎧-=+-=-=1479433t z t y t x 代入第一条直线方程,有3441357173t k t t -=-+=--解得 k =2**7.求直线l x y z 112110:-=--=+与l x y z 211032:-=+=-之间的夹角. 解:l 1,l 2方向向量分别为S S 12110102=-=-{,,},{,,},cos(,)||||S S S S 121212110∧==-,故l 1,l 2之间的夹角为 arccos 110. **8.已知直线1121-=-=+zp y x 和平面126=+-z y qx 垂直,求常数q p ,之值.解: {}{}2,6,//1,,2-=-=q n p l,∴3,42162=-=⇒-=-=p q p q .**9.求过直线⎩⎨⎧=-+-=--+04207572z y x z y x 且在x 轴和y 轴上的截距相等的平面方程.解:过直线⎩⎨⎧=-+-=--+04207572z y x z y x 的平面束方程可设为()()(*)427572=-+-+--+z y x v z y x u令0==z y ,求得在x 轴截距v u vu x 2247++=,令0==z x ,求得在y 轴截距vu vu y -+=747.∵y x = ∴vu vu v u v u -+=++7472247,∴v u v u v u -=+=+722047或,即:5374=-=v u v u 或,代入(*)式,可得满足条件的平面有两个 (1)()()042757274=-+-+--+-z y x z y x ,即:027356=+-z y x ; (2)()()042757253=-+-+--+z y x z y x ,即:41101616=-+z y x .***10. 求直线z y x ==在平面135=-+z y x 上的投影直线.解:直线L 的方向向量 {}1,1,1=→l .在直线L 上取一点()0,0,0=A ,显然不满足方程135=-+z y x , ∴A 不在该平面上.设过A 做与平面135:0=-+z y x π的垂直的平面π.则平面π的法向量可取为 {}1,1,243511110---=-=⨯=kj i n l n,这就得到了π的方程为02=--z y x .从而得到投影直线方程为⎩⎨⎧=--=-+02135z y x z y x .第 10 章(之5)(总第57次)教学内容:§10.4空间曲面1. 选择题 *(1) 曲面z x y =+22是 ( )(A )zox 平面上曲线z x =绕z 轴旋转而成的旋转曲面 (B )zoy 平面上曲线z y =绕z 轴旋转而成的旋转曲面 (C )zox 平面上曲线z x =绕x 轴旋转而成的旋转曲面 (D )zoy 平面上曲线z y =绕y 轴旋转而成的旋转曲面 答:B** (2) 方程122=+z x 在空间表示 ( )(A )z 轴 (B )球面(C )母线平行y 轴的柱面 (D )锥面答:C*(3) 方程x y z 2229251+-=-是 ( ) (A) 单叶双曲面 (B) 双叶双曲面 (C) 椭球面 (D) 双曲抛物面答:B*(4) 双曲面x y z 222491--=与yoz 平面 ( ) (A) 交于一双曲线(B) 交于一对相交直线(C) 不交 (D) 交于一椭圆答:C*2. 求以)1,1,1(),5,4,1(21==M M 为直径的两个端点的球面的方程. 解:M M 12,中点为)3,25,1(0=M ,M M 125=. 即直径为5,半径为5/2.故球面方程为()()()()x y z -+-+-=1523522222.即x y z x y z 222256100++---+= .**3. 动点M 到两定点)0,0,4(),0,0,(21a P a P ==的两个距离之比等于1:2,求动点M 的轨迹方程.解:设动点M =(,,)x y zP M P M 1212::= 即 44222222[()]()x a y z x a y z -++=-++, 即 x y z a 22222++=() .**4.动点),,(z y x M =到点()2,0,0=A 的距离和它到xy 平面的距离相等,求动点M 的轨迹方程.解:动点),,(z y x M =到点()2,0,0=A 的距离为 ()22212-++=z y x d ,动点M 到xOy 平面的距离为 212d d zd ==,∴动点M 的轨迹方程为 ()22222z z y x =-++, 整理得:4422-=+z y x 是旋转抛物面.**5. 求yOz 平面上曲线y z 221-=分别绕y 轴,z 轴而成的旋转曲面的方程. 解:绕y 轴 -+-=x y z 2221; 绕z 轴 x y z 2221+-=.6. 把下列方程化为标准形式,从而指出方程所表示曲面的名称并画出图形. **(1)01422222=-++-+y x z y x ; 解:01422222=-++-+y x z y x ,()()1422222=-+++z y y x x,()()142141222=-+++z y x ,是一个单叶双曲面, 中心为()0,1,10--=M .**(2)09284222=--+--z y z y x .解:09284222=--+--z y z y x , ()()9224222=+---z z y y x ,()()4114222=+---z y x ,()()14114222=+---z y x ,是一个双叶双曲面,中心为()1,1,00-=M .第 10 章(之6)(总第58次)教学内容:§10.5向量函数 空间曲线基本知识**1. 求曲线x y z x z 22216451230+-=-+=⎧⎨⎪⎩⎪在xoy 平面上的投影柱面方程.解:消去z ,得x y x 2220241160+--=, 即为所求投影柱面方程.**2.求以曲线⎩⎨⎧=+-=++112222222z y x z y x 为准线,母线平行于z 轴的柱面方程. 解:1311222222222=-⇒⎪⎩⎪⎨⎧=+-=++y x z y x z y x z消 故所求柱面方程为1322=-y x .**3. 求曲线z x y x y z =+++=⎧⎨⎩221在各坐标平面上的投影曲线方程.解:消去z ,得x y x y 221+++=故在xoy 平面上,投影曲线为 ⎩⎨⎧==+++0122z y x y x消去x ,得z y z y =--+()122故在yoz 平面上,投影曲线为 ⎩⎨⎧=+--=0)1(22x y z y z消去y ,得z x x z =+--221()故在xoz 平面上,投影曲线为 ⎩⎨⎧=--+=0)1(22y z x x z** 4.把曲面1222=++z y x 和1=+y x 的交线改写为母线分别平行于x 轴与y 轴的两个柱面的交线. 解:)1(11222⎩⎨⎧=+=++y x z y x由(1)消去x ()022*******=+-⇒=++-⇒z y y z y y , 由(1)消去y ()022*******=+-⇒=++-⇒z x x z x x ,交线可写为⎩⎨⎧=-+=-+0220222222x z x y z y .**5. 求由曲面322x y z +=和z y =-12所围成的立体在 xOy 平面上的投影区域.解:投影区域由交线⎩⎨⎧-==+22213y z zy x 在xOy 平面上投影曲线所围成 投影曲线为⎩⎨⎧=-=+013222z y y x , 故投影区域为 ⎩⎨⎧=≤+012322z y x .**6. 试求曲线()k e j e i t t r t t-++= 对应于0=t 点出的切线方程.解:()k e j e i t r t t-++=θ,∴此空间曲线的参数方程为 ()()()()()()⎪⎩⎪⎨⎧-===⇒⎪⎩⎪⎨⎧===--t t t t e t z e t y t x e t z e t y t t x ''1'.∴在对应于0=t 时, 000010ee z e e y x --=-=-, 即:111--=-=z y x .**7. 试求曲线()()()k t j t i t t r23sin 23cos 2++= 从0=t 到4=t 这一段的弧长.解:空间曲线的参数方程为()()()()()()()()⎪⎩⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧===t t z t t y t t x t t z t t y t t x 2'3cos 6'3sin 6'3sin 23cos 22.∴ 弧长()[]()[]()[]dt t z t y t x s ⎰++=40222''' dt t t t ⎰++=422243cos 363sin 363ln 9209242+=+=⎰dt t .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r 第十章曲线积分与曲面积分习题详解习题10—11 计算下列对弧长的曲线积分:(1),其中是圆中到之间的一段劣弧;LI xds =⎰L 221x y +=(0,1)A B 解: 的参数方程为:AL AB =,于是cos ,sin x y θθ==()42ππθ-≤≤24cos I ππθ-=⎰.24cos (1d ππθθ-==+⎰(2),其中是顶点为及所成三角形的边界;(1)Lx y ds ++⎰A L (0,0),(1,0)O A (0,1)B 解: 是分段光滑的闭曲线,如图9-2所示,根据积分的可加性,L 则有(1)Lx y ds++⎰A ,(1)OAx y ds =++⎰(1)ABx y ds +++⎰(1)BOx y ds +++⎰由于:,,于是OA 0y =01x ≤≤,ds dx ===y(0,1)B 故 ,103(1)(01)2x y ds x dx ++=++=⎰⎰O A而,,于是:AB 1y x =-01x ≤≤.ds ===故,1(1)[(1)ABx y ds x x ++=+-+=⎰⎰同理可知(),,则:BO 0x =01y ≤≤ds dy ===oB Ci nei .13(1)[01]2BOx y ds y dy ++=++=⎰⎰综上所述 .33(1)322Lx yds -+=++=+⎰A (3),其中为圆周;⎰A L 22x y x +=解 直接化为定积分.的参数方程为1L ,(),11cos 22x θ=+1sin 2y θ=02θπ≤≤且.12ds d θθ==于是.201cos222d πθθ=⋅=⎰⎰A (4),其中为折线段,这里,2 Lx yzds ⎰L ABCD (0,0,0)A (0,0,2),B (1,0,2),C ;(1,2,3)D 解 如图所示, .2222 LABBCCDx yzds x yzds x yzds x yzds =++⎰⎰⎰⎰线段的参数方程为 ,则AB 0,0,2(01)x y z t t ===≤≤ds =,2dt ==故.02200 12=⋅⋅⋅=⎰⎰dt t yzds x AB线段的参数方程为,则BC ,0,2(01)x t y z t ===≤≤ ,dsdt ==故,122 0020BCx yzds t dt =⋅⋅⋅=⎰⎰线段的参数方程为,则CD 1,2,2x y t z t===+)10(≤≤tnt he ei n ,ds ==故11220012(2))CD x yzds t t t t dt =⋅⋅+=+=⎰⎰ 2 (2所以.2222 LABBCCDx yzds x yzds x yzds x yzds =++=⎰⎰⎰⎰2求八分之一球面的边界曲线的重心,设曲线的2221(0,0,0)x y z x y z ++=≥≥≥密度。

1ρ=解 设曲线在坐标平面内的弧段分别为、、,曲线的重心坐标,,xOy yOz zOx 1L 2L 3L 为,则曲线的质量为.由对称性可得重心坐标(),x y z 1123233342L L L L M ds ds ππ++===⨯=⎰⎰A ()12312311L L L L L L x y z xds xds xds xdsMM++====++⎰⎰⎰⎰A ()131120L L L xds xds xdsM M=++=⎰⎰⎰.2243M M π===⎰故所求重心坐标为.444,,333πππ⎛⎫ ⎪⎝⎭习题10—21 设为面内一直线(为常数),证明L xOy y b =b 。

(,)0LQ x y dy =⎰证明:设是直线上从点到点的一段,其参数方程可视为L y b =1(,)a b 2(,)a b ,(),()y y x b ==12a x a ≤≤于是。

21(,)(,)00a La Q x y dy Q xb dx =⋅⋅=⎰⎰2 计算下列对坐标的曲线积分: (1),其中为抛物线上从点到点的一段弧。

Lxydx ⎰L 2y x =(1,1)A -(1,1)B 解 将曲线的方程视为以为参数的参数方程,其中参数从变到L 2y x =y 2x y =y 1-。

因此1。

11224114()25Lxydx y y y dy y dy --'===⎰⎰⎰(2),其中是曲线从对应于时的点⎰-++Ldy y x dx y x 2222)()(L x y --=110=x 到时的点的一段弧;2=x 解的方程为,则有1L y x =(01)x ≤≤.322)()(1222221==-++⎰⎰dx x dy y x dx y x L 的方程为,则2L 2y x =-(12)x ≤≤dyy x dx y x L )()(22 222-++⎰222 1[(2)]x x dx =+-⎰ 222 1[(2)](1)x x dx +--⋅-⎰. 22 12 2(2)3x dx =-=⎰所以.34)()( 2222=-++⎰Ldy y x dx y x (3)是从点沿上半圆周到点的一段弧;,Lydx xdy +⎰L (,0)A a -222x y a +=(,0)B a 解利用曲线的参数方程计算.的参数方程为:,在起点处L cos ,sin x a y a θθ==(,0)A a -参数值取,在终点处参数值相应取0,故从到0.则π(,0)B a θπ=.0sin (cos )cos (sin )Lydx xdy a d a a d a πθθθθ+=+⎰⎰02cos 20a d πθθ=⎰(4),其中沿右半圆以点为起点,经过点22Lxy dy x ydx -⎰L 222x y a +=(0,)A a 到终点的路径;(,0)C a (0,)B a -解 利用曲线的参数方程计算.的参数方程为:,在起点L cos ,sin x a y a θθ==处参数值取,在终点处参数值相应取,则(0,)A a 2π(0,)B a -2π-22Lxy dy x ydx -⎰2222cos (sin )(sin )(cos )sin (cos )a a d a a a d a ππθθθθθθ-=-⎰A 。

422222sin cos ad ππθθθ-=⎰44a π=-(5),其中为从点到点的直线段;3223Lx dx zy dy x ydz +-⎰L (3,2,1)A (0,0,0)B AB 解 直线的方程为AB 321x y z ==化成参数方程得,,,从变到。

3x t =2y t =z t =t 10所以3223Lx dx zy dy x ydz +-⎰2221[(3)33(2)2(3)2]t t t t t dt=+-⎰A A A。

03187874t dt ==-⎰o(,0)A a -(,0)B a(6),为椭圆周且从轴()()()L I z y dx x z dy x y dz =-+-+-⎰A L 22 1 ,2 ,x y x y z ⎧+=⎨-+=⎩z 正方向看去,取顺时针方向。

L 解 的参数方程为L ,,,从变到,cos x t =sin y t =2cos sin z t t =-+t 2π0()()()LI z y dx x z dy x y dz=-+-+-⎰A 。

222(3cos sin 2sin 2cos )t t t t dt π=---⎰2π=- 习题10—31. 利用曲线积分求下列平面曲线所围成图形的面积:(1) 星形线 ();)33cos ,sin ,x a t y a t ⎧=⎨=⎩02t π≤≤解 12L A xdy ydx =-⎰A 32322014[cos 3sin cos sin 3cos (sin )]2a t a t t a t a t t dt π=⨯--⎰A。

242422222206[cos sin sin cos ]6cos sin at t t t dt at tdt ππ=+=⎰⎰238a π=(2) 圆,();222x y by +=0b >解 设圆的参数方程为,从变到.那么cos ,sin x b t y b b t ==+t 02π12L A xdy ydx =-⎰A 201[cos cos (sin )(sin )]2b t b t b b t b t dt π=⨯-+-⎰A。

2201(1sin )2b t dt π=⨯+⎰2b π=2 利用格林公式计算下列曲线积分:(1),其中是圆,方向是逆时针()(3)Ly x dx x y dy -++⎰A L 9)4()1(22=-+-y x 方向;解 设闭曲线所围成闭区域为,这里L D ,,,,P y x =-3Q x y =+3Qx∂=∂1P y ∂=∂由格林公式,得()(3)Ly x dx x y dy -++⎰A (31)Ddxdy=-⎰⎰。

2Ddxdy=⎰⎰18π=(2) ,其中是依次连接三点的折线)Lydx x dy+-⎰L(1,0),A-(2,1),B(1,0)C段,方向是顺时针方向。

解令,,则,且线段,(,)P x y y=(,)Q x y x=-112Q Px y∂∂-=--=-∂∂:0CA y=由1变化到-1,故有x)Lydx x dy+-⎰)ABCAydx x dy=+⎰A)CAydx x dy-+-⎰.11(2)022D Ddxdy dx dxdy-=---⋅==⎰⎰⎰⎰⎰其中为所围成的闭区域.D ABCA(3) ,其中为常数,为圆(sin)(cos)x xLe y my dx e y m dy-+-⎰m L 上从点到点的一段有向弧;222x y ax+=(,0)A a(0,0)O解如右图所示,设从点到点的有向直线段的方程为O A,从变到。

:0OA y=x02a则与曲线构成一闭曲线,设它所围成闭区域为,令OA L D,,sinxP e y my=-cosxQ e y m=-,,cosxQe yx∂=∂cosxPe y my∂=-∂由格林公式,得(sin)(cos)x xL OAe y my dx e y m dy+-+-⎰ADmdxdy=⎰⎰。

Dm dxdy=⎰⎰212m aπ=而(sin)(cos)x xOAe y my dx e y m dy-+-⎰20[(sin00)(cos0)0]a x xe m e m dx=-+-⎰A A,=故(sin)(cos)x xLe y my dx e y m dy-+-⎰(sin)(cos)x xL OAe y my dx e y m dy+=-+-⎰Ao0(0,0)(2,0)A a(sin )(cos )x x OAe y my dx e y m dy--+-⎰。

212m a π=0-212m a π=(4),其中为椭圆,取逆时针方向;22L xdy ydx x y -+⎰A L 2241x y +=解 令,,则当时,(,)P x y =22y x y -+22(,)xQ x y x y =+(,)(0,0)x y ≠,22222()P Q y x y x x y ∂∂-==∂∂+但积分曲线所围区域包含点,在该点不L (0,0)(,),(,)P x y Q x y 具有连续的偏导数,因此不能直接应用格林公式计算,需要将奇点去掉,为此作半径足够小的圆:,(0,0)C 222x y δ+=使位于的内部,如图右所示.的参数方程为C L C ,,,cos x δθ=sin y δθ=[0,2]θπ∈取逆时针方向.于是C ,22L xdy ydx x y -+⎰A 22L C xdy ydxx y -+-=-+⎰A 22Cxdy ydxx y --+⎰A 其中表示的负方向.由格林公式则有C -C ,2200L C Dxdy ydxdxdy x y -+-=⋅=+⎰⎰⎰A 其中为与所围成的闭区域.故D L C 22L xdy ydx x y -+⎰A 22C xdy ydx x y --=-+⎰A 22C xdy ydx x y -=+⎰A 222220cos (sin )sin (cos )cos sin d d πδθδθδθδθδθδθ-=+⎰.202d πθπ==⎰(5),其中,为圆周取逆时针方向,L u ds n∂∂⎰A 22(,)u x y x y =+L 226x y x +=是沿的外法线方向导数。

相关文档
最新文档