高二数学竞赛试题及答案

合集下载

高二数学竞赛题

高二数学竞赛题

高二数学竞赛题学校:___________姓名:___________班级:___________考号:___________一、选择题1、若正项等比数列{}n a 的前n 项和为n S ,5a =673a +=,则5S 的值为( )2、在等差数列{}n a 中,31124a a +=,则678a a a ++的值是( ) A.36B.48C.72D.243、数列{}n a 中,22293n a n n =-++,则此数列最大项的值是( ) A.103B.10818C.11038D.1084、两直线1:10l ax y ++=和22:10l x a y --=互相垂直,则a 的值是( ) A.0B.1C.0或1D.1或1-5、直线10ax y +-=平分圆2224130x y x y +-+-=的面积,则a =( ) A.1B.3C.3D.26、如图,在四面体OABC 中,OA a =,OB b =,OC c =,点M 在OA 上,点N 在BC 上,且2OM MA =,2BN NC =,则MN =( )A.212333a b c -++B.22133b c -+C.212333a b c --+D.22133b c --7、若点()1,1P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线的方程为( ) A.230x y +-=B.210x y -+=C.230x y +-=D.210x y --=8、直线1y x =+被圆221x y +=截得的弦长为( )A.1C.2D.9、已知直线:3l x =+与圆22:430C x y x my +-++=相切,则m 的值为( )A.-B.C.3D.3-10、判断圆2264120x y x y +-++=与圆22142140x y x y +--+=的位置关系为( ) A.相交B.内切C.外切D.内含11、已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F,b =2a c =,过点1F 的直线交椭圆于A ,B 两点,则2ABF △的周长为( ) A.4B.8C.16D.3212、已知双曲线22221x y a b-=(0a >,0b >)的一条渐近线与直线23y x =-平行,则双曲线的离心率为( ) A.2D.5二、填空题13、已知数列{}n a 的前n 项和为2223n S n n =-+,则数列{}n a 的通项公式n a =_________.14、圆22:2O x y +=上点P 到直线34:10x l y +=距离的最小值为__________.15、双曲线222:1(0)4x y C b b-=>的一条渐近线方程为320x y +=,则双曲线C 的焦距为__________.16、已知函数()ln x f x e x =,()'f x 为()f x 的导函数,则()'1f 的值为__________三、解答题17、已知圆C 经过原点和点(2,1)A ,并且圆心在直线:210l x y --=上,求圆C 的标准方程.18、数列{}n b 的前n 项和21n n S =-,数列{}n a 为等差数列,且11a b =,43a b = (1)求数列{}n b 的通项公式. (2)求证数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和.19、在四棱锥A BCFE -中,底面BCFE 为梯形﹐BC BE ⊥,//EF BC ,1BC BE ==,3AE =,34EF =,AB ⊥平面BCFE .(1)证明:平面AEF ⊥平面ABE ; (2)求直线AE 与平面AFC 所成角的正弦值.20、在如图所示的多面体中,EF ⊥平面AEB ,AE EB ⊥,////AD EF EF BC ,,24BC AD ==,32EF AE BE ===,,G 是BC 的中点.(1)求证://AB 平面DEG ; (2)求二面角C DF E --的余弦值. 21、已知函数ln y x x =. (1)求这个函数的导数;(2)求这个函数的图象在点(1,0)处的切线方程.22、已知椭圆()2222:10x y C a b a b+=>>长轴长为4,直线2y kx =+与椭圆C 交于,A B 两点且AOB ∠为直角,O 为坐标原点(1)求椭圆C 的方程 (2)求AB 的长度参考答案1、答案:C解析:设公比为q ,由题意知0q >,65a a q =⋅=22752q a q =⋅=,2322q q ∴+=,化简得260q q +-=, 解得2q =,514a a q ==()5511213132(31)123232S ⨯-==-⨯-=-.故选:C. 2、答案:A解析:由题设,1137224a a a +==,则712a =, 所以6787336a a a a =++=. 故选:A.3、答案:D解析:把22293n a n n =-++看成二次函数,对称轴为291744n ==,7n ∴=时7a 最大,最大项的值是27272973108a =-⨯+⨯+=.故选D.4、答案:C解析:直线1:10l ax y ++=l 1:ax +y +1=0和直线22:10l x a y --=x -a 2y -1=0互相垂直,则20a a -=a -a 2=0,解得:0a =或1a =a =1,故选:C. 5、答案:B解析:根据题意,圆的方程为2224130x y x y +-+-=x 2+y 2-2x +4y -13=0,其圆心为()1,2-(1,-2),若直线10ax y +-=ax +y -1=0平分圆2224130x y x y +-+-=x 2+y 2-2x +4y -13=0的面积,则圆心在直线10ax y +-=ax +y -1=0上,则有210a --=a -2-1=0,解可得3a =a =3;故选B. 6、答案:A解析:连接MB ,如图所示:()222333MN MB BN OB OM BC OB OA OC OB =+=-+=-+-()2221233333b ac b a b c =-+-=-++.故选:A 7、答案:D解析:圆的标准方程为()2239x y +=-,圆心()3,0A .因为点()1,1P 为弦MN 的中点,所以AP MN ⊥.又AP 的斜率101132k -==-,直线MN 的斜率为2,弦MN 所在直线的方程为(11)2y x -=-,即210x y --=. 8、答案:B解析:圆221x y +=的圆心为(0,0)O ,半径1r =,则圆心(0,0)O 到直线1y x =+的距离2d ==,所以直线1y x =+被圆221x y +=所截得的弦长为== 故选:B. 9、答案:A解析:第一步:将圆的方程化为标准形式,得到圆心和半径由22430x y x my +-++=,得222(2)124m m x y ⎛⎫-++=+ ⎪⎝⎭,所以圆心2,2m C ⎛⎫- ⎪⎝⎭,半径r =. 第二步:结合点到直线的距离公式列关于m 的方程并求解因为直线:3l x =+与圆22:430C x y x my +-++=相切,所以=m =- A. 10、答案:B解析:因为圆2264120x y x y +-++=的圆心为(3,2)-,半径11r =, 圆22142140x y x y +--+=的圆心为(7,1),半径26r =,215r r ==-, 所以两圆内切. 故选:B. 11、答案:C解析:23b =2a c =,222a b c =+,22212a a ⎛⎫∴=+ ⎪⎝⎭,216a ∴=,4a ∴=,2ABF ∴△的周长为121222416AF AF BF BF a a a +++=+==.故选:C. 12、答案:B解析:由双曲线的渐近线与直线23y x =-y =2x -3平行知,双曲线的一条渐近线方程为20x y -=Error! Digit expected.,2b a ∴=, 2b a ∴=, c ∴=,∴离心率ce a==. 故选:B.13、答案:3,144,2n n n =⎧⎨-≥⎩解析:2223n S n n =-+,故当1n =时,113a S ==;当2n ≥时,()()2121212n S n n -=---+,144n n n a S S n -∴=-=-113a S ==不适合上式,3,144,2n n a n n =⎧∴=⎨-≥⎩,故答案为:3,144,2n n n =⎧⎨-≥⎩.14、答案:22解析:圆O 的圆心为()0,0,()0,0到直线l的距离为1025=> 所以圆22:2O x y +=上点P 到直线34:10x l y +=距离的最小值为2.故答案为:215、答案:解析:根据题意,双曲线222:1(0)4x y C b b -=>C :x 24-y 2b 2=1(b >0)的焦点在x轴上,则其渐近线方程为2by x =±,又由该双曲线的一条渐近线方程为320xy +=,即32y =-=3=;所以2c ==16、答案:e解析:函数()ln x f x e x =, 则()1'ln x x f x e x e x=+;()'1ln11f e e e ∴=⋅+⋅=.故答案为: e 根据导数的运算法则求出函数()f x 的导函数,再计算()'1f 的值.17、答案:22612951020x y ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭ 解析:(方法一)设所求圆C 的方程为222()()x a y b r -+-=.由题设,得222222,(2)(1), 210.a b r a b r a b ⎧+=⎪-+-=⎨⎪--=⎩解此方程组,得26,51,1029.20a b r ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩所以,所求圆C的标准方程是2261510x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭(方法二)因为圆心在直线210x y --=上,所以可设圆心C 的坐标为(21,)b b +. 因为圆C 经过原点和点(2,1)A ,所以||||CO CA r ==.==所以圆心坐标为2261,,||510r CO ⎛⎫== ⎪⎝⎭所以圆C的标准方程为2261510x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭18、答案:(1)12n n b -= (2)证明见解析解析:(1)当1n =时,111b S ==当2n ≥时,()()11121212n n n n n n b S S ---=-=---=11121b -==∴数列{}n b 的通项公式为12n n b -=(2){}n a 为等差数列,111a b ==,434a b == n a n ∴=设111(1)n n n c a a n n +==⋅+ {}n c ∴的前n 项和为n T 123n n T c c c c =++++1111122334(1)n n =++++⨯⨯⨯+11111111223341n n =-+-+-++-+ 111n =-+19、(1)答案:证明见解析解析:由题意知BC BE ⊥,//EF BC ,所以EF BE ⊥,AB ⊥平面BCFE , AB EF ∴⊥,又知ABBE B =,,AB BE ⊂平面ABE ,所以EF ⊥平面ABE , 又因为EF ⊂平面AEF , 所以平面AEF ⊥平面ABE . (2解析:由题可知AB =由(1)知BA ,BC ,BE 两两互相垂直,分别以EB ,BC ,BA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则()0,0,0B ,()0,1,0C,(A ,()1,0,0E ,31,,04F ⎛⎫⎪⎝⎭.则31,,4AF ⎛=- ⎝,11,04,CF ⎛⎫ ⎪⎝⎭=-,(1,0,AE =-.设平面ACF 的法向量为(),,m x y z =,则0m AF m CF ⎧⋅=⎪⎨⋅=⎪⎩即304104x y x y ⎧+-=⎪⎪⎨⎪-=⎪⎩,令1x =,则(m =,所以1cos ,m AE -==所以直线AE 与平面AFC .20、答案: (1)见解析(2) 解析: (1)证明:因为////AD EF EF BC ,, 所以/AD BC ,又2BC AD =,G 是BC 的中点,所以//AD BG 且AD BG =,所以四边形ADGB 是平行四边形,所以//AB DG . 因为AB ⊄平面DEG ,DG ⊂平面DEG , 所以//AB 平面DEG .(2)因为EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB , 所以EF AE EF BE ⊥⊥,,又AE EB ⊥, 所以EB EF EA ,,两两垂直.以点E 为坐标原点,EB EF EA ,,所在的直线分别为x y z ,,轴建立如图所示的空间直角坐标系.则0,0,02,0,02,4()()()(,00,3,)()00,2,2E B C F D ,,,,. 由已知得()2,0,0EB =是平面EFDA 的一个法向量. 设平面DCF 的法向量为,(),n x y z =,则00FD n FC n ⎧⋅=⎪⎨⋅=⎪⎩因为(0,1,2)FD =-,(2,1,0)FC =,所以2020y z x y -+=⎧⎨+=⎩令1z =,得21y x ==-,,所以可取1,(1)2,n -=.设二面角C DF E --的大小为θ,则cos cos ,n EB θ=〈〉==. 易知二面角C DF E --为钝二面角,所以二面角C DF E --的余弦值为. 21、(1)答案:ln 1x +解析:(ln )ln (ln )ln 1y x x x x x x x ''''==⋅+=+; (2)答案:1y x =-解析:1ln111x k y ='==+=.∴切线方程为1y x =-.22、答案:(1) 2214x y +=解析:(1)由题意22224a c aa b c =⎧⎪⎪=⎨⎪⎪=+⎩得21a b c ⎧=⎪=⎨⎪=⎩ 所以椭圆的方程为2214x y += (2)设()()1122,,,,A x y B x y 把2y kx =+代入2214x y +=得 ()2212122216124116120,,4141k kx kx x x x x k k +++=∴+=⋅=++ AOB ∠为直角,12120OA OB x x y y ∴⋅=+=(或斜率乘积为1-) ()()1212220OA OB x x kx kx ∴⋅=+++= 解得24k =AB ∴=AB ∴。

高二数学竞赛(含答案)

高二数学竞赛(含答案)

高二数学竞赛试题一、选择题(本题满分60分,每题5分) 1.复数()()212z i i =++的虚部为()A. 2i -B. 2-C. 4iD. 42.已知集合A ={(x ,y)|x +a 2y +6=0},集合B ={(x ,y)|(a -2)x +3ay +2a =0},若A ∩B =Ø,则a 的值是( ) A. 3或-1 B. 0 C. -1 D. 0或-1 3.()423a b c +-的展开式中2abc 的系数为( )A. 208B. 216C. 217D. 218 4.某公司在2013-2017年的收入与支出情况如下表所示:根据表中数据可得回归直线方程为0.8y x a ∧∧=+,依此估计如果2018年该公司收入为7亿元时的支出为( ) A. 4.5亿元 B. 4.4亿元 C. 4.3亿元 D. 4.2亿元5. 在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 的方程为20x y -= )的点的个数的估计值为( )A. 5000B. 6667C. 7500D. 78546. 函数2cos 3sin cos y x x x =在区间,64ππ⎡⎤-⎢⎥⎣⎦上的值域是( ) A. 1,12⎡⎤-⎢⎥⎣⎦B. 122,3⎡-⎢⎣⎦C. 0,32⎡⎤⎢⎥⎣⎦D. 2,301⎡⎤⎢⎥⎣⎦7.小方,小明,小马,小红四人参加完某项比赛,当问到四人谁得第一时,回答如下:小方:“我得第一名”;小明:“小红没得第一名”;小马:“小明没得第一名”;小红:“我得第一名”.已知他们四人中只有一人说真话,且只有一人得第一.根据以上信息可以判断出得第一名的人是( )A. 小明B. 小马C. 小红D. 小方8.一个三棱锥的三视图如图所示,其中正视图和侧视图是全等的等腰三角形,则此三棱锥外接球的表面积为收入x (亿元) 2.2 2.6 4.0 5.3 5.9 支出y (亿元)0.21.52.02.53.8A.94πB. 9πC. 4πD. π 9.我国南宋时期的数学家秦九韶(约1202-1261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法,如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的5n =,1v =,2x =,则程序框图计算的是( ) 开始结束是,,n v x1i n =-0?i ≥输出v 1i i =-1v v x =⋅+否输入A .5432222221+++++B .5432222225+++++C .654322222221++++++D .43222221++++10.设O 点在ABC ∆内部,且有230OA OB OC ++=,则ABC ∆的面积与AOC ∆的面积的比为( ) A. 2 B. 3 C.32 D. 5311.已知抛物线C : 22(0)y px p =>和动直线l : y kx b =+(k , b 是参变量,且0k ≠, 0b ≠)相交于()11,A x y , ()22,B x y 两点,直角坐标系原点为O ,记直线OA , OB 的斜率分别为OA k , OB k ,若3OA OB k k ⋅=恒成立,则当k 变化时直线l 恒经过的定点为( )A. ()3,0B. ()23,0- C. 3p ⎛⎫⎪ ⎪⎝⎭D.23,0p ⎛⎫⎪ ⎪⎝⎭12. 已知函数13,1()22ln ,1x x f x x x ⎧+≤⎪=⎨⎪>⎩(lnx 是以e 为底的自然对数,e=2.71828...),若存在实数m,n(m<n),满足f(m)=f(n),则n-m 的取值范围为( ) A.B.C.D.二、填空题 (本题满分20分,每题5分)13.已知实数,x y 满足约束条件222441 x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =+的取值范围为 .14. 如图,矩形ABCD 中,AB=2AD ,E 为边AB 的中点,将ADE 沿直线DE 翻折成A 1DE ,若M 为线段A 1C 的中点,则在ADE 翻折过程中,下列命题正确的是 .(写出所有正确的命题的编号)①线段BM 的长是定值;②存在某个位置,使DE ⊥A 1C ;③点M 的运动轨迹是一个圆;④存在某个位置,使 MB 平面A 1DE .15. 已知双曲线22221x y a b -= (0a > , 0b > )的左、右焦点分别为1F 、2F ,过2F 的直线交双曲线右支于P ,Q 两点,且1PQ PF ⊥ ,若1512PQ PF =,则双曲线的离心率为__________ . 16.九个连续正整数自小到大排成一个数列129,,...,a a a ,若13579a a a a a ++++是一个平方数,2468a a a a +++是一个立方数,则1239...a a a a ++++的最小值是 .三、解答题(本题满分70分)17.(本小题满分10分)△ABC 中,,,A B C 所对的边分别为,,a b c ,sin sin tan cos cos A BC A B+=+,sin()cos B A C -=.(1)求,A C ;(2)若33ABC S ∆=+,求,a c .18.(本小题满分12分)已知数列{}n a 满足11a =,121()n n a a n N *+=+∈.(1)求数列{}n a 的通项公式;(2)证明:12231 (2)n n a a a na a a ++++<. 19.(本小题满分12分)为响应国家“精准扶贫,产业扶贫”的战略,哈市面向全市征召《扶贫政策》义务宣传志愿者,从年龄在[]20,45的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示.(1)求图中x的值;(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为X,求X的分布列及数学期望.20. (本小题满分12分)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB 于点F,⊙O是△BEF的外接圆,⊙O交BC于点D.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)在(2)条件下,若CD=1,EH=3,求BF及AF长.21.(本小题满分12分)已知椭圆C:=1(a>b>0)的离心率为,并且过点P(2,﹣1)(1)求椭圆C的方程;(2)设点Q在椭圆C上,且PQ与x轴平行,过p点作两条直线分别交椭圆C于两点A(x1,y1),B(x2,y2),若直线PQ平分∠APB,求证:直线AB的斜率是定值,并求出这个定值.22. (本小题满分12分)已知函数()ln mx nf x x x-=-,,m n R ∈. (1)若函数()f x 在(2,(2))f 处的切线与直线0x y -=平行,求实数n 的值; (2)试讨论函数()f x 在区间[1,)+∞上最大值;(3)若1n =时,函数()f x 恰有两个零点1212,(0)x x x x <<,求证:122x x +>.高二数学竞赛试题参考答案1.D 2.D 3.B 4.B 5. B 6. C 7.A 8.A 9.A 10.B 11.D 12. C13. []1,6 14.①③ 1516.18000 17.解:(1) 因为sin sin tan cos cos A B C A B +=+,即sin sin sin cos cos cos C A BC A B+=+, 所以sin cos sin cos cos sin cos sin C A C B C A C B +=+, 即 sin cos cos sin cos sin sin cos C A C A C B C B -=-,得 sin()sin()C A B C -=-. ....................2分 所以C A B C -=-,或()C A B C π-=--(不成立). .即 2C A B =+, 得3C π=,所以.23B A π+=.................. 4分又因为1sin()cos 2B A C -==,则6B A π-=,或56B A π-=(舍去)得5,412A B ππ== ................... 6分(2)1sin 32ABC S ac B ∆===, 又sin sin a cA C =, 即22=, ................... 8分得a c == .................. 10分(1)由已知6B π=, 2220a ab b --=结合正弦定理得:22sin sin 10A A --=,于是sin 1A =或1sin 2A =-(舍).因为0A π<<,所以2A π=, 3C π=.(2)由题意及余弦定理可知22196a b ab ++=,由(1)2220a ab b --=得()()20a b a b +-=即2a b =, 联立解得27b =, 47a = 所以, 1sin 1432ABC S ab C ∆==. 18.(1)∵.∴,∴是以为首项,2为公比的等比数列.∴,即................... 6分(2)证明:∵1121212112122112(21)2k k k n k k kn a a ++---=<==-⋅---,,∴................... 12分19.(1)根据频率分布直方图可得()0.010.020.040.0751x ++++⨯=,解得0.06x =.........2分(2)用分层抽样的方法,从100名志愿者中选取10名,则其中年龄“低于35岁”的人有6名,“年龄不低于35岁”的人有4名,.................. 4分 故X 的可能取值为0,1,2,3.()343101030C P X C ===, ()12643103110C C P X C ===, ()2164310122C C P X C ===, ()36310136C P X C ===.故X 的Y 0 1 2 3P130 310 12 16.................. 10分()13110123 1.8301026E Y =⨯+⨯+⨯+⨯=...................12分 20.证明:(1)如图,连接OE . ∵BE 平分∠ABC , ∴∠CBE=∠OBE , ∵OB=OE ,∴∠OBE=∠OEB , ∴∠OEB=∠CBE , ∴OE ∥BC ,∴∠AEO=∠C=90°,∴AC 是⊙O 的切线; ...................3分(2)如图,连结DE .∵∠CBE=∠OBE ,EC ⊥BC 于C ,EH ⊥AB 于H , ∴EC=EH .∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°, ∴∠CDE=∠HFE .在△CDE 与△HFE 中,90CDE HFE C EHF EC EH ∠=∠∠=∠=⎪⎨⎩=⎧⎪, ∴△CDE ≌△HFE (AAS ), ∴CD=HF ....................7分(3)由(2)得,CD=HF .又CD=1 ∴HF =1在Rt △HFE 中,EF =2231+=10 ∵EF ⊥BE ∴∠BEF =90°∴∠EHF =∠BEF =90° ∵∠EFH =∠BFE ∴△EHF ∽△BEF ∴EF HFBF EF =,即10110BF =∴BF =10∴152OE BF ==, 514OH =-=,∴在Rt △OHE 中, 4cos 5EOA ∠=,∴在Rt △EOA 中, 4cos 5OE EOA OA ∠==,∴545OA = ∴254OA =∴255544AF =-=. ...................12分21.(1)解:由,得,即a 2=4b 2,∴椭圆C 的方程可化为x 2+4y 2=4b 2.又椭圆C过点P (2,﹣1),∴4+4=4b 2,得b 2=2,则a 2=8.∴椭圆C 的方程为;..................4分(2)证明:由题意,直线PA 斜率存在,设直线PA 的方程为y +1=k (x ﹣2),联立,得(1+4k 2)x 2﹣8(2k 2+k )x +16k 2+16k ﹣4=0.∴,即.∵直线PQ 平分∠APB ,即直线PA 与直线PB 的斜率互为相反数,设直线PB 的方程为y+1=﹣k (x ﹣2),同理求得. ..........8分又,∴y 1﹣y 2=k (x 1+x 2)﹣4k .即=,.................. 10分∴直线AB 的斜率为...................12分22.(1)由'2()n x f x x -=,'2(2)4n f -=,由于函数()f x 在(2,(2))f 处的切线与直线0x y -=平行,故214n -=,解得6n =. .................. 2分 (2)'2()(0)n xf x x x-=>,由'()0f x <时,x n >;'()0f x >时,x n <,所以①当1n ≤时,()f x 在[1,)+∞上单调递减,故()f x 在[1,)+∞上的最大值为(1)f m n =-;②当1n >,()f x 在[1,)n 上单调递增,在(,)n +∞上单调递减, 故()f x 在[1,)+∞上的最大值为()1ln f n m n =--;综上①当1n ≤时,()f x 在[1,)+∞上的最大值为(1)f m n =-;②当1n >,()f x 在[1,)+∞上的最大值为()1ln f n m n =--;.................. 6分(3)函数()f x 恰有两个零点1212,(0)x x x x <<,则1211221211()ln 0,()ln 0mx mx f x x f x x x x --=-==-=, 可得121211ln ln m x x x x =+=+. 于是21221121ln ln ln x x x x x x x x -=-=. 令211x t x =>,则1111ln ,ln t t t x tx t t --==,于是21211(1)ln t x x x t t t-+=+=,.................. 8分∴21212(ln )22ln t t t x x t--+-=,记函数21()ln 2t h t t t -=-,因2'2(1)()02t h t t -=>, ∴()h t 在(1,)+∞递增,∵1t >,∴()(1)0h t h >=,又211x t x =>,ln 0t >,故122x x +>成立. .................. 12分。

高二数学竞赛试题及答案.doc

高二数学竞赛试题及答案.doc

高二数学竞赛试题及答案高二数学竞赛模拟试题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.AF1.如图,点O是正六边形ABCDEF的中心,则以图中点A、B、C、D、E、F、O中的任意一点为始点,与始点不BE同的另一点为终点的所有向量中,除向量外,与向量OA共线的向量共有( )A.2个B. 3个C.6个D. 7个213CD2.若(3a -2a) n 展开式中含有常数项,则正整数n的最小值是( )A.4B.5C. 6D. 83. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为( )3311A. 20B. 10C. 20D. 104.抛物线y2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( )A.(3,0)B.(2,0)C.(1,0)D.(-1,0)5.已知向量m=(a,b),向量n⊥m,且|n|=|m|,则n的坐标可以为( )A.(a,-b)B.(-a,b)C.(b,-a)D.(-b,-a)6.如图,在正方体ABCDA1B1C1D1中,P为BD1的中点,则△PAC 在该正方体各个面上的射影可能是( )DCAB A B③②①④111A.①④B.②③C.②④D.①②7.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A.36种B.48种C.72种D.96种8.已知直线l、m,平面?、β,且l⊥?,m?β.给出四个命题:(1)若?∥β,则l⊥m;(2)若l⊥m,则?∥β;(3)若?⊥β,则l∥m;(4)若l∥m,则?⊥β,其中正确的命题个数是( )A.4B.1C.3D.29.已知函数f(x)=log2(x2-ax+3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)10.4名乘客乘坐一列火车,有5节车厢供他们乘坐。

假设每个人进入各节车厢是等可能的,那么这4名乘客分别在不同车厢的概率为( )A54A54A44A44 A、4 B、4 C、5 D、5 5544二、填空题:本大题共4小题,每小题5分,共20分.答案填在题中横线上.11.从?a?b?的二项展开式的各项中任取两项,这两项中至少有一项含有的二项式系1 7数的概率为。

高中数学竞赛试题及答案

高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是无理数?A. 2B. πC. 0.5D. √4答案:B2. 已知函数f(x) = x^2 - 4x + 4,求f(2)的值。

A. 0B. 4C. -4D. 8答案:A3. 一个等差数列的前三项分别为1, 4, 7,求第四项的值。

A. 10B. 11C. 13D. 15答案:A4. 计算复数z = 1 + i的模。

A. √2B. 2C. 1D. √3答案:A二、填空题(每题5分,共20分)5. 已知等比数列的公比为2,首项为1,求第5项的值。

答案:326. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的点积。

答案:-67. 计算函数y = x^3 - 6x^2 + 11x - 6在x = 2处的导数值。

答案:18. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心坐标。

答案:(2, 3)三、解答题(每题10分,共60分)9. 求证:对于任意正整数n,n^2 + 3n + 2总是能被3整除。

证明:设n = 3k, 3k + 1, 3k + 2,其中k为整数。

当n = 3k时,n^2 + 3n + 2 = 9k^2 + 9k + 2 = 3(3k^2 + 3k + 1),能被3整除。

当n = 3k + 1时,n^2 + 3n + 2 = 9k^2 + 6k + 1 + 9k + 3 + 2 =3(3k^2 + 5k + 2),能被3整除。

当n = 3k + 2时,n^2 + 3n + 2 = 9k^2 + 12k + 4 + 9k + 6 + 2 = 3(3k^2 + 7k + 4),能被3整除。

因此,对于任意正整数n,n^2 + 3n + 2总是能被3整除。

10. 已知函数f(x) = x^3 - 3x^2 + 2x,求f(x)的单调区间。

解:首先求导数f'(x) = 3x^2 - 6x + 2。

高二数学竞赛试题及答案

高二数学竞赛试题及答案

高二数学竞赛试题及答案一、选择题(每题5分,共30分)1. 若函数\( f(x) = 2x^2 - 3x + 5 \),则\( f(-1) \)的值为多少?A. 12B. 10C. 8D. 62. 已知圆的半径为5,圆心在原点,求圆上一点到原点的距离最远是多少?A. 10B. 5C. 15D. 203. 一个等差数列的前三项分别为2,5,8,求这个数列的第20项是多少?A. 47B. 49C. 52D. 554. 一个直角三角形的两条直角边分别为3和4,求斜边的长度?A. 5B. 6C. 7D. 85. 已知\( \sin(\alpha) = \frac{3}{5} \),求\( \cos(\alpha) \)的值(假设\( \alpha \)在第一象限)?A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C. \( \frac{3}{5} \)D. \( -\frac{3}{5} \)6. 一个函数\( g(x) \)满足\( g(x) = x^2 + 2x + 3 \),求\( g(-1) \)的值?A. 1B. 3C. 5D. 7二、填空题(每题5分,共20分)7. 已知\( a \)和\( b \)是方程\( x^2 + 5x + 6 = 0 \)的根,求\( a + b \)的值。

______(答案:-5)8. 一个数列的前五项为1, 1, 2, 3, 5,这个数列是斐波那契数列,求第10项的值。

______(答案:55)9. 已知三角形的三边长分别为3, 4, 5,求这个三角形的面积。

______(答案:6)10. 已知\( \tan(\beta) = 2 \),求\( \sin(\beta) \)的值。

______(答案:\( \frac{2\sqrt{5}}{5} \))三、解答题(每题25分,共50分)11. 证明:对于任意实数\( x \),不等式\( e^x \ge x + 1 \)恒成立。

高二数学竞赛试题附答案(1)

高二数学竞赛试题附答案(1)

大学区高二数学竞赛试题(时间:120分钟 满分:150分)一、选择题(本题共10个小题,每题5分,共计50分)1、设P,Q 是两个非空数集,定义集合P+Q={a+b|a ∈P ,b ∈Q },若P={0,2,5},,Q={1,2,6},则P+Q 中元素的个数是 ( )A 6B 7C 8D 9 2、一个几何体的三视图如图1所示,则此几何体的全面积是 ( )A 102659+.B 84142+.C 8412017+.D 150.3、 如果 (0,)a π∈, 1lg(1cos ),lg()1cos m nαα-==+, 那么 lgsin α=( )A m n -.B 1m n +. C 1()2m n -. D 11()2m n +. 4、对任意的函数()y f x =,在同一个直角坐标系中,函数()-1y f x =与函数()-+1y f x = 的图像 ( )A 关于x 轴对称.B 关于直线1x =对称.C 关于直线-1x =对称.D 关于y 轴对称5、若11x F x x -⎛⎫= ⎪+⎝⎭,则下列等式中正确的是 ( )A ()()22F x F x --=--.B ()1-1x F x F x -⎛⎫= ⎪+⎝⎭. C ()1F F x x ⎛⎫= ⎪⎝⎭. D ()F F x x =-⎡⎤⎣⎦6、 已知倾斜角为α的直线l 与直线x -2y 十2=0平行,则tan 2α的值为( )A .45B .43C .34D .237、 在△ABC 中,内角A 、B 、C 所对边分别为a 、b 、c ,若222222c a b ab =++,则△ABC 是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形8、若圆222)5(3r y x =++-)(有且仅有两个点到直线4x -3y=2的距离等于1,则半径r 的取值范围是( )A 、[4,6]B 、[4, 6 )C 、(4,6 ]D 、(4,6)9、等比数列{}n a的前n 项和为n s ,若1030=1070s =,s ,则40s 等于( ) A 150. B -200. C 150或-200. D 400或-5010、.已知()1122,,(,)A x yB x y 是函数2()12xf x x =-图像上不同的两点,若AB 的中点落在x 轴上,则2212x x +的取值范围为 ( )A .1(,)16+∞ B .1(,)8+∞ C .1(,)4+∞ D .1(,)2+∞二、填空题(本题共5个小题,每题5分,共计25分)11、已知1+sin 1cos 2x x=-,那么cos sin 1xx -的值是 。

高二年级数学竞赛试题含答案

高二年级数学竞赛试题含答案

高二年级数学竞赛试题一、选择题(每小题5 分,共12小题,满分60分)1. 已知命题tan 1p x R x ∃∈=:,使,其中正确的是 ( ) (A) tan 1p x R x ⌝∃∈≠:,使(B) tan 1p x R x ⌝∃∉≠:,使 (C) tan 1p x R x ⌝∀∈≠:,使(D) tan 1p x R x ⌝∀∉≠:,使 2. 设a R ∈,则1a >是11a< 的 ( ) (A )充分但不必要条件 (B )必要但不充分条件(C )充要条件(D )既不充分也不必要条件3. 抛物线24(0)y ax a =<的焦点坐标是 ( ) (A )(a , 0) (B )(-a , 0) (C )(0, a ) (D )(0, -a )4(文)=∆∆--∆+→∆xx x f x x f 2)()(lim000x ( )(A).)(210x f ' (B). )(0x f ' (C). )(20x f ' (D). )(-0x f ' 4(理)有以下命题:①如果向量,与任何向量不能构成空间向量的一组基底,那么,的关系是不共线;②,,,O A B C 为空间四点,且向量,,不构成空间的一个基底,则点,,,O A B C 一定共面; ③已知向量,,是空间的一个基底,则向量,,-+也是空间的一个基底。

其中正确的命题是 ( ) (A )①② (B )②③ (C )①③ (D )①②③ 5(文)已知直线kx y =是x y ln =的切线,则k 的值为( ) (A )e 1-(B )e 1 (C )e 2 (D )e2- 5(理)已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) (A )2 (B )3 (C )4 (D )56(文) 设210,,k k k 分别表示正弦函数x y sin =在2,4,0ππ===x x x 附近的平均变化率,则( )(A ). 012k k k << (B). 120k k k << (C). 210k k k << ( D). 201k k k <<6(理)如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。

数学竞赛试题及答案高中生

数学竞赛试题及答案高中生

数学竞赛试题及答案高中生试题一:代数问题题目:已知\( a, b \) 是方程 \( x^2 + 5x + 6 = 0 \) 的两个实根,求 \( a^2 + 5a + 6 \) 的值。

解答:根据韦达定理,对于方程 \( x^2 + bx + c = 0 \),其根\( a \) 和 \( b \) 满足 \( a + b = -b \) 和 \( ab = c \)。

因此,对于给定的方程 \( x^2 + 5x + 6 = 0 \),我们有 \( a + b =-5 \) 和 \( ab = 6 \)。

由于 \( a \) 是方程的一个根,我们可以将 \( a \) 代入方程得到 \( a^2 + 5a + 6 = 0 \)。

所以 \( a^2 + 5a + 6 = 0 \)。

试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为 3 厘米和 4 厘米,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过直角边 \( a \) 和 \( b \) 计算得出,公式为 \( c = \sqrt{a^2 + b^2} \)。

将给定的边长代入公式,我们得到 \( c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。

试题三:数列问题题目:一个等差数列的首项 \( a_1 = 3 \),公差 \( d = 2 \),求第 10 项 \( a_{10} \) 的值。

解答:等差数列的通项公式为 \( a_n = a_1 + (n - 1)d \),其中\( n \) 是项数。

将给定的值代入公式,我们得到 \( a_{10} = 3 + (10 - 1) \times 2 = 3 + 9 \times 2 = 3 + 18 = 21 \)。

试题四:组合问题题目:从 10 个不同的球中选取 5 个球,求不同的选取方式有多少种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二年级学科知识竞赛数学试卷第I 卷(选择题)一、填空题(本大题共12小题,每小题5分,共60分)1.命题:p 方程11522=-+-m y m x 表示焦点在y 轴上的椭圆,则使命题p 成立的充分不必要条件是 A .53<<m B .1>m C .51<<m D .54<<m 2.已知集合{}2|20A x x x =+-<,12|log 1B x x ⎧⎫=>⎨⎬⎩⎭,则A B =I ( )A .1(0,)2B .(0,1)C .1(2,)2-D .1(,1)23.若数列{}n a 满足()21115,22n nn n a a a a n N a +++==+∈,则其前10项和为( )A .200 B.150 C.100 D.504.已知双曲线()222210,0x y a b a b-=>>的离心率为62,左顶点到一条渐近线的距离为263,则该双曲线的标准方程为( )A .22184x y -=B .221168x y -=C .2211612x y -=D .221128x y -= 5.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( ) ①若,m ααβ⊥⊥,则//m β; ②若,//,m n ααββ⊥⊂,则m n ⊥; ③若,,//m n m n αβ⊂⊂,则//αβ; ④若,,n n m αββ⊥⊥⊥,则m α⊥. A.①② B.③④ C.①③ D.②④ 6.设0,01x y a b >><<<,则下列恒成立的是( )A.abx y > B.abx y < C.x y a b > D.x ya b <7.已知函数()sin()f x A x ωϕ=+(0A >,0ω>,02πϕ<<)的部分图像如图所示,则函数()f x 的解析式为( ) A .()2sin(2)3f x x π=+ B .()2sin(2)6f x x π=+C .()2sin(2)3f x x π=+D .()2sin(2)6f x x π=+8.正方体1111ABCD A B C D -中,M 是1DD 的中点,O 为底面ABCD 的中心,P 为棱11A B 上的任意一点,则直线OP 与直线AM 所成的角为( )A. 45oB. 60oC. 90oD.与点P 的位置有关9.一只蚂蚁从正方体1111ABCD A B C D -的顶点A 处出发,经正方体的表面,按最短路线爬行到达顶点1C 位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是( )A.①②B.①③C.③④D.②④ 10.函数ln cos 22y x x ππ⎛⎫=-<< ⎪⎝⎭的图象是( )A .B .C .D .11.设点12,F F 分别为椭圆()222210x y a b a b+=>>的左右焦点,l 为右准线,若在椭圆上存在点M ,使1MF ,2MF ,点M 到l 的距离d 成等比数列,则椭圆的离心率e 的取值范围是( )A.)21,1B.21,1⎤⎦C.(21⎤⎦ D.2⎛ ⎝⎦12. 已知全集},|),{(R y x y x U ∈=,集合}20,1sin )4(cos |),{(πθθθ≤≤=-+=y x y x A ,集合A 的补集A C U 所对应区域的对称中心为M ,点P 是线段)0,0(8>>=+y x y x 上的动点,点Q 是x 轴上的动点,则MPQ ∆周长的最小值为( )A .24B .104C .14D .248+第II 卷(非选择题)二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量AB →与AC →的夹角为120°,且|AB →|=2,|AC →|=3.若AP →=λAB →+AC →,且AP →⊥BC →,则λ= . 14.正数y x ,满足22=+y x ,则xyyx 8+的最小值为 . 15.设n S 为等差数列{}n a 的前n 项之和,()9418,309,336n n S a n S -==>=,则n = .16.对于函数()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,有下列4个命题:①任取[)12,0,x x ∈+∞,都有()()122f x f x -≤恒成立; ②()()()*22f x kf x k k N=+∈,对于一切[)0,x ∈+∞恒成立;③函数()()ln 1y f x x =--有3个零点; ④对任意0x >,不等式()2f x x≤恒成立. 则其中所有真命题的序号是 .三、解答题(本大题共6小题,共70分)17. (10分)已知0a >,设命题p :函数()2212f x x ax a =-+-在区间[]0,1上与x 轴有两个不同的交点;命题q :()g x x a ax =--有最小值.若()p q ⌝∧是真命题,求实数a 的取值范围.18.(12分)如图所示,已知二面角α­MN ­β的大小为60°,菱形ABCD 在面β内,A ,B 两点在棱MN 上,∠BAD =60°,E 是AB 的中点,DO ⊥面α,垂足为O .(1)证明:AB ⊥平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值.19.(12分)如图所示,在ABC ∆中, 点D 为BC 边上一点,且1,BD E =为AC 的中点,3272,cos ,23AE B ADB π==∠=. (1)求AD 的长;(2)求ADE ∆的面积.20.(12分)设函数()f x 是定义域为[]1,1-的奇函数;当[]1,0x ∈-时,()23f x x =-.(1)当[]0,1x ∈时,求()f x ;(2)对任意的[][]1,1,1,1a x ∈-∈-,不等式()22cos sin 1f x a θθ≤-+都成立,求θ的取值范围.21、(12分)已知椭圆的两个焦点为()()121,0,1,0F F -,且椭圆与直线3y x =-相切. ⑴求椭圆的方程;⑵过1F 作互相垂直的直线12,l l ,与椭圆分别交于,P Q 及,M N ,求四边形PQMN 面积的最大值和最小值.22.(12分)已知数列{}n a 的前n 项和为n A ,对任意*n N ∈满足1112n n A A n n +-=+,且11a =,数列{}n b 满足()*21320,5n n n b b b n Nb++-+=∈=,其前9项和为63.(1)求数列{}n a 和{}n b 的通项公式; (2)令n nn n nb ac a b =+,数列{}n c 的前n 项和为n T ,若对任意正整数n ,都有2n T n a ≥+,求实数a 的取值范围;(3)将数列{}{},n n a b 的项按照“当n 为奇数时,n a 放在前面;当n 为偶数时,n b 放在前面”的要求进行“交叉排列”,得到一个新的数列:11223344556,,,,,,,,,,a b b a a b b a a b b L ,,求这个新数列的前n 项和n S .参考答案一、选择题1.D 解析:方程表示焦点在y 轴上的充要条件是501015m m m m ->⎧⎪->⎨⎪->-⎩,解得35m <<,所以选项中是35m <<的充分不必要条件的是45m <<,故选D.2.A 解析:依题意()12,1,0,2A B ⎛⎫=-= ⎪⎝⎭,故10,2A B ⎛⎫= ⎪⎝⎭I .3.D 解析:由已知1n n a a +=4. A解析:,e c a =⇒==,渐近线方程222202x y x b b -=⇒=±,因此左顶点到一条渐23a b =⇒==,即该双曲线的标准方程为22184x y -=,选A.5. D 解析:对于①,有可能m β⊂,故错误;对于③,αβ可能相交,故错误.所以选D. 6 .D 解析:xyya ab <<7. D 解析:0x =时,1y =,代入验证,排除A ,B ,C 选项,故选D.8. C. 解析:如下图所示建立空间直角坐标系,不妨设正方体的棱长为2,设(,0,0)P x ,(1,1,2)O ,(0,2,1)M ,(0,0,2)A ,∴(1,1,2)OP x =---u u u r ,(0,2,1)AM =-u u u u r,∴(1)012(2)(1)0OP AM x ⋅=-⋅-⨯+-⨯-=u u u r u u u u r ,即OP AM ⊥,故夹角为2π,故选C.9.D 解析:最短距离是正方体侧面展开图,即矩形111ABCC B A A 的对角线1AC (经过1BB )、或矩形11ABCC D DA 的对角线1AC (经过CD ),故视图为②④.10. A 解析:由偶函数排除B 、D,∴≤∴≤<,0,1cos 0y x Θ排除C. 11.A 解析:由题意221221221221a MF MF MF e MF MF a MF MF a c e e=⋅⇒==-⇒=≤++ ()212211e e +≥⇒-≤<12.B 解析:∵点(0,4)到直线cos (4)sin 1x y θθ+-=的距离221d cos sin θθ==+,∴直线cos (4)sin 1x y θθ+-=始终与圆()2241x y +-=相切,∴集合A 表示除圆()2241x y +-=以外所有的点组成的集合,∴集合A C U 表示圆()2241x y +-=,其对称中心()0,4M如图所示:设M '是点()0,4M 关于直线线段)0,0(8>>=+y x y x 的对称点,设M a b '(,), 则由1 0442082a b a b ⎧⎪⎪⎨++⎪+=⎪-⎩-=求得4 8a b =⎧⎨=⎩,可得M '(4,8). 设M '关于x 轴的对称点为M m n "(,),易得M "(4,-8),则直线QM ',和线段的交点为P ,则此时,MPQ ∆的周长为410MP PQ QM PM PQ QM M Q QM M Q QM M M ''''''++=++=+=+==,为最小值,二、填空题 13.127解析:由AP →·BC →=(λAB →+AC →)·(AC →-AB →)=λAB →·AC →-λ(AB →)2+(AC →)2-AC →·AB →=0, 得-3λ-4λ+9+3=0,解得λ=127.14.9 解析:818182116116101029222x y x y y x y x xy y x y x x y x y ⎛⎫⎛⎫⎛⎫++=+=+=++≥+⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭15. 21 解析:()()()15423033621222n n n n a a n a a n S n -+++====⇒= 16.①③④【解析】:()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩的图象如图所示,①)(x f 的最大值为1,最小值为1-,所以任取[)12,0,x x ∈+∞,都有()()122f x f x -≤恒成立,正确;②)821(8)621(6)421(4)221(2)21(+≠+=+=+=f f f f f ,故不正确;③如图所示,函数()()ln 1y f x x =--有3个零点;④由题意,可得,)22,2(+∈k k x ,kx f 21)(max =,1k 1x k min+=)(.证明k 211k 1≥+,即证明1k 2k +≥,又1k 2k +≥, )1(≥k ,所以k 211k 1≥+,所以对任意0>x ,不等式x k x f ≤)(恒成立,所以对任意0>x ,不等式()2f x x≤恒成立正确.故答案:①③④.三、解答题17. 解析:若()p q ⌝∧是真命题,则p 为假命题且q 为真命题.分别求出,p q 为真时,参数a 的范围,取其补集即得p 为假时,参数a 的范围,取交集即得实数a 的取值范围.试题解析:若p 真,则()()0,01,00,10,a f f ∆>⎧⎪<<⎪⎨≥⎪⎪≥⎩即2210,01,120,240,a a a a a ⎧+->⎪<<⎪⎨-≥⎪⎪-≥⎩ 1212a <≤.若q 真,()()()1,,01,,a x a x a g x a a x a x a --≥⎧⎪=>⎨-++<⎪⎩Q ∴()10a -+<,即()g x 在(),a -∞上是单调递减的,要使()g x 有最小值,则()g x 在[),a +∞上单调递增或为常数, 即10a -≥,∴01a <≤.若()p q ⌝∧是真命题,则p 为假命题且q 为真命题,01a <≤或112a <≤.∴实数a的取值范围为(11,12⎛⎤⎤⎥⎦⎝⎦U .18.解:(1)证明:如图,因为DO ⊥α,AB ⊂α,所以DO ⊥AB .连接BD ,由题设知,△ABD 是正三角形,又E 是AB 的中点,所以DE ⊥AB .而DO ∩DE =D ,故AB ⊥平面ODE .(2)因为BC ∥AD ,所以BC 与OD ADO 是BC 与OD 所成的角.由(1)知,AB ⊥平面ODE ,所以AB ⊥OE .又DE ⊥AB ,于是∠DEO 是二面角α­MN ­β的平面角,从而∠DEO =60°.不妨设AB =2,则AD =2,易知DE = 3.在Rt △DOE 中,DO =DE ·sin 60°=32.连接AO ,在Rt △AOD 中,cos ∠ADO =DO AD =33224=19.(1)在ABD ∆中,()cos 0,,sin 77B B B π=∈∴===Q , ()1sin sin 727214BAD B ADB ⎛⎫∴∠=+∠=-+= ⎪⎝⎭g g , 由正弦定理sin sin AD BDB BAD=∠, 知12sin 14BD AD BAD ===∠. (2)由(1)知2AD =,依题意得23AC AE ==,在ACD ∆中,由余弦定理得2222cos AC AD DC AD CD ADC =+-∠g ,即29422cos 3DC CD π=+-⨯⨯,2250DC DC ∴--=,解得1DC =+(负值舍去).(11sin 2122AD S AD DC ADC ∆∴=∠=⨯⨯=g ,从而12AD ADC S S ∆∆== 20.(1)设[]0,1x ∈,则[]1,0x -∈-,所以()()23f x f x x =--=;(2)由(1)知,()[][]223,1,03,0,1x x f x x x ⎧-∈-⎪=⎨∈⎪⎩,所以()()max 13f x f ==, 因为()22cossin 1f x a θθ≤-+对[]1,1x ∀∈-都成立,即()2max 2cos sin 13a f x θθ-+≥=,即22cos sin 13a θθ-+≥对[]1,1a ∀∈-恒成立,所以222cos sin 132cos sin 13θθθθ⎧-+≥⎨++≥⎩,即222sin sin 02sin sin 0θθθθ⎧+≤⎨-≤⎩, 所以sin 0θ=,即()k k Z θπ=∈,所以θ的取值范围为{}|,k k Z θθπ=∈.21.⑴设椭圆的方程为()222210x y a b a b+=>>;联立22221x y a by x ⎧+=⎪⎨⎪=⎩得()222222230b a x x a a b +-+-=有唯一根;所以()()()2222222430b a a a b =--+-=V ,得223b a +=又221a b -=,所以222,1a b ==,所以椭圆的方程为:2212x y += ⑵若PQ 的斜率不存在或为0时,22PQMN PQ MNS ==’ 若PQ 的斜率存在,设为()0k k ≠,则MN 的斜率为1k- 直线PQ 的方程为y kx k =+,设()()1122,,,P x y Q x y联立()22222212142202x y k x k x k y kx k⎧+=⎪+++-=⎨⎪=+⎩得,则12PQ x =-=同理MN =,所以2424242121124422522252PQMNk PQ MN k k S k k k k ⎛⎫ ⎪++===- ⎪++++⎪⎝⎭=2211442410k k ⎛⎫⎪- ⎪ ⎪++⎝⎭, 因为22448k k +≥,当21k =时取等号,所以22110,418410k k⎛⎤∈ ⎥⎝⎦++, 所以2211164,2429410k k ⎛⎫⎪⎡⎤-∈ ⎪⎢⎥⎣⎦⎪++⎝⎭,所以四边形PQMN 面积的最小值为169,最大值为2。

相关文档
最新文档