安徽省马鞍山市高一上学期期中数学试卷
安徽省马鞍山二中高一数学上学期期中试题(扫描版)(1)

安徽省马鞍山二中2021-2021学高一数学上学期期中试题(扫描版)马鞍山市2014―2015学年度第一学期期中素养测试数学必修① 试题答案一、选择题(此题共12小题,每题3分,共36分)二、填空题(此题共5小题,每题4分,共20分.)13. [4,5)(5,)+∞ 14. 7- 15. 1016. (,4][10,)-∞+∞ 17. ①③④. 三、解答题:(此题共5小题,共44分.解答题应写出文字说明、演算步骤或证明进程)18. (本小题总分值8分)已知集合{|240}A x x =-<,{|05}B x x =≤<,全集U =R .求:(Ⅰ)A B ; (Ⅱ)()U A B .【命题用意】考查集合的表示法和集合的交、并、补运算,简单题.【答案】(Ⅰ){|2}A x x =<,{}|5A B x x =<;……4分 (Ⅱ)(){|05}U B x x x =<≥或,(){|0}U A B x x =<.……8分 19. (此题总分值8分)求以下各式的值:(Ⅰ)1lg lg 254-; (Ⅱ)1212[(1](1--. 【命题用意】考查指数、对数的大体运算,简单题.【答案】(Ⅰ)()1lg lg 25lg 4lg 25lg 425lg10024-=--=-⨯=-=-; ……4分(Ⅱ)1212[(1](111)0--==-=. ……8分20. (本小题总分值9分)已知函数()log (1)a f x x =+,()log (1)a g x x =-,其中0a >且1a ≠,设()()()h x f x g x =-.(Ⅰ)求函数()h x 的概念域;(Ⅱ)判定函数()h x 的奇偶性,并说明理由;(Ⅲ)解关于x 的不等式()0h x >.【命题用意】考查函数性质的综合应用,中档题.【答案】(Ⅰ)()()()log (1)log (1)a a h x f x g x x x =-=+--,由1010x x +>⎧⎨->⎩,解得11x -<<,因此函数()h x 的概念域为(1,1)-; ……3分(Ⅱ)由(Ⅰ)可知概念域关于原点对称,()log (1)log (1)()a a h x x x h x -=--+=-,因此()h x 为奇函数; ……6分(Ⅲ)由()()()0h x f x g x =->得()()f x g x >,即log (1)log (1)a a x x +>-,当1a >时,那么有1111x x x +>-⎧⎨-<<⎩,解得()0,1x ∈; 当01a <<时,那么有1111x x x +<-⎧⎨-<<⎩,解得()1,0x ∈-. ……………………9分 21. (本小题总分值9分) 已知函数()a f x x x =+,且(1)10f =. (Ⅰ)求a 的值;(Ⅱ)试判定函数()f x 在[3,)+∞上的单调性,并用概念加以证明;(Ⅲ)求函数()f x 在区间[3,6]上的最大值与最小值.【命题用意】考查函数单调性的判定和利用单调性求最值,中档题.【答案】(Ⅰ)由(1)110f a =+=得9a =.……2分 (Ⅱ)9()f x x x=+在[3,)+∞上是增函数,证明如下: ……4分 任取12,[3,)x x ∈+∞,且12x x <,1212121212999()()()()()1f x f x x x x x x x x x ⎛⎫-=+-+=-- ⎪⎝⎭, ∵123x x ≤<,∴120x x -<,129x x >,12910x x ->, ∴12()()0f x f x -<,即12()()f x f x <,因此()f x 在[3,)+∞上是增函数. ……7分(Ⅲ)由(Ⅱ)可知,()f x 在[3,6]上是单调递增,因此最大值为15(6)2f =,最小值为(3)6f =. ……9分22. (本小题总分值10分)设函数()(,,)n f x x bx c n N b c R +=++∈∈(Ⅰ)若2n =时,()f x 为偶函数,且函数()f x 的值域为[3,)+∞,求()f x 的解析式;(Ⅱ)设2n ≥,1,1b c ==-,证明:()f x 在区间1(,1)2内存在唯一的零点;(Ⅲ)在(Ⅱ)条件下,当3n =时,那个零点更靠近12与1中的哪个值?【命题用意】考查函数的大体性质与二次函数的基础知识,和函数零点存在性定理的考查,较难题.【答案】(Ⅰ)当2n =时,又()f x 为偶函数,因此有()()f x f x -=,从而可求出0b =,现在2()f x x c =+ ……2分结合值域为[3,)+∞可知3c =.故解析式为2()3f x x =+; ……3分(Ⅱ)()1n f x x x =+-,因为11111()()1()022222n n f =+-=-<,(1)11110n f =+-=>,因此1()(1)02f f ⋅<,因此()f x 在区间1(,1)2内存在零点.……5分 由于函数(2)n y x n N n +=∈≥,和1y x =-在1(,1)2内单调递增,因此()1n f x x x =+-在1(,1)2内单调递增,从而()f x 在区间1(,1)2内存在唯一的零点. ……7分(Ⅲ)当3n =时,3()1f x x x =+-,结合(Ⅱ)的结论可知,()f x 在区间1(,1)2内存在唯一的零点,又因为3111()()10222f =+-<,(1)10f =>,3333()()10444f =+->,因此那个零点在区间13(,)24内,故那个零点更靠近12. ……10分。
安徽省马鞍山市高一上学期数学期中考试试卷

安徽省马鞍山市高一上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)(2017·浙江) 已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A . (﹣1,2)B . (0,1)C . (﹣1,0)D . (1,2)2. (1分) (2019高一上·林芝期中) 化简:()A . 4B .C . 或4D .3. (1分)下列各组函数表示相等函数的是()A . 与B . 与C . 与D . 与4. (1分) (2020高一上·石景山期末) 函数的定义域是()A .B .C .D .5. (1分)A . a>2B . 1<a<2C . a>1D .6. (1分) (2019高一上·大庆期中) 已知,则的关系为().A .B .C .D .7. (1分) (2019高三上·西安月考) 若函数有极值点,,且,则关于的方程的不同实根个数是()A . 3B . 4C . 5D . 68. (1分)若和都是定义在上的函数,则“与同是奇函数或偶函数”是“是偶函数”的()A . 充分非必要条件.B . 必要非充分条件.C . 充要条件.D . 既非充分又非必要条件9. (1分)已知函数,若对于任意,当时,总有,则区间有可能是()A .B .C .D .10. (1分)对于函数与和区间D,如果存在,使,则称是函数与在区间D上的“友好点”.现给出两个函数:①,;②,;③,;④,,则在区间上的存在唯一“友好点”的是()A . ①②B . ③④C . ②③D . ①④二、填空题 (共7题;共7分)11. (1分)计算=________12. (1分) (2018高一上·海安月考) 如果对于函数f (x)的定义域内任意两个自变量的值,,当时,都有≤ 且存在两个不相等的自变量,,使得,则称为定义域上的不严格的增函数.已知函数的定义域、值域分别为,,,且为定义域上的不严格的增函数,那么这样的函数共有________个.13. (1分) (2019高一上·张家口月考) 已知函数,则 ________.14. (1分) (2019高三上·和平月考) 已知函数,有以下结论:①若,则;② 在区间上是增函数;③ 的图象与图象关于轴对称;④设函数,当时,。
2023-2024学年安徽省马鞍山市中加双语学校高一(上)期中数学试卷【答案版】

2023-2024学年安徽省马鞍山市中加双语学校高一(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题p :∃x ∈Q ,1x 2∈Q ,命题q :∀x ∈Q ,1x 2∈Q ,则( ) A .p 的否定是q B .p 的否定是∀x ∉Q ,1x 2∉QC .q 的否定是pD .q 的否定是∃x ∈Q ,1x 2∉Q 2.已知集合A ={x ∈Z |0<x <4},B ={x |(x +1)(x ﹣2)<0},则A ∩B =( ) A .(0,2)B .(﹣1,2)C .{0,1}D .{1}3.已知函数y =√x −1+1x−2则函数定义域为( ) A .[1,+∞) B .(2,+∞)C .(1,+∞)D .[1,2)∪(2,+∞)4.已知f (x )=ax 2+bx 是定义在[a ﹣1,2a ]上的偶函数,那么a +b 的值是( ) A .−13 B .13C .−12D .125.已知a >0,将2√a⋅√a 23表示成分数指数幂,其结果是( )A .a 13B .a 14C .a 32D .a 766.函数f (x )=2a x +1﹣1(a >0,且a ≠1)恒过定点( ) A .(﹣1,﹣1)B .(﹣1,1)C .(0,﹣1)D .(0,1)7.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数图象的特征,如函数y =2|x |﹣x 2(x ∈R )的大致图象是( )A .B .C .D .8.若实数x 、y 满足2020x ﹣2020y <2021﹣x ﹣2021﹣y ,则( )A .x ﹣y <0B .x ﹣y >0C .yx<1D .yx>1二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分) 9.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( ) A .y =xB .y =|x |+1C .y =x 2D .y =−1x10.下列说法中正确的有( ) A .“x >3”是“x >2”的必要条件B .“x >1”是“x 2>1”的充分不必要条件C .“x =2或x =﹣3”是“x 2+x ﹣6=0”的充要条件D .“a >b ”是“a 2>b 2”的必要不充分条件 11.设函数f (x )={ax −1,x <a x 2−2ax +1,x ≥a ,当f (x )为增函数时,实数a 的值可能是( )A .2B .﹣1C .12D .112.设f (x )=|3x ﹣1|,c <b <a ,且f (c )>f (a )>f (b ),则下列关系式中一定不成立的是( ) A .3c <3bB .3c >3bC .3c +3a >2D .3c +3a <2三、填空题:本题共4小题,每小题5分,共20分. 13.函数y =1x−2的单调减区间为 . 14.已知幂函数y =f (x )的图像过点(2,√22),则f (16)= . 15.若x >0时,1−x −16x的最大值是 . 16.设f (x )为定义在R 上的偶函数,当x ≥0时,f (x )=﹣(x ﹣2)2+2.若方程f (x )﹣k =0有四个解,则实数k 的取值范围是 .四、解答题(本题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(10分)化简求值: (1)(214)12+(0.34)0;(2)(5116)0.5−2×(21027)−23−2×(√2+π)0÷(34)−2;18.(12分)已知函数y =f (x )的图象关于原点对称,且当x ≥0时,f (x )=x 2﹣2x(1)试求f (x )在R 上的解析式;(2)写出y =f (x )的单调递减区间(无需证明). 19.(12分)已知函数f(x)={x +2(x ≤1)x 2(1<x <2)2x(x ≥2);(1)求f [f (0)];(2)若f (a )≤5,求a 的取值范围. 20.(12分)已知函数f(x)=3x 2. (1)求证函数f (x )在(0,+∞)上是单调减函数; (2)求函数f (x )在[1,3]上的值域.21.(12分)已知关于x 的不等式ax 2﹣3x +b >0的解集为{x |x <1或x >2}. (1)求a ,b 的值;(2)当x >0,y >0,且满足a x+b y=1时,有2x +y ≥k 2+k +2恒成立,求k 的取值范围.22.(12分)已知函数f (x )=2xa +a 2x (a >0)是R 上的偶函数.(1)解不等式f (x )<174;(2)若关于x 的不等式mf (x )≤2﹣x +m ﹣1在(0,+∞)上恒成立,求实数m 的取值范围.2023-2024学年安徽省马鞍山市中加双语学校高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题p :∃x ∈Q ,1x 2∈Q ,命题q :∀x ∈Q ,1x 2∈Q ,则( ) A .p 的否定是q B .p 的否定是∀x ∉Q ,1x 2∉QC .q 的否定是pD .q 的否定是∃x ∈Q ,1x 2∉Q 解:p 的否定是∀x ∈Q ,1x 2∉Q ,q 的否定是∃x ∈Q ,1x 2∉Q . 故选:D .2.已知集合A ={x ∈Z |0<x <4},B ={x |(x +1)(x ﹣2)<0},则A ∩B =( ) A .(0,2)B .(﹣1,2)C .{0,1}D .{1}解:∵集合A ={x ∈Z |0<x <4}={1,2,3},B ={x |(x +1)(x ﹣2)<0}={x |﹣1<x <2},∴A ∩B ={1}. 故选:D .3.已知函数y =√x −1+1x−2则函数定义域为( ) A .[1,+∞) B .(2,+∞)C .(1,+∞)D .[1,2)∪(2,+∞)解:要使函数有意义,则{x −1≥0x −2≠0,解得x ≥1且x ≠2,所以函数的定义域为[1,2)∪(2,+∞). 故选:D .4.已知f (x )=ax 2+bx 是定义在[a ﹣1,2a ]上的偶函数,那么a +b 的值是( ) A .−13B .13C .−12D .12解:对于函数知f (x )=ax 2+bx , 依题意得:f (﹣x )=f (x ),∴b =0. 又 a ﹣1=﹣2a ,∴a =13, ∴a +b =13. 故选:B .5.已知a >0,将2√a⋅√a 23表示成分数指数幂,其结果是( )A .a 13B .a 14C .a 32D .a 76解:2√a⋅√a 23=2√a⋅a 23=2√a 53=a 2a 56=a 76.故选:D .6.函数f (x )=2a x +1﹣1(a >0,且a ≠1)恒过定点( ) A .(﹣1,﹣1)B .(﹣1,1)C .(0,﹣1)D .(0,1)解:令x +1=0,则x =﹣1,f (﹣1)=2﹣1=1,所以f (x )恒过定点(﹣1,1). 故选:B .7.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数图象的特征,如函数y =2|x |﹣x 2(x ∈R )的大致图象是( )A .B .C .D .解:令y =f (x )=y =2|x |﹣x 2, f (﹣x )=2|﹣x |﹣(﹣x )2=2|x |﹣x 2=f (x ),∴函数f (x )为偶函数,其图象关于y 轴称,故排除BD , ∵f (0)=20﹣0=1,故排除C , 故选:A .8.若实数x 、y 满足2020x ﹣2020y <2021﹣x ﹣2021﹣y ,则( )A .x ﹣y <0B .x ﹣y >0C .yx<1D .yx>1解:实数x 、y 满足2020x ﹣2020y <2021﹣x ﹣2021﹣y , ∴2020x ﹣2021﹣x <2021y ﹣2021﹣y ,由于f(t)=2020t﹣2021﹣t=2020t−12021t是R上的增函数,f(x)<f(y),∴x<y,故选:A.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=x B.y=|x|+1C.y=x2D.y=−1x解:对于A:f(x)=x的定义域为R,且f(﹣x)=﹣x=﹣f(x),所以f(x)=x为奇函数,故A错误;对于B:g(x)=|x|+1的定义域为R,且g(﹣x)=|﹣x|+1=|x|+1=g(x),所以g(x)=|x|+1为偶函数,当x∈(0,+∞)时g(x)=x+1,g(x)=x+1在(0,+∞)上单调递增,即g(x)=|x|+1在(0,+∞)上单调递增,故B正确;对于C:h(x)=x2的定义域为R,且h(﹣x)=(﹣x)2=x2=h(x),所以h(x)=x2为偶函数,因为h(x)=x2在(0,+∞)上单调递增,故C正确;对于D:F(x)=−1x的定义域为(﹣∞,0)∪(0,+∞),且F(−x)=−1−x=1x=−F(x),所以F(x)=−1x为奇函数,故D错误.故选:BC.10.下列说法中正确的有()A.“x>3”是“x>2”的必要条件B.“x>1”是“x2>1”的充分不必要条件C.“x=2或x=﹣3”是“x2+x﹣6=0”的充要条件D.“a>b”是“a2>b2”的必要不充分条件解:对于A:“x>3”是“x>2”的充分条件,故A错误;对于B:x2>1⇔x<﹣1或x>1,即“x>1”是“x2>1”充分不必要条件,故B正确;对于C:“x=2或x=﹣3”是“x2+x﹣6=0”的充要条件,故C正确;对于D :“a >b ”是“a 2>b 2”既不充分又不必要条件,例如a =﹣3,b =﹣5,a >b ,但a 2=9<b 2=25,反之当a =﹣1,b =0时a 2>b 2,但a <b , 故D 错误, 故选:BC . 11.设函数f (x )={ax −1,x <a x 2−2ax +1,x ≥a ,当f (x )为增函数时,实数a 的值可能是( )A .2B .﹣1C .12D .1解:当x <a 时,若f (x )为增函数,则a >0,① 当x ≥a 时,f (x )=x 2﹣2ax +1为增函数, 因为函数f (x )为增函数, 所以a ×a ﹣1≤a 2﹣2a ×a +1,② 由①②解得0<a ≤1, 故选:CD .12.设f (x )=|3x ﹣1|,c <b <a ,且f (c )>f (a )>f (b ),则下列关系式中一定不成立的是( ) A .3c <3bB .3c >3bC .3c +3a >2D .3c +3a <2解:f(x)=|3x−1|={3x −1,x ≥01−3x ,x <0,作出f (x )=|3x ﹣1|的图象如图所示,由图可知,要使c <b <a 且f (c )>f (a )>f (b )成立,则有c <0且a >0, 故必有3c <1且3a >1,又f (c )﹣f (a )>0,即为1﹣3c ﹣(3a ﹣1)>0,所以3c +3a <2.由于函数y =3x 为单调递增函数,且c <b <a ,所以3c <3b ,故AD 可能,CB 不可能. 故选:BC .三、填空题:本题共4小题,每小题5分,共20分.13.函数y =1x−2的单调减区间为 (﹣∞,2)、(2,+∞) .解:根据题意,y =1x−2,其定义域为(﹣∞,2)∪(2,+∞), 设t =x ﹣2,t ≠0,则y =1t,则区间(﹣∞,2)上,设t =x ﹣2为增函数,y =1t 为减函数,则y =1x−2为减函数, 同理在区间(2,+∞)上,y =1x−2也为减函数, 综合可得:函数y =1x−2的单调减区间为(﹣∞,2)、(2,+∞); 故答案为:(﹣∞,2)、(2,+∞).14.已知幂函数y =f (x )的图像过点(2,√22),则f (16)= 14.解:设f (x )=x α, ∵y =f (x )的图像过点(2,√22), ∴√22=2α,解得α=−12,∴f (x )=x−12,∴f (16)=16−12=14,故答案为:14. 15.若x >0时,1−x −16x的最大值是 ﹣7 . 解:因为x >0,所以1−x −16x =1﹣(x +16x )≤1−2√x ⋅16x =1﹣8=﹣7, 当且仅当x =16x ,即x =4时取等号. 故答案为:﹣7.16.设f (x )为定义在R 上的偶函数,当x ≥0时,f (x )=﹣(x ﹣2)2+2.若方程f (x )﹣k =0有四个解,则实数k 的取值范围是 (﹣2,2) .解:因为函数f (x )是定义在R 上的偶函数且当x ≥0时,f (x )=﹣(x ﹣2)2+2, 所以函数f (x )图象关于y 轴对称, 作出函数f (x )的图象:若方程f(x)﹣k=0有四个不同的实数解,则函数y=f(x)与直线y=k有4个交点,由图象可知:﹣2<k<2时,即有4个交点.故k的取值范围是(﹣2,2).故答案为:(﹣2,2).四、解答题(本题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)化简求值:(1)(214)12+(0.34)0;(2)(5116)0.5−2×(21027)−23−2×(√2+π)0÷(34)−2;解:(1)(214)12+(0.34)0=(94)12+1=32+1=52;(2)(5116)0.5−2×(21027)−23−2×(√2+π)0÷(34)−2=√8116−2×(6427)−23−2÷(43)2=94−2×(34)2−2×(34)2=0.18.(12分)已知函数y=f(x)的图象关于原点对称,且当x≥0时,f(x)=x2﹣2x (1)试求f(x)在R上的解析式;(2)写出y=f(x)的单调递减区间(无需证明).解:(1)根据题意,f(x)的图象关于原点对称,则f(x)是奇函数,又f(x)的定义域为R,则有f(0)=0,设x<0,则﹣x>0,∵当x>0时,f(x)=x2﹣2x,∴f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x=﹣f(x),∴f(x)=﹣x2﹣2x,所以f(x)={x2−2x,x≥0−x2−2x,x<0;(2)由(1)可得f(x)的图象如下所示:由图象可知f (x )的单调递减区间为(﹣1,1). 19.(12分)已知函数f(x)={x +2(x ≤1)x 2(1<x <2)2x(x ≥2);(1)求f [f (0)];(2)若f (a )≤5,求a 的取值范围. 解:(1)函数f(x)={x +2(x ≤1)x 2(1<x <2)2x(x ≥2),则f (0)=0+2=2,所以f [f (0)]=f (2)=2×2=4. (2)函数f(x)={x +2(x ≤1)x 2(1<x <2)2x(x ≥2),由f (a )≤5可得{a ≤1a +2≤5或{1<a <2a 2≤5或{a ≥22a ≤5,解得a ≤1或1<a <2或2≤a ≤52,所以a 的取值范围是(−∞,52]. 20.(12分)已知函数f(x)=3x 2. (1)求证函数f (x )在(0,+∞)上是单调减函数; (2)求函数f (x )在[1,3]上的值域. 解:(1)证明:设0<x 1<x 2, 则f (x 1)﹣f (x 2)=3x 12−3x 22=3(x 1+x 2)(x 2−x 1)x 12x 22, 又由0<x 1<x 2,则x 2﹣x 1>0,则f (x 1)﹣f (x 2)>0, 则f (x )在(0,+∞)上是单调减函数;(2)由(1)的结论,函数f (x )在[1,3]上是单调减函数, 又由f (1)=3,f (3)=332=13, 则f (x )在[1,3]上的值域为[13,3].21.(12分)已知关于x 的不等式ax 2﹣3x +b >0的解集为{x |x <1或x >2}.(1)求a ,b 的值;(2)当x >0,y >0,且满足a x +b y =1时,有2x +y ≥k 2+k +2恒成立,求k 的取值范围. 解:(1)不等式ax 2﹣3x +b >0的解集为{x |x <1或x >2},所以1和2是方程ax 2﹣3x +b =0的两根且a >0,则有{1+2=3a 1×2=b a ,解得a =1,b =2. (2)由(1)知a x +b y =1为1x+2y =1, 所以2x +y =(2x +y )(1x +2y)=4+y x +4x y ≥4+2√y x ⋅4x y =8, 当且仅当y =2x ,即x =2、y =4时取“=”,所以不等式2x +y ≥k 2+k +2恒成立时,8≥k 2+k +2,解得﹣3≤k ≤2,所以k 的取值范围是{k |﹣3≤k ≤2}.22.(12分)已知函数f (x )=2x a +a 2x (a >0)是R 上的偶函数. (1)解不等式f (x )<174;(2)若关于x 的不等式mf (x )≤2﹣x +m ﹣1在(0,+∞)上恒成立,求实数m 的取值范围. 解:(1)∵f (x )为偶函数,∴f (﹣x )=f (x )恒成立,即2x a +a 2x =2−x a +a 2−x 恒成立, 即(1a −a)(2x −2−x )=0恒成立,所以1a −a =0,解得a =±1, 又a >0,则a =1,故f(x)=2x +2−x <174⇒(2x )2−174⋅2x +1<0,设2x =t ,则不等式即为t 2−174t +1<0⇒14<t <4,∴14<2x <4⇒−2<x <2, 所以原不等式解集为(﹣2,2).(2)原不等式等价于m ≤2−x −12x +2−x −1=1−2x22x −2x +1在(0,+∞)上恒成立,令1﹣2x=t,则m≤1−2x22x−2x+1=t(t−1)2+t=tt2−t+1=1t+1t−1,在t∈(﹣∞,0)时恒成立,所以m≤(1t+1t−1)min,又t+1t≤−2,当且仅当t=﹣1时等号成立,则(1t+1t−1)min≥−13.所以m≤−13,即实数m的取值范围为(−∞,−13].。
马鞍山市数学高一上期中经典练习(含答案)

一、选择题1.(0分)[ID :11827]设集合{1,2,3,4}A =,{}1,0,2,3B =-,{|12}C x R x =∈-≤<,则()A B C =A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}2.(0分)[ID :11824]已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为( )A .1B .2C .3D .43.(0分)[ID :11822]函数()2312x f x x -⎛⎫=- ⎪⎝⎭的零点所在的区间为( ) A .()0,1 B .()1,2C .()2,3D .()3,44.(0分)[ID :11816]f (x)=-x 2+4x +a ,x∈[0,1],若f (x)有最小值-2,则f (x)的最大值( ) A .-1B .0C .1D .25.(0分)[ID :11811]若35225a b ==,则11a b+=( ) A .12B .14C .1D .26.(0分)[ID :11809]不等式()2log 231a x x -+≤-在x ∈R 上恒成立,则实数a 的取值范围是( ) A .[)2,+∞B .(]1,2C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦7.(0分)[ID :11797]关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③8.(0分)[ID :11779]已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=( )A .50-B .0C .2D .509.(0分)[ID :11776]若函数()(),1231,1x a x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( ) A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭10.(0分)[ID :11757]设集合{1,2,3},{2,3,4}A B ==,则A B =A .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 11.(0分)[ID :11764]已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是() A .(,1]-∞-B .[1)-+∞,C .[1,1)-D .(3,1]--12.(0分)[ID :11762]已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数 B .奇函数,且在(0,10)是增函数 C .偶函数,且在(0,10)是减函数 D .奇函数,且在(0,10)是减函数13.(0分)[ID :11747]若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( ) A .9,34⎛⎫⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,314.(0分)[ID :11739]函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( ) A .5B .4C .3D .615.(0分)[ID :11734]已知函数()f x =2log (1),(1,3)4,[3,)1x x x x ⎧+∈-⎪⎨∈+∞⎪-⎩,则函数[]()()1g x f f x =-的零点个数为( )A .1B .3C .4D .6二、填空题16.(0分)[ID :11927]如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________.17.(0分)[ID :11924]给出下列四个命题:(1)函数()f x x x bx c =++为奇函数的充要条件是0c ;(2)函数()20xy x -=>的反函数是()2log 01y x x =-<<;(3)若函数()()2lg f x x ax a =+-的值域是R ,则4a ≤-或0a ≥;(4)若函数()1y f x =-是偶函数,则函数()y f x =的图像关于直线0x =对称. 其中所有正确命题的序号是______.18.(0分)[ID :11923]设25a b m ==,且112a b+=,则m =______. 19.(0分)[ID :11921]函数y=232x x --的定义域是 .20.(0分)[ID :11914]方程组2040x y x +=⎧⎨-=⎩的解组成的集合为_________.21.(0分)[ID :11886]已知函数()xxf x e e -=-,对任意的[3,3]k ∈-,(2)()0f kx f x -+<恒成立,则x 的取值范围为______.22.(0分)[ID :11882]函数6()12log f x x =-的定义域为__________.23.(0分)[ID :11874]已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.24.(0分)[ID :11838]若集合(){}22210A x k x kx =+++=有且仅有2个子集,则满足条件的实数k 的最小值是____.25.(0分)[ID :11848]设函数()()()2,1{42, 1.x a x f x x a x a x -<=--≥①若1a =,则()f x 的最小值为 ;②若()f x 恰有2个零点,则实数a 的取值范围是 .三、解答题26.(0分)[ID :12026]某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益()f x 与投资额x 成正比,且投资1万元时的收益为18万元,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,且投资1万元时的收益为0.5万元,(1)分别写出两种产品的收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?27.(0分)[ID :12003]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后,y 与t 之间的函数关系式y =f(t);(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?28.(0分)[ID :12000]已知函数()222,00,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.(1)求实数m 的值;(2)若函数()f x 在区间[]1,2a --上单调递增,求实数a 的取值范围. 29.(0分)[ID :11979]已知函数())2log f x x =是R 上的奇函数,()2g x t x a =--.(1)求a 的值;(2)记()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为M ,若对任意的3,24x ⎡⎤∈-⎢⎥⎣⎦,()M g x ≤恒成立,求t 的取值范围.30.(0分)[ID :11929]某辆汽车以x 千米/小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求60120)x 时,每小时的油耗(所需要的汽油量)为14500()5x k x-+升,其中k 为常数,且60100k .(1)若汽车以120千米/小时的速度行驶时,每小时的油耗为11.5升,欲使每小时的油耗不超过9升,求x 的取值范围;(2)求该汽车行驶100千米的油耗的最小值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.D 3.B 4.C 5.A6.C7.C8.C9.C10.A11.D12.C13.B14.A15.C二、填空题16.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a=-5∴a=-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于17.(1)(2)(3)【解析】【分析】根据奇函数的定义得到(1)正确根据反函数的求法以及定义域值域得到(2)正确由函数的值域是得出其真数可以取到所有的正数由二次函数判别式大于等于0求解可判断出(3)正确18.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力19.【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义域20.【解析】【分析】解方程组求出结果即可得答案【详解】由解得或代入解得或所以方程组的解组成的集合为故答案为【点睛】该题考查的是有关方程组解集的问题需要注意的问题是解是二维的再者就是需要写成集合的形式属于21.【解析】【分析】先判断函数的单调性和奇偶性根据单调性和奇偶性化简题目所给不等式利用一次函数的性质求得的取值范围【详解】由于故函数为奇函数而为上的增函数故由有所以即将主变量看成()表示一条直线在上纵坐22.【解析】要使函数有意义则必须解得:故函数的定义域为:点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0(3)一次函数二次函数的定义域均为R(423.6【解析】【分析】先求函数周期再根据周期以及偶函数性质化简再代入求值【详解】由f(x+4)=f(x-2)可知是周期函数且所以【点睛】本题考查函数周期及其应用考查基本求解能力24.-2【解析】【分析】根据题意可知集合只有一个元素从而时满足条件而时可得到求出找到最小的即可【详解】只有2个子集;只有一个元素;时满足条件;②时;解得或2;综上满足条件的实数的最小值为﹣2故答案为﹣225.(1)-1(2)或【解析】【分析】【详解】①时函数在上为增函数且函数在为减函数在为增函数当时取得最小值为-1;(2)①若函数在时与轴有一个交点则则函数与轴有一个交点所以;②若函数与轴有无交点则函数与三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B ⋃=-,结合交集的定义可知:(){}1,0,1A B C ⋃⋂=-. 本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.2.D解析:D 【解析】 【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.3.B解析:B 【解析】 【分析】判断函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,求出f (0)=-4,f (1)=-1,f (2)=3>0,即可判断. 【详解】∵函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,∴f(0)=-4,f (1)=-1,f (2)=7>0,根据零点的存在性定理可得出零点所在的区间是()1,2, 故选B . 【点睛】本题考查了函数的单调性,零点的存在性定理的运用,属于容易题.4.C解析:C 【解析】因为对称轴2[0,1]x =∉,所以min max ()(0)2()(1)31f x f a f x f a ===-∴==+= 选C.5.A解析:A 【解析】 【分析】由指数式与对数式的转化,结合换底公式和对数的运算,即可求解. 【详解】由题意3225,5225a b==根据指数式与对数式的转化可得35log 225,log 225a b == 由换底公式可得lg 2252lg15lg 2252lg15,lg 3lg 3lg 5lg 5a b ==== 由对数运算化简可得11lg 3lg 52lg152lg15a b +=+ lg3lg52lg15+=lg1512lg152== 故选:A 【点睛】本题考查了指数式与对数式的转化,对数的运算及换底公式的应用,属于中档题.6.C解析:C 【解析】 【分析】由()2223122-+=-+≥x x x 以及题中的条件,根据对数函数的单调性性,对a 讨论求解即可. 【详解】由()2log 231a x x -+≤-可得()21log 23log -+≤a ax x a, 当1a >时,由()2223122-+=-+≥x x x 可知2123-+≤x x a无实数解,故舍去; 当01a <<时,()2212312-+=-+≥x x x a在x ∈R 上恒成立,所以12a ≤,解得112a ≤<. 故选:C 【点睛】本题主要考查对数函数的单调性,涉及到复合函数问题,属于中档题.7.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .8.C解析:C 【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=, 因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++,因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴=,从而(1)(2)(3)(50)(1)2f f f f f ++++==,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.9.C解析:C 【解析】 【分析】由题意结合分段函数的解析式分类讨论即可求得实数a 的取值范围. 【详解】当1x >时,x a 为减函数,则01a <<,当1x ≤时,一次函数()231a x -+为减函数,则230a -<,解得:23a >, 且在1x =处,有:()12311a a -⨯+≥,解得:34a ≤, 综上可得,实数a 的取值范围是23,34⎛⎤ ⎥⎝⎦. 本题选择C 选项. 【点睛】对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.10.A解析:A 【解析】 由题意{1,2,3,4}AB =,故选A.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.11.D解析:D 【解析】 【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解. 【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减, 因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--,故选D.【点睛】本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.12.C解析:C【解析】【分析】先判断函数的定义域关于原点对称,再由奇偶性的定义判断奇偶性,根据复合函数的单调判断其单调性,从而可得结论.【详解】由100100x x +>⎧⎨->⎩,得(10,10)x ∈-, 故函数()f x 的定义域为()10,10-,关于原点对称,又()()lg 10lg(10)()f x x x f x -=-++=,故函数()f x 为偶函数,而()()2lg(10)lg(10)lg 100f x x x x=++-=-, 因为函数2100y x =-在()0,10上单调递减,lg y x =在()0,∞+上单调递增,故函数()f x 在()0,10上单调递减,故选C.【点睛】本题主要考查函数的奇偶性与单调性,属于中档题. 判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为减函数);(2)和差法, ()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) . 13.B解析:B【解析】【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可【详解】解:函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩单调递增, ()301373a a a a ⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤< 所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题. 14.A解析:A【解析】【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数.【详解】函数()()()2384g x fx f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点 即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x fx f x =-+有5个零点,故选:A .【点睛】 本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.15.C解析:C【解析】【分析】令[]()()10g x f f x =-=,可得[]()1f f x =,解方程()1f x =,结合函数()f x 的图象,可求出答案.【详解】令[]()()10g x f f x =-=,则[]()1f f x =,令()1f x =,若2log (1)1x +=,解得1x =或12x =-,符合(1,3)x ∈-;若411x =-,解得5x =,符合[3,)x ∈+∞.作出函数()f x 的图象,如下图,(]1,0x ∈-时,[)()0,f x ∈+∞;()0,3x ∈时,()()0,2f x ∈;[3,)x ∈+∞时,(]()0,2f x ∈.结合图象,若()1f x =,有3个解;若1()2f x =-,无解;若()5f x =,有1个解. 所以函数[]()()1g x f f x =-的零点个数为4个.故选:C.【点睛】本题考查分段函数的性质,考查了函数的零点,考查了学生的推理能力,属于中档题.二、填空题16.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于解析:-8【解析】 ∵f(x)定义域为[3+a ,5],且为奇函数,∴3+a =-5,∴a=-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.17.(1)(2)(3)【解析】【分析】根据奇函数的定义得到(1)正确根据反函数的求法以及定义域值域得到(2)正确由函数的值域是得出其真数可以取到所有的正数由二次函数判别式大于等于0求解可判断出(3)正确解析:(1)(2)(3)【解析】【分析】根据奇函数的定义得到(1)正确,根据反函数的求法以及定义域值域得到(2)正确, 由函数()()2lg f x x ax a =+-的值域是R ,得出其真数可以取到所有的正数,由二次函数判别式大于等于0求解,可判断出(3)正确,根据函数图像平移可判断(4)不正确.【详解】解:(1)当0c 时,()=+f x x x bx ,()()()-=---=-+=-f x x x bx x x bx f x ,当函数为奇函数时()()f x f x -=-,即()++=----+=+-x x bx c x x bx c x x bx c ,解得0c ,所以0c 是函数()f x x x bx c =++为奇函数的充要条件,所以(1)正确;(2)由反函数的定义可知函数()20x y x -=>的反函数是()2log 01y x x =-<<,所以(2)正确;(3)因为函数()()2lg f x x ax a =+-的值域是R ,所以2y x ax a =+-能取遍(0,)+∞的所有实数,所以240a a =+≥△,解得0a ≥或4a ≤-,所以(3)正确;(4)函数()1y f x =-是偶函数,所以()1y f x =-图像关于y 轴对称,函数()y f x =的图像是由()1y f x =-向左平移一个单位得到的,所以函数()y f x =的图像关于直线1x =-对称,故(4)不正确.故答案为:(1)(2)(3)【点睛】本题主要考查对函数的理解,涉及到函数的奇偶性、值域、反函数等问题.18.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力【解析】【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,m m m m a b+=+==∴=【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.19.【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义域解析:[]3,1-【解析】试题分析:要使函数有意义,需满足2232023031x x x x x --≥∴+-≤∴-≤≤,函数定义域为[]3,1-考点:函数定义域 20.【解析】【分析】解方程组求出结果即可得答案【详解】由解得或代入解得或所以方程组的解组成的集合为故答案为【点睛】该题考查的是有关方程组解集的问题需要注意的问题是解是二维的再者就是需要写成集合的形式属于 解析:()(){}2,2,2,2--【解析】【分析】解方程组2040x y x +=⎧⎨-=⎩,求出结果即可得答案. 【详解】由240x -=,解得2x =或2x =-,代入0x y +=,解得22x y =⎧⎨=-⎩或22x y =-⎧⎨=⎩, 所以方程组2040x y x +=⎧⎨-=⎩的解组成的集合为{}(2,2),(2,2)--, 故答案为{}(2,2),(2,2)--.【点睛】该题考查的是有关方程组解集的问题,需要注意的问题是解是二维的,再者就是需要写成集合的形式,属于简单题目.21.【解析】【分析】先判断函数的单调性和奇偶性根据单调性和奇偶性化简题目所给不等式利用一次函数的性质求得的取值范围【详解】由于故函数为奇函数而为上的增函数故由有所以即将主变量看成()表示一条直线在上纵坐解析:11,2⎛⎫- ⎪⎝⎭ 【解析】【分析】先判断函数()f x 的单调性和奇偶性,根据单调性和奇偶性化简题目所给不等式,利用一次函数的性质,求得x 的取值范围.【详解】由于()()f x f x -=-故函数为奇函数,而()1x xf x e e =-为R 上的增函数,故由(2)()0f kx f x -+<,有()()()2f kx f x f x -<-=-,所以2kx x -<-,即20xk x +-<,将主变量看成k ([3,3]k ∈-),表示一条直线在[]3,3-上纵坐标恒小于零,则有320320x x x x -+-<⎧⎨+-<⎩,解得112x -<<.所以填11,2⎛⎫- ⎪⎝⎭. 【点睛】本小题主要考查函数的单调性和奇偶性的运用,考查化归与转化的数学思想方法,考查一元一次不等式组的解法,属于中档题.22.【解析】要使函数有意义则必须解得:故函数的定义域为:点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0(3)一次函数二次函数的定义域均为R(4解析:(【解析】要使函数()f x 有意义,则必须6012log 0x x >⎧⎨-≥⎩,解得:0x ≤< 故函数()f x的定义域为:(.点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y =x0的定义域是{x|x≠0}.(5)y =ax(a>0且a≠1),y =sin x ,y =cos x 的定义域均为R.(6)y =logax(a>0且a≠1)的定义域为(0,+∞).(7)y =tan x 的定义域为π{|π,}2x x k k ≠+∈Z . 23.6【解析】【分析】先求函数周期再根据周期以及偶函数性质化简再代入求值【详解】由f(x+4)=f(x-2)可知是周期函数且所以【点睛】本题考查函数周期及其应用考查基本求解能力解析:6【解析】【分析】先求函数周期,再根据周期以及偶函数性质化简()()9191f f =-,再代入求值.【详解】由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以()()()919615311f f f =⨯+= ()16f =-=.【点睛】本题考查函数周期及其应用,考查基本求解能力.24.-2【解析】【分析】根据题意可知集合只有一个元素从而时满足条件而时可得到求出找到最小的即可【详解】只有2个子集;只有一个元素;时满足条件;②时;解得或2;综上满足条件的实数的最小值为﹣2故答案为﹣2解析:-2【解析】【分析】根据题意可知,集合A 只有一个元素,从而2k =-时,满足条件,而2k ≠-时,可得到()24420k k ∆=-+=,求出k ,找到最小的k 即可.【详解】 A 只有2个子集;A ∴只有一个元素;2k ①∴=-时,14A ⎧⎫=⎨⎬⎩⎭,满足条件; ②2k ≠-时,()24420k k ∆=-+=; 解得1k =-或2;综上,满足条件的实数k 的最小值为﹣2.故答案为﹣2.【点睛】考查子集的概念,描述法和列举法表示集合的定义,以及一元二次方程实根个数和判别式∆的关系.25.(1)-1(2)或【解析】【分析】【详解】①时函数在上为增函数且函数在为减函数在为增函数当时取得最小值为-1;(2)①若函数在时与轴有一个交点则则函数与轴有一个交点所以;②若函数与轴有无交点则函数与解析:(1)-1,(2)112a ≤<或2a ≥. 【解析】【分析】【详解】 ①1a =时,()()()2,1{42, 1.x a x f x x a x a x -<=--≥,函数()f x 在(,1)-∞上为增函数且()1f x >-,函数()f x 在3[1,]2为减函数,在3[,)2+∞为增函数,当32x =时,()f x 取得最小值为-1;(2)①若函数()2x g x a =-在1x <时与x 轴有一个交点,则0a >, (1)2g a =->0,则02a <<,函数()4()(2)h x x a x a =--与x 轴有一个交点,所以211a a ≥<⇒且112a ≤<; ②若函数()2x g x a =-与x 轴有无交点,则函数()4()(2)h x x a x a =--与x 轴有两个交点,当0a ≤时()g x 与x 轴有无交点,()4()(2)h x x a x a =--在1x ≥与x 轴有无交点,不合题意;当当2a ≥时()g x 与x 轴有无交点,()h x 与x 轴有两个交点,x a =和2x a =,由于2a ≥,两交点横坐标均满足1x ≥;综上所述a 的取值范围112a ≤<或2a ≥.考点:本题考点为函数的有关性质,涉及函数图象、函数的最值,函数的零点、分类讨论思想解题.利用函数图象研究函数的单调性,求出函数的最值,涉计参数问题,针对参数进行分类讨论.三、解答题26.(1)()1,()0)8f x x g x x ==≥;(2)投资债券等稳健型产品为16万元,投资股票等风险型产品为4万元,投资收益最大为3万元.【解析】【分析】(1)投资债券等稳健型产品的收益()f x 与投资额x 成正比,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,用待定系数法求这两种产品的收益和投资的函数关系;(2)由(1)的结论,设投资股票等风险型产品为x 万元,则投资债券等稳健型产品为20x -万元,这时可构造出一个关于收益y 的函数,然后利用求函数最大值的方法进行求解.【详解】(1)依题意设()12,()f x k x g x k x ==,1211(1),(1)82f kg k ====, ()11,(),(0)82f x xg x x x ==≥; (2)设投资股票等风险型产品为x 万元, 则投资债券等稳健型产品为20x -万元,11(20)()(20)82y f x g x x x =-+=-+ 21(2)3,0208x x =--+≤≤, 当2,4x x ==万元时,收益最大max 3y =万元,20万元资金,投资债券等稳健型产品为16万元,投资股票等风险型产品为4万元,投资收益最大为3万元.【点睛】本题考查函数应用题,考查正比例函数、二次函数的最值、待定系数法等基础知识与基本方法,属于中档题.27.(1)0.8)4,015(,1t t t y t ≤≤⎧=⎨⋅>⎩; (2)服药一次后治疗有效的时间是5-=小时. 【解析】【分析】(1)由函数图象的奥这是一个分段函数,第一段为正比例函数的一段,第二段是指数函数的一段,由于两端函数均过点(1,4),代入点(1,4)的坐标,求出参数的值,即可得到函数的解析式;(2)由(1)的结论将函数值0.25代入函数的解析式,构造不等式,求出每毫升血液中函数不少于0.25微克的起始时刻和结束时刻,即可得到结论.【详解】 (1)由题意,根据给定的函数的图象,可设函数的解析式为1)2,01(,1t a kt t y t -≤<⎧⎪=⎨⎪≥⎩,又由函数的图象经过点(1,4),则当1t =时,14k ⨯=,解得4k =,又由1t =时,11()42a -=,解得3a =,所以函数的解析式为1)324,01(,1t t t y t -≤<⎧⎪=⎨⎪≥⎩. (2)由题意,令0.25y ≥,即当01t ≤<时,40.25t ≥,解得116t ≥, 当1t ≥时,31()0.252t -≥,解得15t ≤≤,综上所述,可得实数t 的取值范围是1516t ≤≤, 所以服药一次后治疗有效的时间是17951616-=小时. 【点睛】本题主要考查了一次函数与指数函数模型的应用,解答中认真审题,合理设出函数的解析式,代入求解是解答的关键,同时应用指数函数模型应注意的问题:(1)指数函数模型的应用类型.常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.(2)应用指数函数模型时的关键.关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型. 28.(1)2;(2)(]1,3.【解析】【分析】(1)设0x <,可得0x ->,求出()f x -的表达式,利用奇函数的定义可得出函数()y f x =在0x <时的解析式,由此可求出实数m 的值;(2)作出函数()y f x =的图象,可得出函数()y f x =的单调递增区间为[]1,1-,于是可得出[][]1,21,1a --⊆-,进而得出关于实数a 的不等式组,解出即可.【详解】 (1)()222,00,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩为奇函数, 当0x <时,0x ->,则()()()2222f x x x x x -=--+⨯-=--,则()()22f x f x x x =--=+,2m ∴=; (2)由(1)可得()222,00,02,0x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩,作出函数()y f x =如下图所示:由图象可知,函数()y f x =的单调递增区间为[]1,1-,由题意可得[][]1,21,1a --⊆-,则121a -<-≤,解得13a.因此,实数a 的取值范围是(]1,3.【点睛】本题考查奇函数解析式的求解,同时也考查了利用函数在区间上的单调性求参数,考查运算求解能力,属于中等题. 29.(1) 1a = (2) [)4,+∞【解析】【分析】(1)根据函数()f x 是R 上的奇函数,得到()00f = ,即可求得a 的值;(2)由(1)可得函数()g x 的解析式,分别求得函数()f x 和()g x 的单调性与最值,进而得出关于t 的不等式,即可求解.【详解】(1)因为())22log f x x a x =+是R 上的奇函数,所以()00f = , 即log 0a =,解得1a =.(2)由(1)可得())22log 1f x x x =+,()212121x t g x t x x t -++⎧=--=⎨+-⎩ 1,21,2x x ≥< . 因为奇函数())2222log 1log 1f x x x x x =+=++,所以()f x 在3,24⎡⎤-⎢⎥⎣⎦上是减函数,则()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为233log 144M f ⎫⎛⎫⎛⎫⎪=-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎭, 因为()2121x t g x x t -++⎧=⎨+-⎩ 1,21,2x x ≥<,所以()g x 在31,42⎡⎫-⎪⎢⎣⎭上是增函数,在1,22⎡⎤⎢⎥⎣⎦上是减函数,则()g x 的最小值为34g ⎛⎫-⎪⎝⎭和()2g 中的较小的一个. 因为33521442g t t ⎛⎫⎛⎫-=⨯-+-=- ⎪ ⎪⎝⎭⎝⎭,()22213g t t =-⨯++=-, 所以()()min 23g x g t ==-, 因为对任意的3,24x ⎡⎤∈-⎢⎥⎣⎦,()M g x ≤恒成立,所以13t ≤-, 解得4t ≥.故t 的取值范围为[)4,+∞.【点睛】本题主要考查了函数的基本性质的综合应用,以及恒成立问题的求解,其中解答中熟记函数的基本性质,合理应用奇偶性、单调性和最值列出相应的方程或不等式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 30.(1)[60,100];(2)当75100k ,该汽车行驶100千米的油耗的最小值为220900k -升;当6075k <,该汽车行驶100千米的油耗的最小值为10546k -升. 【解析】【分析】(1)将120x =代入每小时的油耗,解方程可得100=k ,由题意可得14500(100)95x x -+,解不等式可得x 的范围; (2)设该汽车行驶100千米油耗为y 升,由题意可得10014500()5y x k x x=-+,换元令1t x=、化简整理可得t 的二次函数,讨论t 的范围和对称轴的关系,即可得到所求最小值.【详解】解:(1)由题意可得当120x =时,1450014500()(120)11.555120x k k x -+=-+=, 解得100=k ,由14500(100)95x x-+, 即214545000x x -+,解得45100x ,又60120x ,可得60100x ,每小时的油耗不超过9升,x 的取值范围为[60,100];(2)设该汽车行驶100千米油耗为y 升,则2100145002090000()20(60120)5k y x k x x x x x =-+=-+, 令1t x=,则1[120t ∈,1]60, 即有22290000202090000()209000900k k y t kt t =-+=-+-, 对称轴为9000k t =,由60100k ,可得1[9000150k ∈,1]90, ①若19000120k 即75100k , 则当9000k t =,即9000x k =时,220900min k y =-; ②若19000120k <即6075k <, 则当1120t =,即120x =时,10546min k y =-. 答:当75100k ,该汽车行驶100千米的油耗的最小值为220900k -升; 当6075k <,该汽车行驶100千米的油耗的最小值为10546k -升. 【点睛】本题考查函数模型在实际问题中的运用,考查函数的最值求法,注意运用换元法和二次函数的最值求法,考查运算能力,属于中档题.。
安徽省马鞍山市 2023-2024学年高一上学期期中测试数学试卷[含答案]
![安徽省马鞍山市 2023-2024学年高一上学期期中测试数学试卷[含答案]](https://img.taocdn.com/s3/m/f096144c0166f5335a8102d276a20029bd6463e3.png)
x2 x 2 ,又 f (m) 18 ,
m 2
m 2
所以 m2 2 18 或 2m 18 ,
解得 m 4 或 m 9 .
故选:C
8.
已知函数
f
x 的定义域为
I
,任取
x,
y
I
,当
x
y 时恒有
f
x y
f x f y1 f y f x
成立,且存
在正数
m
使得
f
m
1
,则
f
2023m
(
)
A. 1
B. 0
C. 1
D. 2
【答案】C
【解析】
【分析】令 t
x
y
,判断出函数的奇偶性,再令
x
2m
,
y
m ,求出
f
2m ,再求出函数的周期,
根据函数的周期求解即可.
【详解】令 t x y ,则
f t
f x f y1 f y f x ,
故
f
t
f
y x
f f
y f x1 x f y
f
t
3 ,所以集合
A
的子集有:
,
2 ,
3 ,
2,
3 .
所以集合 A 的子集共有 4 个.
故选:C.
2. 已知 p : x 2 或 x 0 , q : x a ,且 q 是 p 的充分不必要条件,则 a 的取值范围是( )
A. a 2
B. a 0
C. a 0
D. a 0
【答案】D 【解析】
【分析】令
验,得出正确的结果.
【详解】设矩形长宽分别为
2020-2021学年安徽省马鞍山市第二中学高一上学期期中数学试题(解析版)

2020-2021学年安徽省马鞍山市第二中学高一上学期期中数学试题一、单选题1.若集合201x A x x +⎧⎫=≤⎨⎬-⎩⎭,1242x B x ⎧⎫=<<⎨⎬⎩⎭,则A B =( )A .[)2,2-B .(]1,1-C .()1,1-D .()1,2-【答案】C【分析】分别解分式不等式和指数不等式化简集合A 和B ,利用交集的定义求解即可. 【详解】集合{}20|211x A xx x x +⎧⎫=≤=-≤<⎨⎬-⎩⎭,{}124|122x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭则AB =()1,1-故选:C2.若集合A ⊆{1,2,3},且A 中至少含有一个奇数,则这样的集合A 有 ( ) A .3个 B .4个C .5个D .6个【答案】D【解析】集合{1,2,3}的子集共有8个,其中至少含有一个奇数的有{1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个. 故选D点睛:本题考查了子集的定义,注意题中限制A 中至少有一个奇数,所以用列举法就可以写出符合条件的集合A.3.函数3()1f x x =++的定义域是( ) A .(),1-∞- B .(]1,3-C .()(],11,3-∞--D .()(),11,3-∞--【答案】C【分析】令3010x x -≥⎧⎨+≠⎩,解不等式可得函数的定义域.【详解】令3010x x -≥⎧⎨+≠⎩,解得3x ≤且1x ≠-故选:C4.设命题:p x R ∃∈,22x x > ,则p ⌝为( ) A .x R ∀∈, 22x x > B .x R ∃∈,22x x < C .x R ∀∈,22x x ≤ D .x R ∃∈,22x x ≤【答案】C【分析】根据特称命题的否定是全称命题进行判断即可.【详解】命题是特称命题,则命题的否定是全称命题, 即x R ∀∈,22x x ≤. 【点睛】本题主要考查含有量词的命题的否定,根据特称命题的否定是全称命题是解决本题的关键,属于基础题.5.“5x =”是“2450x x --=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A【分析】利用充分不必要条件的定义进行判断即可.【详解】2450x x --=即()()510x x -+=,解得5x =或1x =- 则5x =可以推出2450x x --=,而2450x x --=不能推出5x = 即“5x =”是“2450x x --=”的充分不必要条件 故选:A6.设实数a 、b 满足0b >,且2a b +=.则18a a b+的最小值是( ) A .98B .916 C .716D .14【答案】C【分析】由已知,分别讨论0a >,0a <两种情况,结合基本不等式分别进行求解后比较可得18a a b+的最小值. 【详解】由题意可知,0a ≠.当0a >时,111981616161616a ab a b a a b a b a b ++=+=++≥+=, 当且仅当16b a a b=且2a b +=,即25a =,85b =时取等号,当0a <时,111781616161616a ab a b a a b a b a b +⎛⎫⎛⎫+=--=-+-+-≥-+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当16b aa b=且2a b +=时取等号, 综上可得,18a a b +的最小值716. 故选:C.【点睛】本题考查利用基本不等式求最值,解答的关键就是对a 的符号进行分类讨论,考查计算能力,属于中等题.7.三个数()020.30.3,0.3,2a b c =-==,则,,a b c 的关系是 ( ) A .a b c << ; B .a c b << ;C .b a c <<;D .b c a <<【答案】C【分析】由指数函数的单调性分别求出()020.30.3,0.3,2a b c =-==的取值范围,从而可得结果.【详解】因为()00.31a =-=,2000.30.31b <=<=,0.30221c =>=,三个数,,a b c 的关系是 b a c <<,故选C.【点睛】本题主要考查指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.8.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭ B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞【答案】D【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案. 【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意; 当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k >综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题.二、多选题9.已知集合 A = {x | ax ≤2},B 2} , 若 B ⊆ A ,则实数 a 的值可能是( ) A .−1 B .1C .−2D .2【答案】ABC【分析】由B A ⊆得到2满足2ax ≤,列出不等式组即可求得a 的取值范围. 【详解】因为B ⊆ A ,所以22A A ∈,2222a a ≤⎧⎪≤,解得1a ≤. 故选:ABC【点睛】本题考查子集的概念,属于基础题.10.设11a b >>>-,0b ≠,则下列不等式中恒成立的是( ) A .11a b< B .11a b> C .2a b > D .22a b >【答案】CD【分析】举出反例可判断A 、B ;由不等式的性质可判断C 、D.【详解】对于A ,若2a =,12b =-,此时满足11a b >>>-,但11a b>,故A 错误; 对于B ,若2a =,12b =,此时满足11a b >>>-,但11a b <,故B 错误;对于C ,由11a b >>>-可得21a b >>,故C 正确; 对于D ,由11a b >>>-可得221a b >>,故D 正确. 故选:CD.11.已知定义在R 上的函数()y f x =满足条件()()2f x f x +=-,且函数()1y f x =-为奇函数,则( )A .()4()f x f x +=B .函数()y f x =的图象关于点()1,0-对称C .函数()y f x =为R 上的奇函数D .函数()y f x =为R 上的偶函数 【答案】ABD【分析】由()()2f x f x +=-,可得推得()()4f x f x +=,得到A 是正确的;由奇函数的性质和图象的变换,可得判定B 是正确的;由(1)(1)f x f x --=--+,可得推得函数()f x 是偶函数,得到D 正确,C 不正确.【详解】对于A 中,函数()y f x =满足()()2f x f x +=-,可得()()()42f x f x f x +=-+=,所以A 是正确的;对于B 中,()1y f x =-是奇函数,则(1)f x -的图象关于原点对称, 又由函数()f x 的图象是由()1y f x =-向左平移1个单位长度得到, 故函数()f x 的图象关于点(1,0)-对称,所以B 是正确的;对于C 、D ,由B 可得:对于任意的x ∈R ,都有(1)(1)f x f x --=--+, 即(1)(1)0f x f x --+-+=,可变形得(2)()0f x f x --+=,则由(2)()(2)f x f x f x --=-=+对于任意的x ∈R 都成立,令2t x =+,则()()f t f t -=,即函数()f x 是偶函数,所以D 正确,C 不正确. 故选:ABD【点睛】函数的周期性有关问题的求解策略:1、求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期;2、解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.12.《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有图形如图所示,C 为线段AB 上的点,且AC a =,BC b =,O 为AB 的中点,以AB 为直径作半圆.过点C 作AB 的垂线交半圆于D ,连结OD ,AD ,BD ,过点C 作OD 的垂线,垂足为E .则该图形可以完成的所有的无字证明为( )A .2a bab +≥(0a >,0b >) B .222a b ab +≥(0a >,0b >)C 211ab a b≥+(0a >,0b >) D .2222a b a b ++≥(0a ≥,0b >) 【答案】AC【分析】由线段长度关系OD CD ≥,CD DE ≥可以求解。
安徽省马鞍山市第二中学2023-2024学年高一上学期期中测试数学试卷(含解析)

安徽省马鞍山市第二中学2023-2024学年高一上学期期中测试数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.若集合,则集合A的子集共有( )A.2个B.3个C.4个D.5个2.已知或,且q是p的充分不必要条件,则a的取值范围是( ) A. B. C. D.3.下列各组函数中,表示同一个函数的是( )A.,, D.4.一个矩形的周长为l,面积为S,则下列四组数对中,可作为数对的有( ) A. B. C. D.5.函数在上是单调函数,则b的取值范围是( )A. B. C. D.6.函数A. B. C. D.7.设函数,若,则( )A.9B.4C.9或-4D.9或48.已知函数t的定义域为I,任取,当时恒有成立,且存在正数m使得,则( )A.-1B.0C.1D.2二、多项选择题9.下列命题中,真命题的是( )A.,B.平行四边形的对角线互相平分{2,3}A=:2p x<-0,:x q x a>>2a≤-0a≤0a>0a≥y y=y x=y=1y=0y x=y2y=(,)S l (2,4)(3,4)(6,8)(6,12)2y x bx c=++(,1)-∞(,2]-∞-(,2)-∞-[2,)-+∞(2,)-+∞y=22,2()2,2x xf xx x⎧+≤=⎨>⎩()18f m=m=,x y I∈x y≠()()1()()()f x f yf x yf y f x+-=-()1f m=-(2023)f m=x∃∈R210x x+-=C.对任意的,都有D.菱形的两条对角线相等10.下面命题是真命题的是( )A.若,C.若11.某工厂8年来某产品产量y 与时间t 的函数关系如图,则以下说法中正确的是( )A.前2年的产品产量增长速度越来越快B.前2年的产品产量增长速度越来越慢C.第2年后,这种产品停止生产D.第2年后,这种产品产量保持不变12.对,表示不超过x 的最大整数.十八世纪,被“数学王子”高斯采用,因此得名为高斯函数.人们更习惯称之为“取整函数”,例如:,,则下列命题中的真命题是( )A.,B.,C.函数的值域为D.方程有两个实数根三、填空题13.集合,用列举法表示集合_____________.14.已知幂函数满足①函数图象不经过原点;②,,写出符合上述条件的一个函数解析式_____________.15.已知且有四个不相等的实数根,则实数a 的取值范围为_____________.四、解答题a ∈R 2210a a -+>0ab >><2a <<3b <<25a b <<0a b >><a <<-11b a +<+x ∀∈R []x []y x =[ 3.5]4-=-[2.1]2=[1,0]x ∀∈-[]1x =-x ∀∈R []1x x <+[]y x x =-[0,1)22022[]20230x x --=6,5M a a a ⎧⎫=∈∈⎨⎬-⎩⎭N Z M =()f x 12,(0,)x x ∀∈+∞()()12120f x f x x x -<-,0a b >a b +=+20x a --=17.已知全集,集合,或,.(1)求;(2)若,求实数a 的取值范围.;(2)解关于x 的不等式.19.已知,,,求证:;(2)20.已知,且恒成立.(1)求a 的值;(2)试判断的单调性,并用定义证明你的结论.21.某工厂生产甲、乙两种产品所得的利润分别为P 和Q (万元),它们与投入资金m (万元)的关系为:,,并要求对甲、乙两种产品的投入资金都不低于75万元.(1)设对乙种产品投入资金x (万元),求总利润y (万元)关于x 的函数;(2)如何分配投入资金,才能使总利润最大?并求出最大总利润.22.已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.(1)已知,利用上述性质,求函数的值域;(2)对于(1)中的函数和函数,若,,使得成立,求实数a 的值.U =R {|03}A x x =<≤{|1B x x =≤7}x ≥{|}C x x a =≤()U A B ðA C A = 2<2(24)80ax a x +-->0a >0b >1a b +=14b≥12118a b ⎛⎫⎛⎫++≥+ ⎪⎪⎝⎭⎝⎭()f x =1,1]-()()0f x f x +-=()f x 33020P m =+40Q =+t y x x=+0t >)+∞()f x =[0,1]x ∈()f x ()f x ()2g x x a =--1[0,1]x ∀∈2[0,1]x ∃∈()()21g x f x =参考答案1.答案:C解析:由已知可得集合A 的子集有,,,,共有4个综上所述,答案选择:C2.答案:D解析:因为q 是p 的充分不必要条件,即,,所以或,所以.故选:D3.答案:A解析:A 项,者的值域均为非负实数,故A 项正确;B 项,的定义域为全体实数,,故B 项错误;C 项,的定义域为全体实数,的定义域为,故C 项错误;D 项,的定义域为,故D 项错误。
2022―2022年度高一第一学期期中素质测试数学必修1(安徽省马鞍山市)

2022―2022年度高一第一学期期中素质测试数学必修1(安徽省马鞍山市)解答题某水果店购进某种水果的成本为,经过市场调研发现,这种水果在未来30天的销售单价与时间之间的函数关系式为,销售量与时间的函数关系式为。
(Ⅰ)该水果店哪一天的销售利润最大?最大利润是多少?(Ⅱ)为响应政府“精准扶贫”号召,该店决定每销售水果就捐赠元给“精准扶贫”对象.欲使捐赠后不亏损,且利润随时间的增大而增大,求捐赠额的值。
【答案】(Ⅰ)第十天的销售利润最大,最大利润为1250元;(Ⅱ)【解析】试题分析:(1)利润=每的利润销售量,所以,则当时,;(2)捐赠后利润,又第一天不亏损,利润单调递增,则,对称轴,解得答案。
试题解析:(Ⅰ)设利润为,则……2分当时,即第十天的销售利润最大,最大利润为1250元.(Ⅱ)设捐赠后的利润为(元)则令,则二次函数的图象开口向下,对称轴,根据题意得:第一天开始不能亏损,即;利润上升,即二次函数对称轴应在29.5的右侧,即从而有,解得注:由利润上升得求解的,扣2分.选择题已知,则()A. B. 1 C. 2 D. 3【答案】B【解析】当,即时,得,故选B。
解答题已知偶函数在区间上是减函数,证明在区间上是增函数.【答案】证明见解析;【解析】试题分析:利用单调性的定义,任取,转化得到,再利用奇偶性,得,,根据条件在区间上是减函数,得,所以,得证为增函数。
试题解析:设,则有因为是偶函数,所以从而,又在区间上是减函数所以即所以在上是增函数.选择题已知,则的大小关系是()A. B.C. D.【答案】A【解析】,,,所以,故选A。
选择题函数的零点是()A. B. C. D.【答案】C【解析】,解得或,故选C。
选择题下列函数为幂函数的是()A. B.C. D.【答案】A【解析】由幂函数的定义可知,选A。
解答题已知,其中.(Ⅰ)若在上是单调函数,求实数的取值范围;(Ⅱ)当时,函数在上只有一个零点,求实数的取值范围.【答案】(Ⅰ)且;(Ⅱ)【解析】试题分析:(1)分段函数单调,则满足分别单调和整体单调,由在上递增,可知在上应是递增的,所以,且,得;(2)在上无零点,可知时,只有一个零点,又为单调函数,只要,解得答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省马鞍山市高一上学期期中数学试卷
姓名:________ 班级:________ 成绩:________
一、填空题 (共14题;共14分)
1. (1分)已知非空集合A、B满足以下四个条件:
①A∪B={1,2,3,4,5,6,7};②A∩B=∅;③A中的元素个数不是A中的元素;④B中的元素个数不是B中的元素.
若集合A含有2个元素,则满足条件的A有________个.
2. (1分) (2017高一上·南山期末) 函数y= +1g(x﹣1)的定义域是________.
3. (1分)若幂函数的图象过点(27,9)则它的解析式为f(x)=________.
4. (1分)把物体放在空气中冷却,如果物体原来的温度是Q1 ,空气温度是Q0 , t分钟后温度Q可由公式Q=Q0+(Q1﹣Q0)e﹣tln1.5求得,现在60?的物体放在15?的空气中冷却,当物体温度为35°时,冷却时间t=________分钟.
5. (1分) (2016高一上·苏州期中) 函数f(x)= ,则f(f(﹣3))=________.
6. (1分) (2016高三上·台州期末) 若函数f(x)=(2x2﹣ax﹣6a2)•ln(x﹣a)的值域是[0,+∞),则实数a=________
7. (1分)若,则 ________.
8. (1分)若m∈(1,2),a=0.3m , b=log0.3m,c=m0.3 ,则用“>”将a,b,c按从大到小可排列为________.
9. (1分)已知函数是偶函数,且,则 ________.
10. (1分)(2017·合肥模拟) 已知函数f(x)=xlnx+x﹣k(x﹣1)在(1,+∞)内有唯一零点x0 ,若k∈(n,n+1),n∈Z,则n=________.
11. (1分)若函数在上不单调,则的取值范围是________.
12. (1分) (2019高一上·长沙月考) 设函数,则满足的的取值范围是________.
13. (1分) (2019高一上·嘉兴月考) 已知函数,若,则的取值范围是________.
14. (1分)已知f(x)是定义域在R上的函数,且有下列三个性质:
①函数图象的对称轴是x=1;
②在(﹣∞,0)上是减函数;
③有最小值是﹣3;
请写出上述三个条件都满足的一个函数________.
二、解答题 (共6题;共55分)
15. (10分) (2016高三上·泰兴期中) 已知集合A={x|3≤3x≤27},B={x|log2x>1}.
(1)求(∁RB)∪A;
(2)已知集合C={x|1<x<a},若 C⊆A,求实数a的取值范围.
16. (5分)已知命题p:存在实数a使函数f(x)=x2﹣4ax+4a2+2在区间[﹣1,3]上的最小值等于2;命题q:存在实数a,使函数f(x)=loga(2﹣ax)在[0,1]上是关于x的减函数.若“p∧q为假”且“p∨q为真”,试求实数a的取值范围.
17. (10分) (2019高一上·普宁期中) 已知函数
(1)讨论的奇偶性
(2)根据定义讨论在其定义区间上的单调性
18. (10分) (2017高一上·龙海期末) 漳州市“网约车”的现行计价标准是:路程在2km以内(含2km)按起步价8元收取,超过2km后的路程按1.9元/km收取,但超过10km后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85元).
(1)将某乘客搭乘一次“网约车”的费用f(x)(单位:元)表示为行程x(0<x≤60,单位:km)的分段函数;
(2)某乘客的行程为16km,他准备先乘一辆“网约车”行驶8km后,再换乘另一辆“网约车”完成余下行程,请问:他这样做是否比只乘一辆“网约车”完成全部行程更省钱?请说明理由.
19. (15分)已知f(x)= (a,b为常数)是定义在(﹣1,1)上的奇函数,且f()=
(1)求函数f(x)的解析式;
(2)用定义证明f(x)在(﹣1,1)上是增函数并求值域;
(3)求不等式f(2t﹣1)+f(t)<0的解集.
20. (5分) (2017高一上·湖南期末) 已知:函数(a、b、c是常数)是奇函数,且满足
,
(Ⅰ)求a、b、c的值;
(Ⅱ)试判断函数f(x)在区间上的单调性并证明.
参考答案一、填空题 (共14题;共14分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
二、解答题 (共6题;共55分)
15-1、
15-2、
16-1、
17-1、
17-2、
18-1、18-2、19-1、19-2、19-3、
20-1、。