超声波技术分散纳米粉体材料
纳米粉体防止沉降方法

纳米粉体防止沉降方法引言:纳米粉体在许多工业领域中具有广泛的应用前景,但由于其颗粒极小,易于聚集和沉降,导致颗粒分散性和稳定性下降,从而影响了其应用效果。
因此,研究和采用适当的方法来防止纳米粉体的沉降至关重要。
本文将介绍一些常用的纳米粉体防止沉降的方法。
一、表面修饰方法纳米粉体的表面修饰是一种常见的防止沉降的方法。
通过在粉体表面进行修饰,可以增加粉体的分散性和稳定性,减少粉体颗粒之间的相互作用力,从而防止粉体的聚集和沉降。
常用的表面修饰方法包括包覆、偶联剂修饰和表面改性等。
包覆是将纳米粉体表面包覆上一层覆盖物,形成一种保护层,从而减少粉体颗粒之间的相互作用力。
这种方法可以通过物理吸附、化学吸附或化学反应等方式实现。
常用的包覆材料包括有机物、无机物和聚合物等。
偶联剂修饰是通过在纳米粉体表面引入一种具有亲水性或疏水性的化学官能团,从而改变粉体表面的性质,增加其分散性和稳定性。
常用的偶联剂包括硅烷类、羧酸类和胺类等。
这种方法可以通过溶液处理、气相修饰或固相修饰等方式实现。
表面改性是将纳米粉体表面进行化学反应或物理改变,改变其表面性质,从而增加粉体的分散性和稳定性。
常用的表面改性方法包括等离子体处理、高能球磨和化学气相沉积等。
这些方法可以有效地改善纳米粉体的分散性和稳定性,防止其沉降。
二、分散剂的应用分散剂是一种常用的纳米粉体防止沉降的方法。
分散剂可以在纳米粉体表面形成一层吸附层,增加粉体颗粒之间的排斥力,防止粉体颗粒的聚集和沉降。
常用的分散剂包括阳离子表面活性剂、阴离子表面活性剂和非离子表面活性剂等。
阳离子表面活性剂具有良好的分散性和稳定性,可以有效地防止纳米粉体的沉降。
阴离子表面活性剂则可以改变纳米粉体的表面电荷,增加粉体颗粒之间的排斥力,减少粉体的聚集和沉降。
非离子表面活性剂具有良好的溶解性和分散性,可以在纳米粉体表面形成一层吸附层,防止粉体的聚集和沉降。
三、外加能场的作用外加能场是一种有效的纳米粉体防止沉降的方法。
不同分散剂对纳米镍粉在乙醇溶液中分散性能的影响

*国家自然科学基金项目(10502025);中国人民解放军武器装备重点基金项目(6140502) 路承杰:男,硕士研究生,主要从事纳米金属材料研究 E mail:chjielu@ 张振忠:通讯作者,1964年生,男,副教授,博士后,主要从事纳米金属及金属基功能复合材料的研究 T el:025 ********不同分散剂对纳米镍粉在乙醇溶液中分散性能的影响*路承杰,张振忠,周剑秋,张少明(南京工业大学材料科学与工程学院,南京210009)摘要 在对直流电弧蒸发法制备的纳米镍粉Z ate 电位的测量基础上,选用非离子型和阴离子型两类分散剂,研究了聚乙二醇(P EG200、PEG4000、PEG6000)、油酸及柠檬酸在不同超声时间下对纳米镍粉在无水乙醇溶液中分散性能的影响。
研究结果表明,所制备的纳米镍粉表面带正电荷,固定超声功率,加入2w t%分散剂,PEG6000和油酸对纳米镍粉具有较好的分散效果,最佳超声时间分别为6min 和8min 。
关键词 直流电弧蒸发 纳米镍粉 分散剂 稳定性Influence of Different Dispersants on the Dispersion Stabilities ofNickel Nanopowders in EthanolLU Chengjie,ZH ANG Zhenzhong,ZH OU Jianqiu,ZH ANG Shaoming(Co lleg e of M at er ial Science and Engineering ,Nanjing U niver sity o f T echno log y,N anjing 210009)Abstract On the basis of t he fabr icatio n of the nano meter nickel pow der s and its Z eta potential measurement,the effects of supersonic time,no nionic dispersant and anionic disper sant on the dispersing pro per ty of the nickel nano p o wders,w hich ar e pr epar ed by the w ay of DC arc plasma ev apo rat ion,in abso lute et hanol so lv ent ar e systematically st udied,emplo ying po lyethy lene g lyco l (PEG 200,PEG4000,P EG6000),o leic acid and citr ic acid as disper sants.It is found that the nickel nanopow der s sur face has positive charg e,PEG6000and oleic acid have g reat effect on im pr oving nickel nanopow der s dispersing pr operty under the conditio n of the stable supersonic pow er and t he 2w t%disper sant.T he best super so nic t ime is 6min and 8min respect ively.Key words DC ar c plasma,nickel nano pow ders,dispersant,stability0 前言纳米粉体因具有特殊的纳米物理、化学效应而表现出与常规材料显著不同的优异性能,因而受到人们极大的关注。
第三章 纳米粉体的分散

河南理工大学材料学院
第三章 第1节
超声分散机理
❖ 气泡可重新溶解于气体中,也可上浮并消失,也 可能脱离超声场的共振相位而溃陷。
❖ 这种空化气泡在液体介质中产生、溃陷或消失的 现象,就是空化作用
❖ 空化作用会产生局部的高温高压,并产生巨大的 冲击力和微射流,纳米粉体在其作用下,表面能 被削弱,从而实现对纳米粉体的分散作用
采用电位滴定法确定离解度随pH的变化
河南理工大学材料学院
第三章 第3节
❖ 实验步骤
1、在聚合物酸溶液中加几滴HNO3,pH值调至2.5 2、加入KNO3电解质以维持其离子强度,用标准NaOH溶液
滴定至pH=12.5,记录pH值随NaOH加入量的变化 3、滴定空白曲线:相同离子强度不含聚合物酸的溶液用相
δ0
ZrO2
pH值 ❖ 当pH<4时,聚丙烯酸(PAA)
纳米ZnS粉体简介

2019/4/20
微乳液法:微乳液法又称为反胶束溶液法,微乳液反应体系是由以下四 个部分组成:水、有机溶剂、表面活性剂和助表面活性剂,其中助表面 活性剂不一定是必须的,而水是作为反应物的溶剂,被表面活性剂(助表 面活性剂)包裹,构成水核(或称作“水池”),从而形成微小(纳米级)的反 应容器,加入的水量的多少决定了水核的大小,进一步限制反应形成的 纳米颗粒的粒径,与乳液法不同,微乳液反应体系是热力学稳定的,得到 的纳米颗粒的粒径较小。微乳液法的制备纳米材料的过程是首先制备 微乳液,再加入反应物溶液进行反应形成纳米颗粒。该方法的优点是在 室温条件下制备,操作比较简单,得到的纳米颗粒粒径小且均勻,重要的 是通过实验条件可以有效控制纳米颗粒的粒。
2019/4/20
2.纳米ZnS粉体常用测试手段
X射线衍射(XRD) X射线能量色散能谱(EDS):获取样品中元素组成和比例的信
息
透射电子显微镜(TEM)和高分辨透射电子显微 镜(HRTEM) 紫外可见吸收光谱(UV-vis absorption spectroscopy):从吸收谱上可以得到样品禁带宽度、缺陷能级的信
溶胶-凝胶法:以无机盐或有机盐(如金属醇盐)为前躯体,将其溶于水或 有机溶剂形成均质溶液,溶质发生水解、醇解或螯合反应,生成纳米尺寸 的颗粒且不团聚的溶胶,通过物理或化学方法使溶胶转化为凝胶,再将凝 胶进行热处理形成一定尺寸的纳米结构。该方法的优点是:制备方法简单, 热处理温度较低,制备的纳米材料纯度高且尺寸均勻。
1. ZnS纳米粉体
1.1体相ZnS型发光材料
ZnS是一种宽禁带半导体,Eg=3.68eV。ZnS型荧 光化合物是发现较早的发光材料,也是被研究的最多 的发光材料之一。它具备了多种荧光特性,如光导性、 长余辉,并能发出蓝色、绿色和红色荧光。它既是光 致发光材料,又是电致发光材料、阴极射线发光材料。 在完美的ZnS晶体中即使离子间有一点极化作用, 但不足以使电子云产生足够的形变将电子激励到禁 带中,所以没有荧光现象。
超声波辅助溶胶—凝胶法制SnO2纳米晶的研究

超声波辅助溶胶—凝胶法制SnO纳米晶的研究2作者:刘秀琳郭英等化学世界年7期字数:3266李酽陈立青摘要:以SnCl4·5H2O和氨水为主原料,采用超声波辅助溶胶—凝胶法成功合成出了SnO2纳米晶,并讨论了制备过程中超声波作用时间、超声波的有无、烧结温度和表面活性剂等因素对纳米晶性能的影响。
样品采用XRD,TEM进行了表征。
结果表明,超声波辅助溶胶一凝胶法合成的snO2微粒呈圆球形,粒径在20nm左右,其中阴离子表面活性剂—柠檬酸对SnO2纳米晶的团聚能够起到很好的分散作用。
关键词:SnO2纳米晶:超声波辐射;表面活性剂纳米SnO2粉体,在工业上有着广泛的用途,是重要的气敏材料、陶瓷材料、电子材料和化工材料。
在陶瓷工业中SnO2用作釉料及搪瓷的不透明剂,由于其难溶于玻璃及釉料中,还可用作颜料的载体;在电工电子工业上,SnO2掺杂后具有高导电率、高透射率以及较好的化学和热稳定性等,这些性质可应用在很多技术领域,包括太阳能电池、液晶显示器、光探测器、保护涂层等;在化工方面的应用主要作为催化剂和化工原料。
纳米微粒的制备方法很多,大致可归类为气相法、液相法和固相法三大类。
对于纳米SnO2来说,常用的制备方法有微乳液法、溶胶—凝胶法、水热法、高能机械球磨法等。
其中溶胶—凝胶法由于其采用普通化工设备,流程简单,操作容易控制,环境污染少,产品性能好,在超细粉体的开发方面有旺盛的生命力,是一种很有前途的方法。
另外,超声波技术在纳米材料的合成过程中有很重要的作用,因此,本实验选择超声波辅助溶胶—凝胶法来制备SnO2纳米晶。
1 实验部分1.1原料SnCL4·5H2O(分析纯,99%)·氨水(分析纯,25%-28%),无水乙醇(分析纯,99.7%),AgNO3(分析纯),聚乙二醇(PEG-400),柠檬酸(分析纯),盐酸(分析纯)和去离子水。
1.2纳米晶的制备将15gSnCI4·5H2O溶于100mL去离子水中作为主盐溶液,加入一定量的HCl防止水解。
超声波制备粉体

超声波化学法制备无机粉体的研究进展李金换,王国文( 陕西科技大学材料科学与工程学院, 咸阳710021摘要随着科技的发展, 合成无机粉体的新方法层出不穷。
近年来,超声化学方法合成无机材料得到了飞速的发展, 引起了科学界越来越多的关注。
本文从超声化学的基本原理和特点出发, 简要介绍了近年来超声化学法在无机粉体合成中的研究进展。
在化学方法的基础之上结合超声波的特色, 在有机溶剂和微乳液中制备无机粉体, 能更好地控制粒子的尺寸和形貌。
关键词超声化学; 空化;无机粉体8化泡崩溃时, 极短时间内在空化泡周围的极小空间中, 将产生瞬间的高温( 5 000K 和高压( 1 800atm及超过1010K/s 的冷却速度, 并伴随强烈的冲击波和时速达400km 的射流及放电发光作用。
由上所述,超声空化伴随的物理效应归纳为4 种: ( 1 机械效应( 体系中的冲击波、冲击流和微射流 ; ( 2 热效应( 体系中的高温、高压和整体的升温 ; ( 3 光效应( 声致发光 ; ( 4 活化效应( 产生自由基。
液体声空化的过程是集中声场能量并迅速释放的过程。
这就为在一般条件下不可能或难以实现的化学反应提供了一种非常特殊的物理环境, 足以使有机物、无机物在空化气泡内发生化学键断裂、水相燃烧和热分解条件, 促进非均相界面之间搅动和相界面的更新, 加速了界面间的传质和传热过程完成, 使很多采用传统方法难以进行的反应得以顺利进行。
一般认为, 声化学反应过程可能发生在三个不同的区域中: ( 1 流体空化泡中; ( 2 在空化泡与液体的气( 汽液界面上; ( 3 发生在空化冲击波传播的流体里。
超声的频率也比较低, 一般小于1MHz,而声强则要求较高, 一般大于(5W/cm2。
影响声化学反应的声学参数很多, 主要包括超声频率、超声强度与声功率、超声辐照时间、超声波形、声场的性质及形状等。
其他影响参数包括温度、大气压强、反应液体等[4,5]。
纳米粉体的分散

纳米粉体为何需要分散? 纳米粉体为何需要分散?
纳米颗粒由于粒径小, 纳米颗粒由于粒径小 表面原子比例 比表面大, 表面能大, 大, 比表面大 表面能大 处于能量不稳定 因此很容易团聚导致颗粒增大. 状态 , 因此很容易团聚导致颗粒增大
团聚机理
硬团聚:在强的作用力(化学键力) 硬团聚:在强的作用力(化学键力) 下使颗粒团聚在一起, 下使颗粒团聚在一起,不能用机械 的方法分开 软团聚: 软团聚:一种由颗粒间静电引力和范 德华力作用引起的聚集, 德华力作用引学改性一般在高速加热混合 机或捏合机、流态化床、研磨机等设备 机或捏合机、流态化床、 中进行
影响化学改性的主要因素有: 影响化学改性的主要因素有:
①颗粒的表面性质, 如表面官能团的类 型、表面酸碱性、水分含量、比表面积等; ②表面改性剂的种类、用量及方法; ③ 工艺设备及操作条件, 如设备性 能、物料的运动状态或机械对物料的作用方 式、反应温度和反应时间等
防止团聚的措施——分散 分散 防止团聚的措施
• 对于软团聚 可以通过搅拌的方式减少颗粒 对于软团聚, 长大, 长大 强烈的搅拌可以把较大晶核打碎形成 多个细小晶核,使成核速率大于晶核长大速 多个细小晶核 使成核速率大于晶核长大速 率, 从而形成较细小的颗粒 • 加表面活性剂、有机溶剂洗涤、共沸蒸馏、 加表面活性剂、有机溶剂洗涤、共沸蒸馏、 冷冻干燥等几种方法,主要是除去凝胶中自 冷冻干燥等几种方法 主要是除去凝胶中自 由水以及表面羟基的措施, 由水以及表面羟基的措施 对于硬团聚的防 止比较有效
其他防止团聚体产生的措施
•有机溶剂洗涤 有机屋的表面张力小,降低非架桥枪羟基数量 •冷冻干燥法 冷冻干燥在低温、负压条件下, 自由水冻成冰时,其体积 膨胀, 使彼此靠近的凝胶粒子分开, 然后水由固相直接升成 气体, 因而避免了“液桥”引起的严重团聚现象. •共沸蒸馏
超声化学法合成氧化铁纳米粉末及其表征分析

超声化学法合成氧化铁纳米粉末及其表征分析关键字:超声化学法,纳米粉末,氧化铁,赤铁矿摘要通过一种超声化学工序制备出氧化铁(α-Fe2O3)纳米粒子。
在这个过程中的参数如温度、超声时间、超声功率对于最终产品的大小和形态起着重要作用。
通过透射电镜、X射线粉末衍射、热重和差热分析对氧化铁纳米粉末进行检测。
从透射电子显微镜的观察来看,估计氧化铁纳米粒子的大小明显小于19nm。
烧结后粉末的X射线衍射数据直接表明在超声化学法的过程中形成了氧化铁。
引言氧化铁纳米粒子的各种形态被用作磁性液体用于光催化、影像诊断、药物输送和在非水和碱性电池中作为电极(Kulkarni & Lokhande, 2003; Sha, Wang, Xiao, & Liang, 2004),作为阴极电解盐水(Zhao et al., 2007)等。
同样,氧化铁还用于制造颜料、吸附剂和气体传感器(Li,Gao, Meng, & Ji, 2008)。
近年来,我们已经探索出各种方法用于合成氧化铁纳米粒子,例如MW照射法(Deshmukh, Badadhe, & Mulla, 2009),化学气相沉积法(Chao, Wei, & Macmanus-Driscoll, 2006),溶胶凝胶法(Akbar, Hasanain, Azmat, & Nadeem, 2004),脉冲激光蒸发法(Kurland et- al., 2009),反应溅射法(Essafti,Abouelaoualim, Fierro, & Ech-chamikh, 2009),强迫水解和沉淀法(Khaleel, 2004),水热合成法(Chen et al., 1995)和喷雾热解法(D esai, Pathan, Min, Jung, & Joo,2006)。
人们已经确定超声辐射在水介质中引起空化,在这种水介质中微气泡形成,长大和破裂(Ashokkumar, Lee, Kentish, & Grieser, 2007)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米粒子粒径小,表面能高,具有自发团聚的趋势,而团聚的存在又将大大影响纳米粉体优势的发挥,因此如何改善纳米粉体在液相介质中的分散和稳定性是十分重要的研究课题。
颗粒分散是近年来发展起来的新兴边缘学科。
所谓颗粒分散是指粉体颗粒在液相介质中分离散开并在整个液相中均匀分布的工程,主要包括润湿、解团聚及分散颗粒的稳定化3个阶段。
润湿是指将粉体缓慢地加人混合体系中形成的涡流,使吸附在粉体表面的空气或其他杂质被液体取代的过程。
解团聚是指通过机械或超生等方法,使较大粒径的聚集体分散为较小的颗粒。
稳定化指保证粉体颗粒在液体中保持长期的均匀分散。
根据分散方法的不同,可分为物理分散和化学分散。
超声波分散是物理分散方法之一。
超声波分散法:超声波具有波长短、近似直线传播、能量容易集中等特点。
超声波可以提高化学反应速率,缩短反应时间、提高反应的选择性;而且还能够激发在没有超声波存在时不能发生的化学反应。
超声波分散是将需处理的颗粒悬浮体直接置于超生场中,用适当频率和功率的超声波加以处理,是一种强度很高的分散手段。
超声波分散的作用机理目前普遍认为与空化作用有关。
超声波的传播是以介质为载体的,超声波在介质中的传播过程中存在着一个正负压强的交变周期。
介质在交替的正负压强下受到挤压和牵拉。
当用足够大振幅的超声波来作用于液体介质保持不变的临界分子距离,液体介质就会发生断裂,形成微泡,微泡进一步长大成为空化气泡。
这些气泡一方面可以重新溶解于液体介质中,也可能上浮并消失;也可能脱离超声场的共振相位而溃陷。
实践证明,对于悬浮体的分散存在着最适宜的超生频率,它的值决定于被悬浮粒子的粒度。
为此,最好在超生一段时间后,停止若干时间,再继续超生,可避免过热,超生中用空气或水进行冷却也是一个很好的方法。
超声波分散用于超细粉体悬浮液的分散虽可获得理想的分散效果,由于能耗大,大规模使用成本太高,因此目前在实验室使用较多,但随着超生技术的不断发展,超生分散在工业生产中应用是完全可能的。