高炉铁水成分

合集下载

《钢冶金学》_第3章 炼钢原材料

《钢冶金学》_第3章 炼钢原材料

钢冶金学重庆科技学院:王宏丹气体:氧气、氩气、氮气金属料——铁水铁水是转炉炼钢的主要原材料,一般占装入量的70%~100%;铁水的物理热和化学热是转炉炼钢的主要热源。

对铁水温度的要求:●铁水温度是铁水含物理热多少的标志,铁水物理热占转炉热量收入的50%左右。

●铁水温度过低,会导致炉内热量不足,影响熔池升温和元素氧化进程,同时不利于化渣和去除杂质,还容易导致喷溅。

●我国企业一般规定铁水入炉温度应大于1250℃,并且保持稳定。

高炉出铁温度在1350~1450℃。

金属料——铁水金属料——铁水对铁水化学成分的要求:●[Si]:发热元素,是铁水化学热的主要提供者。

通常铁水中的硅含量为0.50%-0.80%为宜。

现在的普遍观点:[Si]是有害的,应尽可能地降低铁水中的Si含量,原因如下:少渣冶炼,减少转炉冶炼过程的造渣量。

铁水预处理脱磷的需要!要脱磷,得先脱硅!金属料——铁水对铁水化学成分的要求:●[Mn]:锰是弱发热元素,铁水中Mn氧化后形成的MnO能有效促进石灰溶解,加快成渣,减少助熔剂的用量和炉衬侵蚀。

同时铁水含Mn高,终点钢中余锰高,从而可减少合金化时所需的锰铁合金,有利于提高钢水纯净度。

金属料——铁水对铁水化学成分的要求:●[P]:来源于矿石,100%还原进入铁水,是应该严格控制的元素,目前采取预处理、转炉脱磷等方式解决低P钢的冶炼问题。

高P 矿石的利用,是当今资源利用的主要研究方向,应予以密切关注!一般要求铁水 [P]≤0.20%。

●[S]:是高炉造渣操作应尽量降低的,脱硫率应高!高炉铁水炉外预处理脱硫是“解放高炉”的方向!我国炼钢技术规程要求入炉铁水的硫含量不超过0.05%。

金属料——铁水对铁水带渣量的要求:●高炉渣中含S 、SiO 2、Al 2O 3量较高;●过多的高炉渣进入转炉内会导致石灰消耗量增多,转炉渣量增大,容易造成喷溅,金属收得率降低,降低炉衬寿命;●兑入转炉的铁水要求带渣量不得超过0.5%;●铁水带渣量大时,在铁水兑入转炉之前应进行扒渣。

高炉炼铁技术简介

高炉炼铁技术简介
矿石有许多优点,通常含铁量高,粒度组 成均匀,气孔率大,成分稳定,还原性能 好。另外,含碱性熔剂,高炉造渣性能好, 具有良好的冶金性能。高炉使用烧结矿, 可提高产量,降低燃料消耗。
烧结 工艺 流程
精矿、粉矿 (0~10mm)
石灰石、白云石 (80~0mm)
碎焦、无烟煤 (25~0mm)
破碎
>3mm
• 炉渣中氧化物的种类:碱性氧化物、酸性氧化物 和中性氧化物。以碱性氧化物为主的炉渣称碱性 炉渣;以酸性氧化物为主的炉渣称酸性炉渣。
• 炉渣的碱度(R):炉渣中碱性氧化物和酸性氧化 物的质量百分数之比表示炉渣碱度:
• 高炉炉渣碱度一般表示式:R=w(CaO)/w (SiO2)
• 炉渣的碱度根据高炉原料和冶炼产品的不同,一 般在1.0~1.25之间。
消耗的(干)焦炭量(焦比一定的情况 下)
高炉每天消耗的焦炭量 I=
高炉的有效容积
• 生铁合格率:生铁化学成分符合国家标准的总量 占生铁总量的指标。
• 休风率:高炉休风时间(不包括计划大、中、小 修)占日历工作时间的百分数。
规定的日历作业时间=日历时间-计划大中修及
封炉时间
休风率=
高炉休风时间 规定的日历作业时间 ×100%
高炉炉渣与脱硫
• 高炉炉渣是铁矿石中的脉石和焦炭(燃料)中 的灰分等与熔剂相互作用生成低熔点的化 合物,形成非金属的液相。
– 高炉炉渣的成分 – 高炉炉渣作用 – 成渣过程 – 生铁去硫
• 高炉炉渣的来源:矿石中的脉石、焦炭(燃料)中 的灰分、熔剂中的氧化物、被侵蚀的炉衬等。
• 高炉炉渣的成分:氧化物为主,且含量最多的是 SiO2、CaO、Al2O3、MgO。
② 物理性能 包括机械强度和粒度组成等。高炉要求烧结矿机械 强度高,粉末少,粒度均匀。 烧结矿粒度小于5mm的称之为粉末。粉末含量对高 炉料柱透气性影响很大。粉末含量高,高炉透气性差, 导致炉况不顺,可能引起崩料或悬料。 反应机械强度的指标为:转鼓指数、抗磨指数、筛 分指数。 目前武钢烧结矿的转鼓强度大约在79%~80%左右。

浅谈高炉冶炼过程中铁水流动性差的原因及对策

浅谈高炉冶炼过程中铁水流动性差的原因及对策
备注 : 不带锰矿时 , 生铁 中锰含量在0 . 1 5 % 左右 l
从 理论上讲 , 生铁 中【 s 】 、 [ P ] 含量越 低越好 , 这 样对下道工序 有利 。 >> . 上接 第1 2 9 页) 但前 提 是铁水 必须具 有 良好 的流动性 , 粘 沟、 粘罐少, 铁损在 正常范 围 ( 内。 但 因铁水流动性 差 , 威胁到炼铁 正常生产, 则上升为主要矛盾。 月左右 补充一次捕 收剂 , 时间 间隔大 大增加 , 有效 的减 少了补充药剂 的 2 . 3 原燃料 中s 、 P 含 量低 : 客观 的讲, 入炉原燃料S 、 P 有害元素 含量 次 数, 降低 了职 工的劳动强度 。 也美化了现场环境 。
的铁水 中含有 不低的钛 ( [ T i 】 =0 . 0 8 - - - 0 . 1 3 % 之 间) , 这些钛 由一选 、 部建筑总院. 二选 精矿粉 带入 ( 约0 . 3 % 左右) 。 2 . 2 生铁中[ [ P 】 含量 偏低 : 铁 水中的 【 s 】 、 【 P ] 含 量极低 , 正常情况 下, [ s ] 在0 . O 1 % 以下; [ P ] 在0 . 1 % 以] ( 详见下表 )
3 对 策 理 论上 讲 : 降低 铁 水中[ s i ] 和[ T i 】 的含 量是 出路 之一 ; 提 高铁 水 中 [ s ] 、 [ P 】 和【 Mn 】 是出路之二 。 降低 铁水中[ T i ] 含 量的最有效 的办法就 是降 低 铁水 的含【 S i ] 量。 [ P ] 在高炉 内百分之百进 入生铁 , 无法控制 。 所 以, 提 高铁 水 中[ P ] 的 办法 , 一般不宜采 用。 由此 可见 , 解 决问题 的出路只有降 【 S i 】 和提高 【 Mn ] 、 【 s ] 。 3 . 1 降低 生铁含硅量 : 降低生铁含硅可有效 拟f U T i O 还原, 使铁水 中

高炉生产要求

高炉生产要求

高炉冶炼目的:将矿石中的铁元素提取出来,生产出来的主要产品为铁水。

付产品有:水渣、矿渣棉和高炉煤气等。

高炉:炼铁一般是在高炉里连续进行的。

高炉又叫鼓风炉,这是因为要把热空气吹入炉中使原料不断加热而得名的。

这些原料是铁矿石、石灰石及焦炭。

因为碳比铁的性质活泼,所以它能从铁矿石中把氧夺走,而把金属铁留下。

高炉的主要组成部分高炉炉壳:现代化高炉广泛使用焊接的钢板炉壳,只有极少数最小的土高炉才用钢箍加固的砖壳。

炉壳的作用是固定冷却设备,保证高炉砌体牢固,密封炉体,有的还承受炉顶载荷。

炉壳除承受巨大的重力外,还要承受热应力和内部的煤气压力,有时要抵抗崩料、坐料甚至可能发生的煤气爆炸的突然冲击,因此要有足够的强度。

炉壳外形尺寸应与高炉内型、炉体各部厚度、冷却设备结构形式相适应。

炉喉:高炉本体的最上部分,呈圆筒形。

炉喉既是炉料的加入口,也是煤气的导出口。

它对炉料和煤气的上部分布起控制和调节作用。

炉喉直径应和炉缸直径、炉腰直径及大钟直径比例适当。

炉喉高度要允许装一批以上的料,以能起到控制炉料和煤气流分布为限。

炉身:高炉铁矿石间接还原的主要区域,呈圆锥台简称圆台形,由上向下逐渐扩大,用以使炉料在遇热发生体积膨胀后不致形成料拱,并减小炉料下降阻找力。

炉身角的大小对炉料下降和煤气流分布有很大影响。

炉腰:高炉直径最大的部位。

它使炉身和炉腹得以合理过渡。

由于在炉腰部位有炉渣形成,并且粘稠的初成渣会使炉料透气性恶化,为减小煤气流的阻力,在渣量大时可适当扩大炉腰直径,但仍要使它和其他部位尺寸保持合适的比例关系,比值以取上限为宜。

炉腰高度对高炉冶炼过程影响不很显著,一般只在很小范围内变动。

炉腹:高炉熔化和造渣的主要区段,呈倒锥台形。

为适应炉料熔化后体积收缩的特点,其直径自上而下逐渐缩小,形成一定的炉腹角。

炉腹的存在,使燃烧带处于合适位置,有利于气流均匀分布。

炉腹高度随高炉容积大小而定,但不能过高或过低,一般为3.0~3.6m。

基于直读光谱法测定铁水中铅、锌、锑、铋等微量元素研究

基于直读光谱法测定铁水中铅、锌、锑、铋等微量元素研究

基于直读光谱法测定铁水中铅、锌、锑、铋等微量元素研究本文试验了用直读光谱仪检测高炉铁水中的Pb、Zn、Sb、Bi等微量元素。

利用OBLF直读光谱所配置的生铁检测曲线,通过标准样品对曲线进行校正,对在铁水包中取得的白口化生铁样品进行在线检测,检测结果的精密度和准确度达到了预期的效果。

标签:铁水;白口化;直读光谱仪;微量元素;在线生产铁水作为转炉炼钢的主要原材料,一般占装入量的70%~100%。

由于铁水中Pb、Zn为有害元素,Sb、Bi为敏感元素,而韶钢为满足特钢生产及提高铁水质量的需要,要求快速对铁水中的Pb、Zn、Sb、Bi等微量元素进行的测定。

本文利用标准物质对直读光谱仪的工作曲线进行校准后,可直接对高炉铁水样进行测定。

目前对这些元素的测定一般采用ICP法进行测定,此方法分析速度慢,操作手续繁杂,工作量大,分析周期长等特点,对高炉在线生产的指导意义严重滞后。

而直读光谱法则具有分析速度快,操作简单,稳定性好,准确度高,测量范圍宽等特点,对在线生产具有很强的指导意义。

1 实验部分1.1 仪器设备QSN750型直读光谱仪,分析间隙为4mm的定距规及直径为6mm、顶端为90°的圆锥钨棒,德国OBLF公司;ZDMY型砂带磨样机(武汉精工机械有限公司);自动铣样机(北京静远科技公司)。

1.2 仪器分析条件仪器工作环境条件:温度:23℃~28℃,湿度:<70%;氩气纯度:99.99%;氩气压力:0.3MPa;氩气流量:11L/min;电压:220±22V;真空度:0.85;预燃时间:1s,仪器频率为800Hz;冲洗时间:4s,仪器频率为800Hz;曝光时间:4s,仪器频率为800Hz;1.3 实验方法通过利用OBLF直读光谱仪上的生铁工作曲线,添加含有低含量的这些元素的新标准物质,以扩展这些元素的检测范围,满足生铁中这些元素低含量的检测。

通过实验选择最佳的检测条件,采集新增标准物质光强,并对原有工作曲线进行修正和调整,同时运用不同方法的比对等检测手段,逐步修正光谱仪上生铁的工作曲线。

主要高炉炼铁原料分析

主要高炉炼铁原料分析

高炉炼铁原料1.铁矿石和燃料高炉炼铁必备的三种原料中,焦炭作为燃料和还原剂,是主要能源;熔剂,如石灰石,主要用来助熔、造渣;铁矿石则是冶炼的对象。

这些原料是高炉冶炼的物质基础,其质量对冶炼过程及冶炼效果影响极大。

铁矿石铁矿石分类及特性高炉冶炼用的铁矿石有天然富矿和人造富矿两大类,含铁量在50%以上的天然富矿经适当破碎、筛分处理后可直接用于高炉冶炼。

贫铁矿一般不能直接入炉,需要破碎、富矿并重新造块,制成人造富矿(烧结矿或球团矿)再入高炉。

人造富矿含铁量一般在55%~65%之间。

由于人造富矿事先经过焙烧或者烧结高温处理,因此又称为熟料,其冶炼性能远比天然富矿优越,是现代高炉冶炼的主要原料。

天然块矿统称成为生料。

我国富矿储量很少,多数是含Fe30%左右的贫矿,需要经过富矿才能使用。

A. 矿石和脉石能从中经济合理的提炼出金属来的矿物成为矿石。

如铁元素广泛地、程度不同地分布在地壳的岩石和土壤中,有的比较集中,形成天然的富铁矿,可以直接利用来炼铁;有的比较分散,形成贫铁矿,用于冶炼及困难又不经济。

随着选矿和冶炼技术的发展,矿石的来源和范围不断扩大。

含铁较低的贫矿经过富选也可用于炼铁。

矿石中除了用来提炼金属的有用矿物外,还含有一些工业上没有提炼价值的矿物或岩石,称为脉石。

对冶炼不利的脉石矿物,应在选矿和其他处理过程中尽量去除。

但矿石中脉石的结构和分布直接影响矿石的选冶性能。

如果含铁矿物结晶颗粒比较粗大,则在选矿过程中易于实现有用矿物的单体分离;反之,如果含铁矿物呈颗粒结晶嵌布在脉石中,则要进一步细磨矿石才能分离出有用单体。

B.天然矿石的分类及特性天然铁矿石按其主要矿物分为磁铁矿、赤铁矿、褐铁矿和菱铁矿等几种,主要矿物组成及特征见下表。

常见铁矿石的组成及特征名称主要成分理论含铁实际富矿含铁颜色特性磁铁矿Fe3O4 72.40% 45-70% 黑P、S高,坚硬,致密,难还原赤铁矿Fe2O3 70.00% 55-60% 红P、S低,质软,易碎,易还原褐铁矿nFe2O3+mH2O 55.2~66.1% 37-55% 黄褐P高,质软疏松,易还原菱铁矿FeCO3 48.20% 30-40% 灰浅黄易破碎,焙烧后易还原磁铁矿,主要含铁矿物为Fe3O4,具有磁性。

高炉炼铁工艺流程

炼铁实训报告高炉炼铁的原料:铁矿石、燃料、熔剂一、铁矿石铁都是以化合物的状态存在于自然界中,尤其是以氧化铁的状态存在的量特别多。

现在将几种比较重要的铁矿石提出来说明:(1)磁铁矿(Magnetite)是一种氧化铁的矿石,主要成份为Fe3O4,是Fe2O3和FeO 的复合物,呈黑灰色,比重大约5.15左右,含Fe72.4%,O 27.6%,具有磁性。

在选矿(Beneficiation)时可利用磁选法,处理非常方便;但是由于其结构细密,故被还原性较差。

经过长期风化作用后即变成赤铁矿。

(2)赤铁矿(Hematite)也是一种氧化铁的矿石,主要成份为Fe2O3,呈暗红色,比重大约为5.26,含Fe70%,O 30%,是最主要的铁矿石。

由其本身结构状况的不同又可分成很多类别,如赤色赤铁矿(Red hematite)、镜铁矿(Specularhematite)、云母铁矿(Micaceous hematite)、粘土质赤铁(Red Ocher)等。

(3)褐铁矿(Limonite)这是含有氢氧化铁的矿石。

它是针铁矿(Goethite)HFeO2和鳞铁矿(Lepidocrocite)FeO(OH)两种不同结构矿石的统称,也有人把它主要成份的化学式写成mFe2O3.nH2O,呈现土黄或棕色,含有Fe约62%,O 27%,H2O 11%,比重约为3.6~4.0,多半是附存在其它铁矿石之中。

(4)菱铁矿(Siderite)是含有碳酸铁的矿石,主要成份为FeCO3,呈现青灰色,比重在3.8左右。

这种矿石多半含有相当多数量的钙盐和镁盐。

由于碳酸根在高温约800~900℃时会吸收大量的热而放出二氧化碳,所以我们多半先把这一类矿石加以焙烧之后再加入鼓风炉。

另外还有铁的硅酸盐矿(Silicate Iron)硫化铁矿(Sulphide iron)二、燃料炼铁的主要燃料是焦炭。

烟煤在隔绝空气的条件下,加热到950-1050℃,经过干燥、热解、熔融、粘结、固化、收缩等阶段最终制成焦炭,这一过程叫高温炼焦(高温干馏)。

高炉炼铁


3.用固体C还原
高炉冶炼特点
1.高炉冶炼是在炉料与煤气流的逆向运动 过程中完成各种复杂的化学反应和物理变 化,反应气氛是还原性气氛; 2.高炉是一个密闭容器,除了装料、出铁、 出渣以及煤气以外,操作人员都无法直接 观察到反应过程的状况,只能凭借仪器间 接观察; 3.高炉生产过程是连续的,大规模的高温 生产过程,机械化和自动化水平较高。



燃料燃烧反应 铁矿石还原反应(铁氧化物) 非铁元素还原(Si,Mn,等) 造渣过程 生铁生成
A、燃烧反应
放热 燃烧 产生高温还原气体CO 在高炉下部形成空间, 保证炉料持续下降 直接还原(参与化学还原) 溶入生铁(铁水中含有一定量C)
焦炭 (主要燃料)
燃料的燃烧是高炉的热能和化学能的发源 地,决定了炉内煤气流,温度和热量的初始 分布,对高炉生产起着至关重要的作用!
1.钢筋混凝土 2.耐火砖 3.冷却壁 4.水冷管
5.炉壳
冷却设备
支梁式水箱 A—铸管式 B—隔板式
扁水箱 (铸钢)
炉腹、炉腰、炉身下部:冷却壁
炉缸和炉底周围:光板式冷却壁(紫铜冷却壁)
风口:冷却套
1.风口 2.风口二套 3.风口大套 4.直吹管 5.弯管 6.固 定弯管 7.围管 8.短管 9.带有窥视孔的弯管 10.拉杆 11.炉壳
B、还原反应
铁氧化物的还原
1.铁氧化物的还原条件 还原反应通式: MeO+B=Me+BO B:还原剂 Me:某种金属 要使反应能够进行,则: Me O B
还原剂B与O的化学亲和力 > Me与O的化学亲和力 在高炉冶炼过程中,满足条件的还原剂是CO和C,还 有少量的H2也参与还原
二.铁氧化物的还原顺序
焦炭在风口发生燃烧反应: C+O2 =CO2 +33356kJ/kg + C+CO2 =2CO -13794kJ/kg 2C+O2 =2CO +9781kJ/kg

高炉炼铁中,什么是上渣,下渣

高炉炼铁中,什么是上渣,下渣在出铁口上面是因为渣的密度为2.3左右,而铁的密度在7左右,液态渣是浮在铁水上面的。

在铁口对面是由于炉体结构需要。

现在一般都不用出渣口,直接从出铁口放渣铁,用撇渣器进行渣铁分离。

按照《中国钢铁百科》的解释:高炉炉前操作过程中从渣口放出的渣称上渣,从铁口与铁水一起放出的渣称下渣。

现代大型高炉,一般都不设渣口,全部炉渣都由铁口放出,由此也就没有上渣与下渣之分了。

高炉炼铁过程中,肉眼如何估测铁水中的硅、硫含量,渣的酸碱度炉温高,火花大而少,流动性好,不粘沟;试样断口为白色。

炉温低,火花矮而多,流动性变差,粘沟,断口由白变灰。

含硫高,铁水表面"油皮"多,凝固时表面颤动,裂纹大,形成凸起,并有一层黑皮。

铁样断口为白色,质脆易断。

含硫低,铁水表面"油皮"减少,凝固时裂纹变小,形状下凹,铁样断口白色减少,铁质坚硬。

渣碱度高,呈短渣特性,无法拉成长丝,渣样断口呈石头状。

渣碱度低,呈长渣特性,易拉长丝,断口近似玻璃状。

在工业上炼铁的整个过程是怎样的?先装炉料,炉料是这样的,一层焦炭,一曾石灰石,一层铁矿石。

焦炭的作用是燃料和还原剂,石灰石的作用是造渣。

然后利用高炉炉壁上的热风管吹入热风,加热炉料,在高温下炉料开始融化,焦炭中的碳使铁矿石中的氧化铁还原成单质铁,生成一氧化碳。

铁的比重大,集中在高炉的底部,而剩余的物质形成炉渣漂浮在上层,经过成分的控制以后就可以出铁了,出铁口在高炉的底部,当铁水出完后再出炉渣,整个炼铁过程就结束了。

这时的铁水可以直接浇铸成铁锭,或送往炼钢炉炼钢。

在水泥工业、玻璃工业、炼铁工业上都用得到的原料是?肯定是碳酸钙啦!我详细帮你分析:制水泥原料:石灰石、粘土主要设备:水泥回转窑主要成分:硅酸二钙、硅酸三钙、铝酸三钙制玻璃原料:石灰石、纯碱、石英主要设备:玻璃熔炉反应原理:SiO2+Na2CO3高温Na2SiO3+CO2↑CaCO3+SiO2高温CaSiO3+CO2↑主要成分:Na2SiO3CaSiO3SiO2或写成NaO2&#8226;CaO&#8226;6SiO2工业炼铁是加入CACO3的原因是为了制得CO2在炼铁时加入C粉制得COCO是很理想的还原剂而且生成的CO2又可以跟C反应生成CO达到循环利用节约能源工业上炼铁时采用原料_、_、_、_。

第三章 高炉炼铁


的碳化硅砖或高导热的炭砖为主,高
炉下部以高导热的石墨质炭砖为主,
图 5.7 炉缸、炉底砌筑结构
6
图 3.7 为炉缸、炉底砌筑结构示意图。 3)冷却设备
冷却设备的作用是降低炉衬温度,提高炉衬材料抗机械、化学和热产生的侵蚀能力, 使炉衬材料处于良好的服役状态。高炉使用的冷却设备主要有冷却壁、冷却板和风口。冷却 壁紧贴着炉衬布置,冷却面积大;而冷却板水平插入炉衬中,对炉衬的冷却深度大,并对炉 衬有一定的支托作用。
(3)鼓风:空气通过高炉鼓风机加压后成为高压空气(鼓风),经过热风炉换热,将温 度提高到 1100~1300℃,再从高炉风口进入炉缸,与焦炭和煤粉燃烧产生热量和煤气。鼓风 带入高炉的物理热占高炉热量总收入的 20%左右。在鼓风中加入氧气可提高鼓风中的氧含 量(称为富氧鼓风)。采用富氧鼓风可提高风口燃烧温度,有利于高炉提高喷煤量和高炉利
4000m3 级高炉日产生铁量达到 10000 t 以
上。
hf
d1
β D
α
风口 中心线
d
铁口 中心线
h1
h2
h3
h4
h5
h6
炉 喉
炉 身
炉 腰 炉 腹 炉 缸 死铁层
Hu H
h0
3.2.3 高炉生产主要技术经济指标
图 5.3 高炉内型
(1)有效容积利用系数(ηu ):每 m3 高炉有效容积每天生产的铁水量( t / m3 ⋅ d ),

=
每天装入高炉的焦炭量+ 每天喷入高炉的煤粉量×置换比 高炉每天出铁量
(3.4)
煤粉置换比通常小于 1.0,一般在 0.75~0.90 之间。
(6)冶炼强度( I ):每 m3 高炉有效容积每天消耗的(干)焦炭量( t / m3 ⋅ d )。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档