广工实验一LC并联谐振回路仿真电路实验报告

合集下载

电子电路学LC 谐振电路演示实验

电子电路学LC 谐振电路演示实验

6.002实验23
LC谐振电路演示
第15讲
一:实验目的:
演示LC振荡电路在阶跃信号、脉冲信号、正弦信号的条件下的响应二:电路图
三:实验步骤
1.演示电路在阶跃信号下的响应
2.演示电路在脉冲信号下的响应
3.演示电路对正弦波信号下的响应
6.002演示#23A
RLC串联实验
长脉冲下载安装Demo#23L.set
实验步骤:
(1)利用IEC信号发生器产生频率为4HZ的长脉冲方波
参数及设备设置
示波器时基=20ms
信号扫描设置为ON状态
存储
Ch1=2v/Div
Ch2=2v/Div
时间延时χ~645
使用不同的安培档测量电流,Ch3=5v/Div Ch4=5v/Div(当前档位为0.1V/格)波形图如下:
二:短脉冲负载
(2)信号发生器(PG501ser#B010124)参数设置
周期=20ms
脉冲宽度=10ms
幅值最大
示波器参数
Ch2=0.5v/Div
时间延时χ~570
Ch3=5v/Div Ch4=5v/Div(当前档位为20mv/格)
当教师要求你演示衰减信号时,把示波器的扫描周期设置为5ms
(3)
信号发生器峰峰值电压3V
示波器时基=0.5ms(通过调节量程和相应的旋钮获得)
Ch1=5v/Div
Ch2=5v/Div
注意:
1.在电路板(印刷版)已经提供了50欧的电阻,所以不要再使用50欧电阻。

2.设置+/-25V时,应提供+/-15V的余量。

3.首先产生脉冲,然后演示由信号发生器产生的长脉冲本文由耐克男篮球鞋网站篇辑。

高频仿真实验指导书

高频仿真实验指导书

电子电路调试与应用高频仿真实验指导书卢敦陆编写广东科学技术职业学院机电工程学院二OO八年九月高频仿真实验一LC串并联谐振回路的特性分析一、实验目的1.理解LC串并联调谐回路的谐振特性;3.掌握谐振回路特性参数的计算和测量方法二、实验过程和数据分析(一)LC串联调谐回路的谐振特性1.打开multisim2001软件,创建如下所示的电路图:2.若要求以上回路的谐振频率为1MHZ,那么回路电感L= uH,3.谐振时回路的阻抗最(大或小),阻抗R=4.回路的品质因数Q=ωL/R1= 。

5.通频带理论值BW= ,实际测量值BW= 。

6.请画出谐振特性曲线。

(即对3点作交流分析,如下图)(二)LC并联调谐回路的谐振特性1.打开multisim2001软件,创建如下所示的电路图:2.若要求以上回路的谐振频率为30MHZ,那么回路电容C= PF。

3.谐振时回路的阻抗最(大或小),阻抗R= 。

4.回路的品质因数Q= R1/ωL = 。

5.通频带理论值BW= ,实际测量值BW= 。

6.请画出谐振特性曲线(即对4点作交流分析,如下图所示)。

高频仿真实验二单调谐振回路小信号高频放大器一、实验目的1.复习multisim2001的使用方法2.了解单调谐回路小信号高频放大器的工作原理和调谐方法3.学习测量单调谐回路小信号高频放大器的带宽二、实验过程和数据分析1.打开multisim2001软件,创建如下所示的电路图:2.分析三极管的直流工作点,其中Vb= V,V e= V ,Vc= V。

3.用示波器观察输出信号的幅度,V omax= V,放大倍数Avmax= 。

4.调节可变电容C6的容量,观察输出信号幅度的变化,当增大或减小C6时,输出信号幅度变(大或小)了。

5.用波特图仪确定放大器的带宽。

如下图所示:移动红色指针,当放大器的放大增益下将3dB时,记录低端频率FL= MHZ,FH= MHZ,带宽BW=FH-FL= MHZ。

课题五并联谐振电路仿真实验

课题五并联谐振电路仿真实验

课题五 并联谐振电路仿真实验一. 仿真目的1.通过仿真电路,加深对并联谐振电路的理解。

2.运用仿真电路,对并联谐振电路进行分析和验证。

二.仿真电路原理分析如图所示为简单的RLC 并联谐振发生谐振时满足w o C =oC1w ,则RLC 并联谐振角频率w 。

和谐振频率f 。

分别是 W 。

=LC 1 ,f 。

=LC21πRLC并联谐振电路的特点如下:1.谐振时Y=G,电路呈电阻性,导纳的模最小。

2.电阻中电流达到最大,且与外施电流相等,IR=IS。

3.谐振时I L +I C =0,即电感电流和电容电流大写相等,方向相反。

例:如图所示电路中已知U 1=100V ,R 1=R 2=5Ω,L=2 mH ,C=5066 uF ,且f=50Hz ,判断电路是否发生谐振,并求电流I 及电压U.解:该电路发生并联谐振的条件是f ’=LC 21π=50660.002X0.0021π=50 Hz f ’ =f所以发生并联谐振,相当于电感和电容断路,则I=55100 = 10A U=IR 2=50V 。

三.仿真电路测试与分析按照以上电路图连接仿真电路并运行,得到以下结果可以看到,求出的结果和仿真电路运行结果相同,可以从实验的角度说明该电路发生了谐振。

下面接入示波器,观察波形可以看出,电压与电流同相,则电路中必然发生谐振,且为并联谐振。

四.仿真电路注意事项1.设计电路时应当正确计算相应的电感和电容的参数,并匹配适当大小的频率,才能使电路发生谐振。

2.注意调节波形图显示时的单位大小,以确保看到完整波形。

五.仿真电路实验心得这次的并联谐振电路的仿真实验,让我对电路并联谐振发生的条件有了一个更清晰的认识,同时,我对仿真电路的设计有了一些启发。

一个电路的设计需要考虑多方面的内容,我们需要综合考虑,才能够保证电路设计的正确性。

实验报告R、L、C串联谐振电路的研究并联谐振电路实验报告

实验报告R、L、C串联谐振电路的研究并联谐振电路实验报告

实验报告R、L、C串联谐振电路的研究并联谐振电路实验报告实验报告祝金华PB15050984 实验题目:R、L、C串联谐振电路的研究实验目的: 1. 学习用实验方法绘制R、L、C串联电路的幅频特性曲线。

2. 加深理解电路发生谐振的条件、特点,掌握电路品质因数(电路Q值)的物理意义及其测定方法。

实验原理 1. 在图1所示的R、L、C串联电路中,当正弦交流信号源Ui的频率f改变时,电路中的感抗、容抗随之而变,电路中的电流也随f而变。

取电阻R上的电压UO作为响应,当输入电压Ui的幅值维持不变时,在不同频率的信号激励下,测出UO之值,然后以f为横坐标,以UO为纵坐标,绘出光滑的曲线,此即为幅频特性曲线,亦称谐振曲线,如图2所示。

L图 1 图22. 在f=fo=12πLC处,即幅频特性曲线尖峰所在的频率点称为谐振频率。

此时XL=Xc,电路呈纯阻性,电路阻抗的模为最小。

在输入电压Ui为定值时,电路中的电流达到最大值,且与输入电压Ui 同相位。

从理论上讲,此时Ui=UR=UO,UL=Uc=QUi,式中的Q 称为电路的品质因数。

3. 电路品质因数Q值的两种测量方法一是根据公式Q=UC测定,Uc为谐振时电容器C上的电压(电感上的电压无法测量,故Uo不考虑Q=UL测定)。

另一方法是通过测量谐振曲线的通频带宽度△f=f2-f1,再根据QUo=fO求出Q值。

式中fo为谐振频率,f2和f1是失谐时,亦即输出电压的幅度下降到f2-f1最大值的1/2 (=0.707)倍时的上、下频率点。

Q值越大,曲线越尖锐,通频带越窄,电路的选择性越好。

在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。

预习思考题1. 根据实验线路板给出的元件参数值,估算电路的谐振频率。

L=30mH fo=2. 改变电路的哪些参数可以使电路发生谐振,电路中R的数值是否影响谐振频率值?改变频率f,电感L,电容C可以使电路发生谐振,电路中R 的数值不会影响谐振频率值。

广工实验一LC并联谐振回路仿真电路实验报告

广工实验一LC并联谐振回路仿真电路实验报告

实验一LC并联谐振回路仿真电路
一、实验目的
(1)学习Multisim 10软件的使用方法。

(2)学习Multisim 10中虚拟仪器的使用方法。

(3)理解LC并联谐振回路的基本特性。

二、实验内容及要求
1、创建实验电路
图1.1
2、谐振回路的调谐
图1.2 示波器波形显示
图1.3 谐振频率
图1.4 信号源电压
由图1.2知:谐振时,谐振频率f o=1.5820200MHz,输出峰-峰值U OPP =5.72Vpp
3、幅频特性曲线的测量
f/MHz f L0.1 …f L0.7 ... f o ... f H0.7 …f H0.1
1.423 … 1.567 … 1.582 … 1.601 … 1.762 U OPP/V 0.570 … 4.05 … 5.72 … 4.03 …0.597
表1.1 LC谐振回路幅频特性
4、幅频特性曲线和相频特性曲线的观测
图1.5 幅频特性图1.6 相频特性
由波特图仪测带宽和矩形系数,得
BW0.7=0.034MHz
K=9.97058824
5、仿真实验小结
(1)、由表1.1所作出的幅频特性曲线与波特图幅频特性曲线基本吻合,说明示波器法与波特图法都可以分析LC谐振回路的基本特性。

(2)、LC谐振回路在高频电子线路的应用:
①移相电路
②正弦波振荡电路的选频网络
③陷波器(带阻滤波器)
三、谐振回路的交流分析
图1.7 交流分析
图1.8 相关参数。

谐振回路频率特性的仿真测试

谐振回路频率特性的仿真测试

电子科技大学中山学院学生实验报告
院别:电子信息学院课程名称:谐振回路频率特性的仿真测试
班级:12无线技术姓名:Alvin学号:33
实验名称:谐振回路频率特性的仿真测试实验时间:2013/6/6成绩:教师签名:批改时间:
一、实验目的
1:学习LC串联谐振回路、并联谐振回路频率特性的虚拟测量和交流分析方法。

2:加深对谐振回路的理论理解。

二、实验原理和内容
LC串联谐振回路如图所示,当输入信号的频率等于13kHz时,电路发生谐振。

电阻电压传输相频特性
电阻电压传输幅频特性电容电压传输幅频特性电容电压传输相频特性
电感电压传输幅频特性电感电压传输相频特性
交流分析电阻电压传输特性曲线三、实验结果及分析
对比可知,上述结果与交流分析结果,理论分析结果是一致的。

LC串并联谐振回路特性试验

LC串并联谐振回路特性试验

LC串并联谐振回路特性实验--〔转自高频电子线路实验指导书〕2021-01-09 19:34:22| 分类:电子电路|标签:|字号大中小订阅LC串并联谐振回路特性实验一、实验目的1、掌握LC振荡回路的谐振原理。

2、掌握LC串并联谐振回路的谐振特性。

3、掌握LC串并联谐振回路的选频特性。

二、实验内容测景LC串并联谐振回路的电压增益和通频带,判断选择性优劣。

三、实验仪器1、扫频仪一台2、20MHz模拟示波器一台3、数字万用表一块4、调试工具一套四、实验原理〔一〕根本原理在高频电子线路中,用选频网络选出我们所需的频率和滤除不需要的频率成分。

通常,在高频电子线路中应用的选频网络分为两类。

第一类是由电感和电容元件组成的振荡回路〔也称谐振回路〕,它又可以分为单振荡回路以及耦合振荡回路;第二类是各种滤波器,如LC滤波器,石英晶体滤波器、陶瓷滤波器和声外表滤波器等。

本实验主要介绍第一类振荡回路。

1、串联谐振回路信号源与电容和电感串联,就构成串联振荡回路。

电感的感抗值〔wL 〕随信号频率的升高而增大,电容的容抗值〔wC1〕那么随信号频率的升高而减小。

与感抗或容抗的变化规律不同,串联振荡回路的阻抗在某一特定频率上具有最小值,而偏离特定频率时的阻抗将迅速增大,单振荡回路的这种特性为谐振特性,这特定的频率称为谐振频率。

图2-1所示为电感L、电容C和外加电压Vs组成的串联谐振回路。

图中R通常是电感线圈损耗的等效电阻,电容损耗很小,一般可以忽略。

图2-1串联振荡回路保持电路参数R、L、C值不变,改变外加电压Vs的频率,或保持Vs的频率不变,而改变L或C的数值,都能使电路发生谐振〔回路中的电流的幅度达到最大值〕。

在某一特定角频率w0时,假设回路电抗满足如下条件:寸,1A = L —〔2-1〕r 7那么电流〞 R为最大值,回路发生谐振。

上式称为串联谐振回路的谐振条件。

(2-2)回路发生串联谐振的角频率w0和频率f0分别为:将式〔2-2〕代入式〔2-1 〕得-1 1 - 12的L --- = = L J二=p"心打〔2-3〕我们把谐振时的回路感抗值〔或容抗值〕与回路电阻R的比值称为回路的品质因数,以Q表示,简称Q值,那么得假设考虑信号源内阻Rs和负载RL后,串联回路的电路如图2-2所示由于Rs和RL的接入使回路Q值下降,串联回路谐振时的等效品质因数QL为图2-2考虑内阳R和负载玲后的申联振满上升图2J串联振满回捋的於图2-3为串联振荡回路的谐振曲线,由图可见,回路的Q值越高,谐振曲线越锋利,对外加电压的选频作用愈显著,回路的选择性就愈好。

电路谐振实验报告

电路谐振实验报告

电路谐振实验报告电路谐振实验报告引言:电路谐振是电路中一种重要的现象,它在通信、电力传输和电子设备中发挥着关键的作用。

为了更好地理解电路谐振的原理和特性,我们进行了一系列的实验。

本报告将详细介绍我们的实验过程、结果和分析。

实验目的:1. 理解电路谐振的基本原理;2. 掌握电路谐振的测量方法;3. 分析电路谐振的特性。

实验装置:1. 信号发生器:用于产生电路中的激励信号;2. 电容、电感和电阻:用于构建谐振电路;3. 示波器:用于观察电路中的电压波形。

实验步骤:1. 搭建RLC串联谐振电路:按照实验指导书的要求,将电容、电感和电阻串联连接起来;2. 连接信号发生器和示波器:将信号发生器的输出端与谐振电路的输入端相连,将示波器的探头分别连接到电容和电感上;3. 设置信号发生器的频率:从低频到高频逐步调整信号发生器的频率,观察示波器上的波形变化;4. 记录谐振频率:当示波器上的波形幅度达到最大值时,记录下此时的频率。

实验结果:通过实验,我们得到了以下结果:1. 谐振频率:我们测得谐振频率为f0;2. 电压幅度:在谐振频率附近,电压幅度达到最大值;3. 带宽:在谐振频率两侧,电压幅度逐渐减小,当频率偏离谐振频率一定范围后,电压幅度几乎为零;4. 相位差:在谐振频率附近,电容和电感之间的相位差为零。

实验分析:1. 谐振频率的影响因素:谐振频率受到电容、电感和电阻的影响。

当电容或电感的数值增大时,谐振频率会减小;当电阻的数值增大时,谐振频率会增大。

2. 电压幅度的变化:在谐振频率附近,电压幅度达到最大值。

这是因为在谐振频率下,电容和电感之间的阻抗相等,电路中的电流达到最大值,从而使电压幅度最大。

3. 带宽的定义:带宽是指电压幅度下降到最大值的一半所对应的频率范围。

带宽的大小与电路的品质因数有关,品质因数越大,带宽越窄。

4. 相位差的特性:在谐振频率附近,电容和电感之间的相位差为零。

这是因为在谐振频率下,电容和电感的阻抗相等,电流与电压的相位差为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一LC并联谐振回路仿真电路
一、实验目的
(1)学习Multisim 10软件的使用方法。

(2)学习Multisim 10中虚拟仪器的使用方法。

(3)理解LC并联谐振回路的基本特性。

二、实验内容及要求
1、创建实验电路
图1.1
2、谐振回路的调谐
图1.2 示波器波形显示
图1.3 谐振频率
图1.4 信号源电压
由图1.2知:谐振时,谐振频率f o=1.5820200MHz,输出峰-峰值U OPP =5.72Vpp
3、幅频特性曲线的测量
f/MHz f L0.1 …f L0.7 ... f o ... f H0.7 …f H0.1
1.423 … 1.567 … 1.582 … 1.601 … 1.762 U OPP/V 0.570 … 4.05 … 5.72 … 4.03 …0.597
表1.1 LC谐振回路幅频特性
4、幅频特性曲线和相频特性曲线的观测
图1.5 幅频特性图1.6 相频特性
由波特图仪测带宽和矩形系数,得
BW0.7=0.034MHz
K=9.97058824
5、仿真实验小结
(1)、由表1.1所作出的幅频特性曲线与波特图幅频特性曲线基本吻合,说明示波器法与波特图法都可以分析LC谐振回路的基本特性。

(2)、LC谐振回路在高频电子线路的应用:
①移相电路
②正弦波振荡电路的选频网络
③陷波器(带阻滤波器)
三、谐振回路的交流分析
图1.7 交流分析
图1.8 相关参数。

相关文档
最新文档