高等代数期末论文学习总结

合集下载

高等代数学习报告

高等代数学习报告

竭诚为您提供优质文档/双击可除高等代数学习报告篇一:高等代数期末论文学习总结高等代数学习总结摘要:两学期的高等代数已经接近尾声了,高等代数作为数学专业的基础学科之一。

本文主要讲述本人两学期下来学习高等代数的一些知识总结和学习体会。

关键词:行列式矩阵二次型正文:《高等代数》是数学学科的一门传统课程。

在当今世界的数学内部学科趋于统一性和数学在其他学科的广泛应用性的今天,《高等代数》以其追求内容结构的清晰刻画和作为数学应用的基础,是大学数学各个专业的主干基础课程。

它是数学在其它学科应用的必需基础课程,又是数学修养的核心课程。

高等代数是代数学发展到高级阶段的总称,它包括许多分支。

它是在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。

这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。

通过学习后,我们知道,不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。

因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。

在学习之前,我一直认为高等代数就是把线性代数重学一遍,因为大一的时候线性代数学得不深,而且也没有学完。

经过两学期的学习后,我发现,这两者之间区别还是挺大的。

高等代数数学专业开设的专业课,更注重理论的分析,需要搞懂许多概念是怎么来的,而线性代数,只是一种运算工具,是供工科和部分医科专业开设的课程,只注重应用。

经过两学期的学习,我对高等代数里面的知识有了个初步的认识和接触,特别是代数的一些思想,也从中收获不少。

下面就对两学期的学习做一个回顾和总结。

行列式行列式是代数学中的一个基本概念,它不仅是讨论线性方程组理论的有力工具,而且还广泛的应用于数学及其他科学技术领域定义:设A=()为数域F上的n×n矩阵,规定A的行列式为??=(?1)??(??1??2)??1??1??2??2??????1??2…其中,??1??2为1,2,…,n的一个排列。

高等代数的学后感

高等代数的学后感

高等代数的学后感作为全球最重要的数学学科之一,高等代数是许多大学必修的学科。

在我接受这门学科教育的这段时间里,我发现了很多有关数学的新事物,也收获了许多宝贵的经验。

学习高等代数不是一件容易的事情。

这个学科要求学生了解数学中的许多基本概念,例如群、环、域等。

这些概念看起来可能非常抽象,但实际上它们是通过比较简单的数学调查而产生的。

因此,只要时刻保持对数学知识的好奇心和兴趣,我们就可以轻易地掌握这些概念,并掌握数学的更广泛领域。

高等代数教我了一些重要的技能,例如解决问题的能力和逻辑推理能力。

学习代数可以让我更好地发展我的大脑,让我更清晰地思考。

通过做习题,我更好地了解了每个代数领域的基础知识,这对于日后进一步学习数学领域的其他知识非常有帮助。

不仅如此,学习高等代数很快就引起了我对数字系统及其变换的兴趣。

我对此领域产生了深刻的思考,进一步了解数字和数学的本质与功能。

我逐渐理解了代数的代表性和它对数学的深度影响。

更重要的是,学习高等代数让我意识到了数学不只是解题的工具。

数学的本质是探索各种数学概念和思维方式,以解决许多实际问题。

通过学习高等代数,我学到了在面对问题时调整思想的重要性。

在这个过程中,我在许多领域都实践了这些技能,如科学、工程和商业中遇到的难题!最后,我深深地感受到,学习数学需要系统和全面的锻炼。

我们需要注重数学知识的实际应用,并不断以逻辑思维为基础提高自己的思考方式。

我们也要注意最新的研究成果和进展,同时保持谦虚和乐观,面对挑战并克服困难。

总之,学习高等代数让我深入了解了数学的关键概念和思维原理,掌握了解决实际问题的技能,同时也开拓了我的眼界和思维方式。

我相信这些知识和技能将对我的未来发展产生重要影响,并帮助我更好地理解世界!。

2023年高等代数学习心得

2023年高等代数学习心得

2023年高等代数学习心得在2023年,我开始了高等代数的学习,这门课程是我作为大学数学专业的一部分必修的课程。

通过这学期的学习,我对高等代数有了更深入的了解,不仅加深了对基本概念的理解,还学会了一些解决问题的方法和技巧。

在这篇心得中,我将分享我在高等代数学习中的一些体会和收获。

首先,我想谈一下学习高等代数的重要性。

高等代数作为数学的重要分支之一,是理论和实践联系非常紧密的学科。

它不仅为我们提供了解决问题的方法和工具,还培养了我们逻辑思维、抽象思维和问题解决能力。

在学习高等代数的过程中,我们需要理解并掌握各种基本概念、定理和公式,这不仅有助于我们对数学知识的整合和深化,还能够为我们在未来的学习和研究中奠定坚实的基础。

在学习高等代数的过程中,我发现了解高等代数的基本概念是非常重要的。

高等代数的一些基本概念如向量空间、线性映射、矩阵、行列式等,是理解高等代数的核心。

通过对这些概念的深入学习,我对高等代数的整体架构和思维方式有了更加清晰的认识。

同时,我还发现高等代数的一些定理和公式是非常有用的,它们为我们解决问题提供了一个基本框架。

在学习高等代数的过程中,我注意到需要注重理论和实践相结合,通过解决实践问题来巩固和加深对理论知识的理解。

除了基本概念和定理,高等代数的一些解题技巧和方法也非常重要。

在高等代数中,我们经常需要通过矩阵变换、线性映射等方法来解决问题。

对于这些问题,我们需要灵活运用高等代数的方法和技巧,从而找到最优解。

在学习高等代数的过程中,我意识到了解题方法的重要性,只有不断提高自己的解题能力,才能更好地应对各种复杂的问题。

在高等代数的学习中,我还发现了团队合作的重要性。

高等代数的学习过程中,我们经常需要与同学一起解决问题、讨论理论,通过相互之间的合作和交流,我们可以得到更多的启发和帮助。

而且,团队合作还能够培养我们的团队意识、沟通能力和合作能力,这对我们今后的学习和工作都非常重要。

通过这学期的高等代数学习,我不仅加深了对高等代数的理解,还提高了解题能力和创新思维。

高等代数学习心得

高等代数学习心得

高等代数学习心得高等代数是一门涉及向量空间、线性变换、矩阵理论等概念和方法的数学课程。

通过学习高等代数,我深刻认识到了其在数学和其他学科中的重要性,也体验到了其抽象性和理论性的特点。

首先,高等代数让我理解了向量空间的概念和性质。

向量空间是一组满足特定运算法则的向量的集合,它是对现实世界中某种数学结构的抽象描述。

通过学习向量空间的性质,我深刻认识到向量的加法和数乘运算所满足的特性,例如封闭性、结合律和分配律等。

这对我理解线性代数中的其他概念和方法起到了很大的帮助。

其次,高等代数教我学习线性变换的概念和相关理论。

线性变换是向量空间中的一个重要概念,它描述了一种从一个向量空间到另一个向量空间的映射关系。

通过学习线性变换的性质和特点,我能够对函数的线性性质和变换的影响有更深入的认识。

另外,高等代数还介绍了线性变换的矩阵表示和相似性质,这为我理解矩阵理论的基础打下了坚实的基础。

在学习高等代数的过程中,我也深刻体会到了其抽象性和理论性的特点。

高等代数涉及到很多抽象的概念和符号,例如向量、矩阵、线性变换和子空间等。

这些概念和符号在数学中具有广泛的应用,但对于初学者来说,往往需要理解和消化一段时间才能真正掌握。

另外,高等代数的理论体系也很庞大,包含了很多定理和证明。

这需要我们具备严密的逻辑思维和数学推导能力,才能正确理解和运用其中的知识。

通过高等代数的学习,我不仅学到了具体的知识和技能,更重要的是培养了自己的数学思维和解决问题的能力。

高等代数中的许多概念和方法都需要我们进行抽象思维和逻辑推理,这培养了我的数学思维能力。

在解决高等代数相关问题时,我需要分析问题、寻找规律、运用理论知识和方法等,这也增强了我的问题解决能力和创新能力。

虽然高等代数的学习对我来说是一项挑战,但它也给我带来了很多成就感和满足感。

每当我能够正确理解和运用高等代数的概念和方法解决一个复杂问题时,我都会感到非常自豪和满足。

这也进一步激发了我对数学学习的兴趣和热情。

高等代数心得体会及感悟(实用17篇)

高等代数心得体会及感悟(实用17篇)

高等代数心得体会及感悟(实用17篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!高等代数心得体会及感悟(实用17篇)心得体会是通过实践和经验总结得出的有关某个问题或事物的深刻认识和领悟。

高代期末总结

高代期末总结

高代期末总结高等代数是一门非常重要的数学课程,它是数学专业中的基础课程之一。

通过这学期的学习,我对高等代数的相关内容有了更深层次的理解和掌握。

本学期的高等代数课程包括了矩阵论、线性空间、线性变换、特征值与特征向量、内积空间等内容。

在学习这些内容的过程中,我体会到了高等代数和线性代数的密切联系,也意识到高等代数对于解决实际问题的重要性。

首先是矩阵论的学习。

矩阵是高等代数中最基础且最重要的概念之一。

我们学习了矩阵的定义、矩阵的运算规则、矩阵的转置和逆,以及矩阵的秩等相关性质。

这些都是解线性方程组、推导线性变换等问题中必要的工具。

在线性空间的学习中,我掌握了向量空间的定义、性质和基本定理。

线性空间是高等代数中另一个重要的概念,它是一种抽象的数学结构,能够描述和分析各种不同的数学对象。

我理解了线性空间的加法和数乘运算的性质,以及线性子空间和线性无关的定义和相关定理。

这部分的学习对我们理解和应用线性代数都有着重要的意义。

线性变换作为高等代数的重要内容之一,我们学习了线性变换的定义和基本性质。

线性变换是一种保持向量空间的运算结构的特殊映射,它能够将一个向量空间中的向量映射到另一个向量空间中的向量。

我们学习了线性变换的代数表示、线性变换的矩阵表示以及线性变换的基本定理。

通过这些内容的学习,我能够更好地理解线性变换的本质和作用。

特征值和特征向量是高等代数中一个重要的概念,它们能够描述线性变换中的关键性质。

通过学习特征值和特征向量的定义、计算方法和性质,我理解了特征值和特征向量对于线性变换的重要性和意义。

特征值和特征向量在许多实际问题中都有着重要应用,比如物理中的振动问题和工程中的结构分析等。

内积空间是高等代数中的另一个重要内容,它为我们提供了一种更抽象和更一般的向量空间。

在内积空间的学习中,我了解了内积的定义、性质和基本定理。

我们学习了内积空间中的正交性、正交投影、Gram-Schmidt正交化等内容,这些都是解决实际问题和进行向量空间分析的重要工具。

线性代数期末总结小论文

线性代数期末总结小论文

线性代数期末总结小论文在本学期的学习中,我系统地学习了线性代数的基本概念、基础理论和常见应用。

通过课堂的学习和教材的阅读,我对线性代数有了更深入的了解,掌握了一些基本的技巧和方法。

下面我将对我本学期所学的内容进行总结和回顾。

一、向量和矩阵向量是线性代数的基础概念之一,它是有方向和大小的量。

向量的加法、减法和数量乘法在几何上对应于向量的平移和伸缩。

我学习了向量的表示方法、向量的运算法则和向量方程的解法。

矩阵是一个二维数组,它是向量的推广。

矩阵的运算包括加法、减法、数量乘法和矩阵乘法等。

矩阵乘法的定义非常重要,它将两个矩阵的行与列进行乘积累加得到新的矩阵。

我还学习了矩阵的转置、逆矩阵、行列式等概念和计算方法。

二、线性变换和特征值特征向量线性变换是线性代数的核心概念之一,它是一个函数,将一个向量空间中的向量映射到另一个向量空间中的向量。

学习了线性变换的概念后,我学习了线性变换的表示方法和矩阵表示,矩阵表示能够简化线性变换的计算。

特征值和特征向量是线性变换非常重要的概念,它们描述了线性变换对应的一些特殊性质。

特征值是一个标量,特征向量是线性变换不变的非零向量。

我还学习了如何计算特征值和特征向量,以及它们在实际问题中的应用。

三、最小二乘法和奇异值分解通过学习最小二乘法,我了解到对于一组方程组,如果求解方程组的解是不可能的,或者解是存在但不唯一的,那么我们可以使用最小二乘法来求解一个最接近方程组的解。

最小二乘法在数据拟合、数据建模等领域有着广泛的应用。

奇异值分解是矩阵分解的一种方法,它将一个矩阵分解为三个矩阵的乘积,将原始矩阵转化为一个对角矩阵的形式,方便求解和分析。

奇异值分解在图像处理、数据压缩等领域有着重要的应用。

四、特征向量和特征值的应用特征向量和特征值在许多实际问题中都有广泛的应用。

在图像处理方面,特征向量和特征值可以用于图像的压缩和降噪;在自然语言处理中,特征向量和特征值可以用于文本的分类和聚类;在电路网络中,特征向量和特征值可以用于电路的分析和设计。

2024年高等代数学习心得

2024年高等代数学习心得

2024年高等代数学习心得____年高等代数学习心得时间如白驹过隙,转眼间我已经完成了____年的高等代数学习。

这一年的学习让我受益匪浅,不仅对代数知识有了更深刻的理解,也培养了我的数学思维和解决问题的能力。

在这____字的心得中,我将分享我在高等代数学习中的体会和心得。

首先,高等代数学习让我对抽象代数有了更深入的了解。

高等代数是现代数学的重要分支之一,它研究的是一般性的代数结构,比如群、环、域等等。

在学习高等代数的过程中,我们探索了这些代数结构的定义、性质和应用。

通过学习这些抽象的概念和定理,我更加清晰地理解了数学的抽象和推理思维方式。

在解决具体问题的过程中,我能够将其抽象为代数结构,并运用相应的定理和方法进行求解。

其次,高等代数的学习培养了我的逻辑思维和证明能力。

在高等代数中,证明是非常重要的部分。

通过证明,我们能够确保定理的正确性,并且从中深入理解数学概念和推理过程。

在学习过程中,我遇到了很多证明问题,有时候会觉得困惑和无从下手。

但随着时间的推移,我学会了更好地分析问题,找到问题的关键点,并运用适当的方法进行证明。

这个过程不仅提高了我的逻辑思维和推理能力,也锻炼了我的耐心和毅力。

另外,高等代数学习还让我更好地理解了矩阵和线性代数的应用。

矩阵和线性代数是高等代数的重要内容,广泛应用于物理、工程、计算机等领域。

通过学习线性代数,我对线性方程组、矩阵运算、特征值和特征向量等概念有了更深入的理解。

在实际问题中,我能够将其抽象为线性代数的语言,并运用矩阵的方法进行求解。

这让我在解决实际问题时更加灵活和高效。

此外,高等代数学习还培养了我在抽象领域中求解问题的能力。

在高等代数中,我们经常会遇到一些抽象的问题,没有直接的解法。

在这种情况下,培养自己的解决问题的能力是非常重要的。

我学到了运用不同的方法和角度思考问题,拓宽思维,找到解决问题的突破口。

有时候,我会通过比较、类比、代入等方法找到问题的线索,有时候,我会尝试构造一些具体的例子,通过分析这些例子来得到一般性的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等代数学习总结摘要:两学期的高等代数已经接近尾声了,高等代数作为数学专业的基础学科之一。

本文主要讲述本人两学期下来学习高等代数的一些知识总结和学习体会。

关键词:行列式矩阵二次型正文:《高等代数》是数学学科的一门传统课程。

在当今世界的数学内部学科趋于统一性和数学在其他学科的广泛应用性的今天,《高等代数》以其追求内容结构的清晰刻画和作为数学应用的基础,是大学数学各个专业的主干基础课程。

它是数学在其它学科应用的必需基础课程,又是数学修养的核心课程。

高等代数是代数学发展到高级阶段的总称,它包括许多分支。

它是在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。

这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。

通过学习后,我们知道,不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。

因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。

在学习之前,我一直认为高等代数就是把线性代数重学一遍,因为大一的时候线性代数学得不深,而且也没有学完。

经过两学期的学习后,我发现,这两者之间区别还是挺大的。

高等代数数学专业开设的专业课,更注重理论的分析,需要搞懂许多概念是怎么来的,而线性代数,只是一种运算工具,是供工科和部分医科专业开设的课程,只注重应用。

经过两学期的学习,我对高等代数里面的知识有了个初步的认识和接触,特别是代数的一些思想,也从中收获不少。

下面就对两学期的学习做一个回顾和总结。

行列式行列式是代数学中的一个基本概念,它不仅是讨论线性方程组理论的有力工具,而且还广泛的应用于数学及其他科学技术领域定义:设A=(a ij)为数域F上的n×n矩阵,规定A的行列式为|A|=∑(−1)τ(j1j2⋯j n)a1j1a2j2⋯a njnj1j2…j n其中,i1i2⋯i n为1,2,…,n的一个排列。

从定义,我们可以看出,行列式是F n×n到F的一个映射。

通过这个定义,我们可以推断出行列式的诸多性质:1.行列式与它的转置相等;2.互换行列式的两行(列),行列式变号;3.若一个行列式中有两行(列)元素对应相等,则这个行列式为零;4.行列式的某行(列)中的公因子可以提出去,或者以一数乘行列式等于这个数乘行列式;5.如果行列式中两行成比例,那么行列式为零;6.帮行列式的一行乘以某个数加到另一行,行列式不变;place 展开定理:任取A的k 行,可构成A的一切可能的k阶子式为t(=C n k)个,设为M1,…,M t,其相应的代数余子式为A1,A2,…,A t,则|A|=M1A1+M2A2+⋯+M t A t。

其中,第七条性质的特殊情形就是我们平时常用的展开定理。

这7条性质的应用是行列式应用于其他地方的基本保障。

在此基础上,我们可以得出更多的性质和推论。

通过学习,我们知道,行列式其实是一种工具,是将多种情况下转换为行列式,通过计算行列式的值来得到想要的结果。

在上面7条性质的基础上,我们可以得到计算一般阶的主要方法与技巧:定义法、化三角形法、Vandermonde(范德蒙)行列式法、分列式行列式法、加边法、降阶法、递推法、数学归纳法、做辅助行列式法。

这里就不一一分析了,比较常用的就是化三角法,一般有上三角和下三角。

在学行列式时,没觉得有什么困难,知识本身也比较简单,除了弄懂那些定理是怎么来的,剩下来的就是计算了,一般情况下,只要细心点,就不会错了。

行列式还是比较好学的。

矩阵矩阵,Matrix。

在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。

这一概念由19世纪英国数学家Cayley 于1858年首先提出。

自此,矩阵理论便迅速的建立起来。

矩阵论是数学中内容最为丰富、应用最广泛的部分。

定义:称数域F 中m ×n 个数a_ij (i=I,2,…,m; j=1,2,…,n )排成的m 行n 列的矩形表格⎪⎪⎪⎪⎪⎭⎫ ⎝⎛mn m m n n a a a a a a a a a 212222111211为数域F 上的一个m×n 矩阵,简记为(a ij )m×n ,其中a ij 称为矩阵的第i 行第 j 列交叉点上的元素(简称元)。

其中,若对于矩阵A ,如果存在矩阵B ,是的AB=E,则称B 为A 的逆矩阵。

在我们的学习中,矩阵的秩和初等矩阵是在矩阵应用中两个比较重要的概念。

矩阵的秩:设A=(a ij )m×n ,α1,…,αs 是A 的行向量,β1,…,βn 为A 的列向量,称r 矩阵的秩,若r 为A 行(列)向量组的极大无关组的个数。

用通俗的话讲就是若A 中存在一个r 阶子式不等于0,而一切r+1阶子式都等于0,则称r 为A 的秩,并记为rank A=r ;特别的,当A=0时,规定rank A=0. 我们常用到的有关矩阵的秩的等式和不等式有:1. 设A 为s ×n 矩阵,P,Q 分别为s 阶和n 阶可逆矩阵,则r(A)=r(PA)=r(AQ)=r(PAQ).2. 设A 为n 阶矩阵,则rank A=n ⟺A 可逆.3. rank A=rank A ′=rank (kA),其中 k ≠0.4. r (A 00B)=r(A)+r(B) 5. 秩的第一降阶定理:设A 可逆,(A 00B )是m ×n 矩阵,则 r (A 00B)=r(A)+r(D - C A −1B) 6. 秩的第二降阶定理:设A ,D 分别是r 阶与s 阶可逆矩阵,B ,C分别是r ×s 和s ×r 矩阵,则r(D - C A −1B) =r(D)-r(A)+r(A - B D −1C)7.r(A C0B)≥r(A)+r(B)r(A0C B)≥r(A)+r(B)8.r(AB)≤min{r(A),r(B)}9.r(A,B) ≤r(A)+r(B)10.r(A+B) ≤r(A)+r(B)11.(Sylvester不等式)设A,B分别是m×n和n×l矩阵,则r(AB)≥r(A)+r(B) – n12.(Frobenius 不等式)r(ABC)≥r(AB)+r(BC)-r(B)13.设A为实矩阵,则r(A A′)=r(A)=r(A′)上述13条性质就是矩阵秩的基本内容,或者说是矩阵秩的基本应用了,用矩阵秩解决后面知识中碰到的问题,有了这13条性质就有了基本保障了。

初等矩阵是我们用到矩阵时另一个重要的概念就是初等矩阵。

定义:由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵。

定义中提到的另一个概念初等变换是指,●交换矩阵的两行(列)(换法变换)●用一个非零数乘矩阵的某一行(列)(倍法变换)●用一个数乘矩阵某一行(列)加到另一行(列)上去(消法变换)而上述三种初等变换对应的初等阵有分别叫做换法阵、倍法阵和消法阵。

初等变换和初等矩阵之间的关系也是一个很重要的知识点,它为我们之后的矩阵进行的各种处理提供了理论基础:对于一个s×n矩阵A做一次初等行变换就相当于在A的左边乘相应的一个s×s初等矩阵;做一次初等列变换就相当于在A的右边乘相应的n×n初等矩阵。

这种对应关系也就是后来学到的线性变换,这在后文会单独列出来讲述。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。

在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。

矩阵的运算是数值分析领域的重要问题。

将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。

对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。

在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

由此可见,矩阵在高等代数中的重要性。

记得在大一在初次接触矩阵的时候,还没有觉得有什么困难,但当学到矩阵的秩的时候,便开始犯糊涂了,脑子一时转不过弯,无法理解什么才叫矩阵的秩。

经过长时间的学习后,才对秩有了一个深入的了解,两学期的高代课下来,才让我真正认识到矩阵的重要性。

当然,矩阵的重要性并不是因为上述两个重要的概念,而是矩阵分支出去的概念的应用,下面便一一阐释。

线性方程组线性方程组中其实是用到了矩阵的乘法。

线性方程组是方程组的一种,它符合以下的形式:{a11x1+a12x2+⋯+a1n x n=b1 a21x1+a22x2+⋯+a2n x n=b2⋮ ⋮ ⋮ ⋮a m1x1+a m2x2+⋯+a mn x n=b m其中,a11,a12以及b1,b2等等为已知常数,而x1,x2等等则是要求的未知数。

运用矩阵的方式,可以将线性方程组写成一个向量方程:Ax=b,其中,A是由方程组里未知量里未知量的系数排成的m×n矩阵,x是含有n个元素的行向量,b是含有m个元素的行向量。

A=(a11 a12 ⋯a1n a21 a22 ⋯a2n ⋮ ⋮ ⋱ ⋮a m1 a m2⋯a mn ),x=(x1x2⋮x n), b=(b1b2⋮b n)在这个写法下,将原来的多个方程转化成一个向量方程,在已知矩阵A和向量b的情况下,求未知向量x。

根据学习可将解的判定方法总结如下:1)r(A)=r(Ã)=n当且仅当Ax=b有唯一解;2)r(A)=r(Ã) <n当且仅当Ax=b有无穷多解;3)r(A)≠r(Ã)当且仅当Ax=b无解;4)r(A)=n当且仅当Ax=0只有零解;5)r(A) <n当且仅当Ax=0有非零解.有了如何判定方程组有解的方法后,我们就要来将解表示出来,当方程组有一两组解的时候,表示出来还很简单,当方程有无数组解的时候,我们只能想出一种通式来表示解,这就有了线性方程组解的结构。

对于方程组{a11x1+a12x2+⋯+a1n x n=b1a21x1+a22x2+⋯+a2n x n=b2⋮ ⋮ ⋮ ⋮a m1x1+a m2x2+⋯+a mn x n=b m(1)当b1,b2,⋯,b m全为零时,我们称(1)为其次线性方程组,否则,为非齐次线性方程组。

定义:齐次线性方程组的一组解η1,η2,⋯,ηt称为(1)的一个基础解系,如果1)(1)的任意一个解都能表达成η1,η2,⋯,ηt的线性组合;2)η1,η2,⋯,ηt线性无关。

在证明其次线性方程组的确有基础解系的时候,我们得到这样一个定理:在齐次线性方程组有非零解的情况下,它有基础解系,并且基础解系所含解的个数等于n-r,这里的r表示系数矩阵的秩。

进一步可得,如果γ0是非齐次线性方程组的一个特解,那么该方程组的任意一个解γ都可以表成γ=γ0+ η其中η该方程组导出组的一个解。

相关文档
最新文档