广西梧州市2017年中考数学试题(含答案)

合集下载

2017年广西梧州市中考数学试卷

2017年广西梧州市中考数学试卷

2017年广西梧州市中考数学试卷2017年广西梧州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.求的倒数是()。

A。

-1/6 B。

1/6 C。

-6 D。

62.下列“禁止行人通行,注意危险,禁止非机动车通行,限速60”四个交通标志图中,为轴对称图形的是()。

A。

B。

C。

D。

3.若式子有意义,则m的取值范围是()。

A。

m≥3 B。

m≤3 C。

m≥-3 D。

m≤-34.一元一次方程3x-3=0的解是()。

A。

x=1 B。

x=-1 C。

x=0 D。

x=1/35.分解因式:2x²-2=()。

A。

2(x²-1) B。

2(x²+1) C。

2(x-1)² D。

2(x+1)(x-1)6.已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为()。

A。

相离 B。

相切 C。

相交 D。

无法确定7.在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()。

A。

5 B。

7 C。

9 D。

118.下列命题:①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=0,则x²-2x=0它们的逆命题一定成立的有()。

A。

①②③④ B。

①④ C。

②④ D。

②9.三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长正好构成等边三角形的概率是()。

A。

1/27 B。

1/9 C。

1/8 D。

1/410.青山村种的水稻2017年平均每公顷产7200kg,2018年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率,设水稻每公顷产量的年平均增长率为x,则所列方程正确的为()。

A。

7200(1+x)=8450 B。

7200(1+x)²=8450C。

广西梧州市中考数学一模试卷

广西梧州市中考数学一模试卷

广西梧州市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017七下·长春期中) 在实数,3.1415926,0.123123123…,π2 ,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有()A . 2个B . 3个C . 4个D . 5个2. (2分)(2017·黑龙江模拟) 下列图形中,是中心对称图形但不是轴对称图形的是()A .B .C .D .3. (2分)下列说法错误的是()A . 打开电视机,正在播放广告这一事件是随机事件B . 要了解小赵一家三口的身体健康状况,适合采用抽样调查C . 方差越大,数据的波动越大D . 样本中个体的数目称为样本容量4. (2分) (2016八上·射洪期中) 下列各式中,正确的有()A . a3+a2=a5B . 2a3•a2=2a6C . (﹣2a3)2=4a6D . ﹣(a﹣1)=﹣a﹣15. (2分)将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,如图,则∠EDP的大小为()A . 80°B . 100°C . 120°D . 不能确定6. (2分)计算a2(2a)3﹣a(3a+8a4)的结果是()A . 3a2B . ﹣3aC . ﹣3a2D . 16a57. (2分)一次函数的图象如图所示,当<0时,的取值范围是()A . <0B . >0C . <2D . >28. (2分) (2017八下·桂林期中) 已知直角三角形中30°角所对的直角边长为5,则斜边长为()A . 5B . 10C . 12D . 139. (2分) (2019八下·赵县期末) 在直线l上有三个正方形m、q、n,若m、q的面积分别为5和11,则n 的面积()A . 4B . 6C . 16D . 5510. (2分)如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.下列说法中正确的是()A . B点表示此时快车到达乙地B . B﹣C﹣D段表示慢车先加速后减速最后到达甲地C . 快车的速度为166km/hD . 慢车的速度为125km/h二、填空题 (共5题;共5分)11. (1分) (2017八下·常山月考) 请写出一个与的积为有理数的数是________.12. (1分) (2019九上·通州期末) 如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE的长为________.13. (1分)(2017·桂林模拟) 如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,阴影部分的面积为________.14. (1分) (2017八下·重庆期末) 正方形ABCD的边长为1,如果将线段BD绕着点B旋转后,点D落在BC 延长线上的点D1处,那么tan∠BAD1=________15. (1分) (2020八上·安陆期末) 如图,在中,,,的平分线交于点,,交的延长线于点,若,则 ________.三、解答题 (共8题;共80分)16. (5分)先化简(1﹣)÷,再从|m|≤2中选一个合适的整数代入求值.17. (12分)(2018·郴州) 6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型A B AB O人数105(1)这次随机抽取的献血者人数为________人,m=________;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?18. (10分)(2017·达州模拟) 如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F 在AC的延长线上,且∠CBF= ∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF= ,求BC和BF的长.19. (5分) (2018九下·扬州模拟) 如图,山坡AB的坡度i=1:,AB=10米,AE=15米.在高楼的顶端竖立一块倒计时牌CD,在点B处测量计时牌的顶端C的仰角是45°,在点A处测量计时牌的底端D的仰角是60°,求这块倒计时牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.414,≈1.732)20. (10分)(2018·沧州模拟) “创卫工作人人参与,环境卫生人人受益”,我区创卫工作已进入攻坚阶段.某校拟整修学校食堂,现需购买A、B两种型号的防滑地砖共60块,已知A型号地砖每块40元,B型号地砖每块20元.(1)若采购地砖的费用不超过1600元,那么,最多能购买A型号地砖多少块?(2)某地砖供应商为了支持创卫工作,现将A、B两种型号的地砖单价都降低a%,这样,该校花费了1280元就购得所需地砖,其中A型号地砖a块,求a的值.21. (13分) (2019九上·大连期末) 如图,抛物线y=ax2+2ax﹣3a(a>0)交x轴于A、B两点,交y轴于点C,抛物线的顶点为D.(1)填空:抛物线的对称轴为________,点A的坐标为________;点B的坐标为________;(2)若△ADC的面积为3,求抛物线的解析式;(3)在(2)的条件下,当m≤x≤m+1,y的取值范围是﹣4≤y≤2m,求m的值.22. (10分) (2019八下·温江期中) 在△ABC中,∠ABC<90°,将△ABC在平面内绕点B顺时针旋转(旋转角度不超过180°),得到△DBE,其中点A的对应点为D,连接CE,CE∥AB.(1)如图1,试猜想∠ABC与∠BEC之间满足的等量关系,并给出证明;(2)如图2,若点D在BC边上,DC=4,AC= ,求AB的长.23. (15分)(2017·柘城模拟) 如图,抛物线y=x2+bx+c与直线y= x﹣3交于A、B两点,其中点A在y 轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共80分)16-1、17-1、17-2、17-3、18-1、18-2、19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、。

广西壮族自治区桂林市2017年广西中考数学试卷及参考答案

广西壮族自治区桂林市2017年广西中考数学试卷及参考答案
10. 若分式 的值为0,则x的值为( )
A . ﹣2 B . 0 C . 2 D . ±2 11. 一次函数y=﹣x+1(0≤x≤10)与反比例函数y= (﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1 , y1),(x2 , y2)是图象上两个不同的点,若y1=y2 , 则x1+x2的取值范围是( )
(1) 求抛物线y1的函数解析式; (2) 如图①,将抛物线y1沿x轴翻折得到抛物线y2,抛物线y2与y轴交于点C,点D是线段BC上的一个动点,过点D作 DE∥y轴交抛物线y1于点E,求线段DE的长度的最大值; (3) 在(2)的条件下,当线段DE处于长度最大值位置时,作线段BC的垂直平分线交DE于点F,垂足为H,点P是 抛物线y2上一动点,⊙P与直线BC相切,且S⊙P:S△DFH=2π,求满足条件的所有点P的坐标. 参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.
24. 为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元 ,2017年投入基础教育经费7200万元.
(1) 求该市这两年投入基础教育经费的年平均增长率; (2) 如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买 电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买
A.
B.
C.
D.
5. 下列图形中不是中心对称图形的是( )
A.
B.
C.
D.
6. 用科学记数法表示数57000000为( ) A . 57×106 B . 5.7×106 C . 5.7×107 D . 0.57×108 7. 下列计算正确的是( ) A . a3÷a3=a B . (x2)3=x5 C . m2•m4=m6 D . 2a+4a=8a 8. 如图,直线a,b被直线c所截,下列条件能判断a∥b的是( )

广西梧州市中考数学真题试题(含解析)

广西梧州市中考数学真题试题(含解析)

2018 年广西梧州市中考数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分,在每小题给出的四个 选项中,只有一项是正确的,每小题选对得 3 分,选错、不选或多选均得零分。

) 1.(3 分)﹣8 的相反数是( )A .﹣8B .8C .18D .18【分析】直接根据相反数的定义进行解答即可.【解答】解:由相反数的定义可知,﹣8 的相反数是﹣(﹣8)=8. 故选:B .【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.(3 分)研究发现,银原子的半径约是 0.00015 微米,把 0.00015 这个数字用 科学计数法表示应是( ) A .1.5×10﹣4B .1.5×10﹣5C .15×10﹣5D .15×10﹣6【分析】绝对值小于 1 的正数也可以利用科学计数法表示,一般形式为 a ×10﹣n, 与较大数的科学计数法不同的是其所使用的是负指数幂,指数由原数左边起第一 个不为零的数字前面的 0 的个数所决定.【解答】解:0.00015=1.5×10﹣4, 故选:A .【点评】本题考查用科学计数法表示较小的数,一般形式为 a ×10﹣n,其中 1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的 0 的个数所决定.3.(3 分)如图,已知 BG 是∠ABC 的平分线,DE ⊥AB 于点 E ,DF ⊥BC 于点 F , DE=6,则 DF 的长度是()A .2B .3C .4D .6【分析】根据角的平分线上的点到角的两边的距离相等即可得.【解答】解:∵BG 是∠ABC 的平分线,DE ⊥AB ,DF ⊥BC , ∴DE=DF=6, 故选:D .【点评】本题主要考查角平分线的性质,解题的关键是掌握角的平分线上的点到 角的两边的距离相等.4.(3 分)已知∠A=55°,则它的余角是( )A .25°B .35°C .45°D .55°【分析】由余角定义得∠A 的余角为 90°减去 55°即可. 【解答】解:∵∠A=55°,∴它的余角是 90°﹣∠A=90°﹣55°=35°, 故选:B . 【点评】本题考查了角的余角,由其定义很容易解得.5.(3 分)下列各式计算正确的是( )A .a+2a=3aB .x 4•x 3=x 12C .(1x)﹣1=﹣1xD .(x 2)3=x 5【分析】根据同底数幂的乘法、幂的乘方、负指数幂和合并同类项法则逐个判断 即可. 【解答】解:A 、a+2a=3a ,正确; B 、x 4•x 3=x 7,错误; C 、(1x)-1=x ,错误; D 、(x 2)3=x 6,错误; 故选:A .【点评】此题考查同底数幂的乘法、幂的乘方、负指数幂和合并同类项,关键是 根据法则计算.6.(3 分)如图,在正方形 ABCD 中,A 、B 、C 三点的坐标分别是(﹣1,2)、(﹣ 1,0)、(﹣3,0),将正方形 ABCD 向右平移 3 个单位,则平移后点 D 的坐标是( )A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)【分析】首先根据正方形的性质求出D 点坐标,再将D 点横坐标加上3,纵坐标不变即可.【解答】解:∵在正方形ABCD 中,A、B、C 三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),∴D(﹣3,2),∴将正方形ABCD 向右平移3 个单位,则平移后点D 的坐标是(0,2),故选:B.【点评】本题考查了正方形的性质,坐标与图形变化﹣平移,是基础题,比较简单.7.(3 分)如图,在△ABC 中,AB=AC,∠C=70°,△AB′C′与△ABC 关于直线 EF对称,∠CAF=10°,连接BB′,则∠ABB′的度数是()A.30° B.35° C.40° D.45°【分析】利用轴对称图形的性质得出△BAC≌△B′AC′,进而结合三角形内角和定理得出答案.【解答】解:连接BB′∵△AB′C′与△ABC 关于直线EF 对称,∴△BAC≌△B′AC′,∵AB=AC,∠C=70°,∴∠ABC=∠AC′B′=∠AB′C′=70°,∴∠BAC=∠B′AC′=40°,∵∠CAF=10°,∴∠C′AF=10°,∴∠BAB′=40°+10°+10°+40°=100°,∴∠ABB′=∠AB′B=40°.故选:C.【点评】此题主要考查了轴对称图形的性质以及等腰三角形的性质,正确得出∠BAC 度数是解题关键.8.(3 分)一组数据:3,4,5,x ,8 的众数是 5,则这组数据的方差是( )A .2B .2.4C .2.8D .3【分析】根据数据的众数确定出 x 的值,进而求出方差即可. 【解答】解:∵一组数据 3,4,5,x ,8 的众数是 5, ∴x=5,∴这组数据的平均数为15×(3+4+5+5+8)=5,则这组数据的方差为15×[(3﹣5)2+(4﹣5)2+2×(5﹣4)2+(8﹣5)2]=2.8. 故选:C .【点评】此题考查了方差,众数,熟练掌握各自的定义是解本题的关键.9.(3 分)小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个 不透明的箱子中装有红、黄、白三种球各 1 个,这些球除颜色外无其他差别,从箱子中随机摸出1 个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色 都不相同的概率是( )A .127B .13C .19D .29【分析】画出树状图,利用概率公式计算即可.【解答】解:如图,一共有 27 种可能,三人摸到球的颜色都不相同有 6 种可能,∴P (三人摸到球的颜色都不相同)=627=29.故选:D .【点评】本题考查列表法与树状图,解题的关键是学会利用树状图解决概率问题.10.(3 分)九年级一班同学根据兴趣分成A、B、C、D、E 五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D 小组的人数是()A.10 人B.l1 人C.12 人D.15 人【分析】从条形统计图可看出A 的具体人数,从扇形图找到所占的百分比,可求出总人数.然后结合D 所占的百分比求得D 小组的人数.【解答】解:总人数=510%=50(人) D小组的人数=50×86.4360=12(人).故选:C.【点评】本题考查了条形统计图和扇形统计图,从上面可得到具体的值,以及用样本估计总体和扇形统计图,扇形统计图表示部分占整体的百分比.11.(3 分)如图,AG:GD=4:1,BD:DC=2:3,则AE:EC 的值是()A.3:2 B.4:3 C.6:5D.8:5【分析】过点D 作DF∥CA 交BE 于F,如图,利用平行线分线段成比例定理,由 DF∥CE 得到DFCE=BDDC=25,则CE=52DF,由DF∥AE 得到DFAE=DGAG=14,则AE=4DF,然后计算AECE的值.【解答】解:过点D 作DF∥CA 交BE 于F,如图,∵DF∥CE,∴DFCE=BDDC,而BD:DC=2:3,∴DFCE=25,则CE=52DF,∵DF∥AE,∴DFAE=DGAG,∵AG:GD=4:1,∴DFAE=14,则 AE=4DF,∴AECE=48552DFDF=故选:D.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例12.(3 分)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100 个数是()A.9999 B.10000 C.10001 D.10002【分析】观察不难发现,第奇数是序数的平方加1,第偶数是序数的平方减1,据此规律得到正确答案即可.【解答】解:∵第奇数个数2=12+1,10=32+1,26=52+1,…,第偶数个数3=22﹣1,15=42﹣1,25=62﹣1,…,∴第100 个数是1002﹣1=9999,故选:A.【点评】本题是对数字变化规律的考查,分数所在的序数为奇数和偶数两个方面考虑求解是解题的关键,另外对平方数的熟练掌握也很关键.二、填空题(本大题共6 小题,每小题3 分,共18 分)13.(3在实数范围内有意义,则x 的取值范围是 x≥3 .【分析】直接利用二次根式的有意义的条件得出x 的取值范围,进而得出答案.【解答】解:由题意可得:x﹣3≥0,解得:x≥3.故答案为:x≥3.【点评】此题主要考查了二次根式有意义的条件,正确掌握二次根式的定义是解题关键.14.(3 分)如图,已知在△ABC 中,D、E 分别是AB、AC 的中点,BC=6cm,则DE 的长度是 3 cm.【分析】根据三角形中位线定理解答.【解答】解:∵D、E 分别是AB、AC 的中点,∴DE 是△ABC 的中位线,∴DE=12BC=3cm,故答案为:3.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.(3 分)已知直线y=ax(a≠0)与反比例函数y=kx(k≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是(﹣2,﹣4).【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称,据此进行解答.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称,∴该点的坐标为(﹣2,﹣4).故答案为:(﹣2,﹣4).【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.16.(3 分)如图,已知在⊙O 中,半径,弦AB=2,∠BAD=18°,OD 与AB 交于点C,则∠ACO= 81 度.【分析】根据勾股定理的逆定理可以判断△AOB 的形状,由圆周角定理可以求得∠BOD 的度数,再根据三角形的外角和不相邻的内角的关系,即可求得∠AOC 的度数.【解答】解:∵,,AB=2,∴OA 2+OB2=AB2,OA=OB,∴△AOB 是等腰直角三角形,∠AOB=90°,∴∠OBA=45°,∵∠BAD=18°,∴∠BOD=36°,∴∠ACO=∠OBA+∠BOD=45°+36°=81°,故答案为:81.【点评】本题考查圆周角定理、勾股定理的逆定理、等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.(3 分)如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC 的长度是.【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA,最后用勾股定理即可得出结论.【解答】解:设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴1206180lπ⨯==2πr,∴r=2,即:OA=2,在Rt△AOC 中,OA=2,AC=6,根据勾股定理得,,故答案为:.【点评】此题主要考查了扇形的弧长公式,勾股定理,求出OA 是解本题的关键.18.(3 分)如图,点C 为Rt△ACB 与Rt△DCE 的公共点,∠ACB=∠DCE=90°,连接AD、BE,过点C 作CF⊥AD 于点F,延长FC 交BE 于点G.若AC=BC=25,CE=15, DC=20,则EGBG的值为34.【分析】过 E 作 EH⊥GF 于 H,过 B 作 BP⊥GF 于 P,依据△EHG∽△BPG,可得EG BG =EHBP,再根据△DCF∽△CEH,△ACF∽△CBP,即可得到EH=34CF,BP=CF,进而得出EG BG =34.【解答】解:如图,过E 作EH⊥GF 于H,过B 作BP⊥GF 于P,则∠EHG=∠BPG=90°,又∵∠EGH=∠BGP,∴△EHG∽△BPG,∴EGBG=EHBP,∵CF⊥AD,∴∠DFC=∠AFC=90°,∴∠DFC=∠CHF,∠AFC=∠CPB,又∵∠ACB=∠DCE=90°,∴∠CDF=∠ECH,∠FAC=∠PCB,∴△DCF∽△CEH,△ACF∽△CBP,∴,1EH CE BP BCCF DC CF CA=== ∴EH= 34 CF ,BP=CF ,∴EH BP =34, ∴EG BG =34, 故答案为:34.【点评】本题主要考查了相似三角形的判定与性质,解决问题的关键是作辅助线 构造相似三角形,利用相似三角形的对应边成比例进行推算.三、解答题(本大题共 8 小题,满分 66 分,)19.(6 25÷23+|﹣1|×5﹣(π﹣3.14)0【分析】依据算术平方根的定义、有理数的乘方法则、绝对值的性质、有理数的 乘法法则、零指数幂的性质进行计算,最后,再进行加减计算即可. 【解答】解:原式=3﹣32÷8+5﹣1=3﹣4+5﹣1=3. 【点评】本题主要考查的是实数的运算,熟练掌握运算法则是解题的关键.20.(6 分)解方程:2x 2﹣4x ﹣30=0. 【分析】利用因式分解法解方程即可;【解答】解:∵2x 2﹣4x ﹣30=0, ∴x 2﹣2x ﹣15=0, ∴(x ﹣5)(x+3)=0, ∴x 1=5,x 2=﹣3.【点评】本题考查一元二次方程的解法﹣因式分解法,解题的关键是熟练掌握解 一元二次方程的解法,属于中考基础题.21.(6 分)如图,在▱ABCD 中,对角线 AC ,BD 相交于点 O ,过点 O 的一条直线分别交 AD ,BC 于点 E ,F .求证:AE=CF .【分析】利用平行四边形的性质得出 AO=CO ,AD ∥BC ,进而得出∠EAC=∠FCO , 再利用 ASA 求出△AOE ≌△COF ,即可得出答案.【解答】证明:∵▱ABCD 的对角线 AC ,BD 交于点 O ,∴AO=CO ,AD ∥BC ,∴∠EAC=∠FCO , 在△AOE 和△COF 中EAO FCO AO OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOE ≌△COF (ASA ),∴AE=CF .【点评】此题主要考查了全等三角形的判定与性质以及平行四边形的性质,熟练 掌握全等三角形的判定方法是解题关键.22 8 分)解不等式组36451102x x x x -≤⎧⎪++⎨⎪⎩p ,并求出它的整数解,再化简代数式2321x x x +-+• (3x x +﹣239x x --),从上述整数解中选择一个合适的数,求此代数式的值. 【分析】先解不等式组求得 x 的整数解,再根据分式混合运算顺序和运算法则化 简原式,最后选取使分式有意义的 x 的值代入计算可得.【解答】解:解不等式 3x ﹣6≤x ,得:x ≤3, 解不等式4510x +<12x +,得:x >0, 则不等式组的解集为 0<x ≤3,所以不等式组的整数解为 1、2、3,原式=23(1)x x +-•[23(3)(3)x x x x --+-3(3)(3)x x x -+-] =23(1)x x +-•(1)(3)(3)(3)x x x x --+-∴x=2,则原式=1.【点评】此题主要考查了分式的化简求值以及不等式组的解法,正确进行分式的混合运算是解题关键.23.(8 分)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D 点处测得瀑布顶端A 点的仰角是30°,测得瀑布底端 B 点的俯角是 10°,AB 与水平面垂直.又在瀑布下的水平面测得 CG=27m, GF=17.6m(注:C、G、F 三点在同一直线上,CF⊥AB 于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB 的高度.(参考数据:3≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)【分析】过点D 作DM⊥CE,交CE 于点M,作DN⊥AB,交AB 于点N,在Rt△ CMD 中,通过解直角三角形可求出 CM 的长度,进而可得出 MF、DN 的长度,再在 Rt△BDN、Rt△ADN 中,利用解直角三角形求出 BN、AN 的长度,结合 AB=AN+BN 即可求出瀑布AB 的高度.【解答】解:过点D 作DM⊥CE,交CE 于点M,作DN⊥AB,交AB 于点N,如图所示.在Rt△CMD 中,CD=20m,∠DCM=40°,∠CMD=90°,∴CM=CD•cos40°≈15.4m,DM=CD•si n40°≈12.8m,∴DN=MF=CM+CG+GF=60m.在Rt△BDN 中,∠BDN=10°,∠BND=90°,DN=60m,∴BN=DN•tan10°≈10.8m.在Rt△ADN 中,∠ADN=30°,∠AND=90°,DN=60m,∴AN=DN•tan30°≈34.6m.∴AB=AN+BN=45.4m.答:瀑布AB 的高度约为45.4 米.【点评】本题考查了解直角三角形的应用中的仰角俯角问题及坡度坡角问题,通过解直角三角形求出AN、BN 的长度是解题的关键.电动自行车与用6 万元购进的B 型电动自行车数量一样.(1)求A、B 两种型号电动自行车的进货单价;(2)若 A 型电动自行车每辆售价为 2800 元,B 型电动自行车每辆售价为 3500 元,设该商店计划购进 A 型电动自行车 m 辆,两种型号的电动自行车全部销售后可获利润 y 元.写出y 与m 之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?【分析】(1)设A、B 两种型号电动自行车的进货单价分别为x 元(x+500)元,构建分式方程即可解决问题;(2)根据总利润=A 型两人+B 型的利润,列出函数关系式即可;(3)利用一次函数的性质即可解决问题;【解答】解:(1)设A、B 两种型号电动自行车的进货单价分别为x 元(x+500)元.由题意:50000x=60000+500x,解得x=2500,经检验:x=2500 是分式方程的解.答:A、B 两种型号电动自行车的进货单价分别为2500 元3000 元.(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30),(3)∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,∴m=20 时,y 有最大值,最大值为11000 元.【点评】本题考查一次函数的应用、分式方程的应用等知识,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题,属于中考常考题型.25.(10 分)如图,AB 是⊙M 的直径,BC 是⊙M 的切线,切点为B,C 是BC 上(除B 点外)的任意一点,连接CM 交⊙M 于点G,过点C 作DC⊥BC 交BG 的延长线于点D,连接AG 并延长交BC 于点E.(1)求证:△ABE∽△BCD;(2)若MB=BE=1,求CD 的长度.【分析】(1)根据直径所对圆周角和切线性质,证明三角形相似;(2)利用勾股定理和面积法得到 AG、GE,根据三角形相似求得GH,得到MB、GH 和CD 的数量关系,求得CD.【解答】(1)证明:∵BC 为⊙M 切线∴∠ABC=90°∵DC⊥BC∴∠BCD=90°∴∠ABC=∠BCD∴∠CBD=∠A∴△ABE ∽△BCD(2)解:过点 G 作 GH ⊥BC 于 H∵MB=BE=1∴AB=2∴=由(1)根据面积法AB •BE=B G •AE∴由勾股定理:,∵GH ∥AB ∴GH GE AB AE =∴2GH =∴GH=25 又∵GH ∥ABHC GH BC MB =① 同理:BH GH BC DC=② ①+②,得HC BH GH BC MB +=+GH DC∴+GH MB =1GH DC∴CD=23【点评】本题是几何综合题,综合考察了圆周角定理、切线性质和三角形相似.解 答时,注意根据条件构造相似三角形.26.(12 分)如图,抛物线 y=a x 2+bx ﹣92与 x 轴交于 A (1,0)、B (6,0)两点, D 是 y 轴上一点,连接 DA ,延长 DA 交抛物线于点 E .(1)求此抛物线的解析式;(2)若 E 点在第一象限,过点 E 作 EF ⊥x 轴于点 F ,△ADO 与△AEF 的面积比为 ADO AEF S S ∆∆=19,求出点 E 的坐标;(3)若 D 是 y 轴上的动点,过 D 点作与 x 轴平行的直线交抛物线于 M 、N 两点, 是否存在点 D ,使 DA 2=DM •DN ?若存在,请求出点 D 的坐标;若不存在,请说 明理由.【分析】(1)根据待定系数法,可得函数解析式;(2)根据相似三角形的判定与性质,可得 AF 的长,根据自变量与函数值的对应 关系,可得答案;(3)根据两点间距离,可得 AD 的长,根据根与系数的关系,可得 x 1•x 2,根据 DA 2=DM •DN ,可得关于 n 的方程,根据解方程,可得答案.【解答】解:(1)将 A (1,0),B (6,0)代入函数解析式,得902936602a b a b ⎧+-=⎪⎪⎨⎪+-=⎪⎩ 解得3=421=4a b ⎧-⎪⎪⎨⎪-⎪⎩, 抛物线的解析式为 y=﹣34x 2+214x ﹣92; (2)∵EF ⊥x 轴于点 F ,∴∠AFE=90°.∵∠AOD=∠AFE=90°,∠OAD=∠FAE ,∴△AOD ∽△AFE . ∵ADO AEF S S ∆∆=AO AF =19∵AO=1,∴AF=3,OF=3+1=4,当 x=4 时,y=﹣34×42+214×4﹣92=92, ∴E 点坐标是(4,92),(3)存在点 D ,使 DA 2=DM •DN ,理由如下:设 D 点坐标为(0,n ),AD 2=1+n 2,当 y=n 时,﹣34x 2+214x ﹣92=n 化简,得﹣3x 2+21x ﹣18﹣4n=0, 设方程的两根为 x 1,x 2,x 1•x 2=1843n + DM=x 1,DN=x 2,DA 2=DM •DN ,即 1+n 2=1843n +, 化简,得3n 2﹣4n ﹣15=0, 解得 n 1=53,n 2=3, ∴D 点坐标为(0,﹣53)或(0,3).【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的 关键是利用相似三角形的判定与性质得出 AF 的长;解(3)的关键是利用根与系 数的关系得出 x 1•x 2,又利用了解方程.。

广西梧州市中考数学一模试卷

广西梧州市中考数学一模试卷

广西梧州市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·新乡模拟) 下列各数中,最小的数是()A . ﹣B . ﹣1C . ﹣|﹣ |D . 3﹣22. (2分)(2017·福田模拟) 2016年6月21日,京东宣布与沃尔玛达成深度战略合作,京东向沃尔玛发行近1.45亿股A类普通股,而京东则获得1号店第三方平台1号商城的主要资产,1.45亿用科学记数法表示为()A . 1.45×1010B . 0.145×109C . 1.45×108D . 14.5×1083. (2分)(2017·丰润模拟) 下列计算错误的是()A . 3 =2B . ﹣2+|﹣2|=0C . x2•x3=x6D . (﹣3)2=94. (2分)(2017·江东模拟) 如图,AB∥CD,EC⊥CD于C,CF交AB于B,已知∠2=29°,则∠1的度数是()A . 58°B . 59°C . 61°D . 62°5. (2分)为了了解某地区初一年级5000名学生的体重情况,从中抽取了450名学生的体重,就这个问题来说,下面说法中正确的是()A . 样本容量是450B . 每个学生是个体C . 450名学生是所抽取的一个样本D . 5000名学生是总体6. (2分)若关于x的方程kx2-6x+9=0有两个不相等的实数根,则k的取值范围是()A . k<1B . k≠0C . k<1且k≠0D . k>17. (2分)如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A .B .C .D .8. (2分)(2018·西华模拟) 从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为()A .B .C .D .9. (2分)反比例函数y=(k≠0)的图象经过点(2,5),若点(-5,n)在反比例函数的图象上,则n等于()A . -10B . -5C . -2D .10. (2分)(2018·烟台) 如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A . 28B . 29C . 30D . 31二、填空题 (共5题;共5分)11. (1分) (2019七下·潮阳月考) 在实数范围内,等式+-+3=0成立,则=________.12. (1分)(2018·鼓楼模拟) 如图,在□ABCD中, E、F分别是AB、CD的中点.当□ABCD满足________时,四边形EHFG是菱形.13. (1分)(2017·绵阳模拟) 二次函数y=ax2﹣bx+b(a>0,b>0)图象的顶点的纵坐标不大于,且图象与x轴交于A,B两点,则线段AB长度的最小值是________.14. (1分)(2019·绍兴) 把边长为2的正方形纸片ABCD分割成如图四块,其中点O为正方形的中心,点E,F分别为AB,AD的中点,用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是________。

2016年广西梧州市中考数学试卷及答案

2016年广西梧州市中考数学试卷及答案

2016年广西梧州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的倒数是()A.﹣ B.C.﹣6 D.62.(3分)下列“禁止行人通行,注意危险,禁止非机动车通行,限速60”四个交通标志图中,为轴对称图形的是()A.B.C.D.3.(3分)若式子﹣3有意义,则m的取值范围是()A.m≥3 B.m≤3 C.m≥0 D.m≤04.(3分)一元一次方程3x﹣3=0的解是()A.x=1 B.x=﹣1 C.x= D.x=05.(3分)分解因式:2x2﹣2=()A.2(x2﹣1)B.2(x2+1)C.2(x﹣1)2D.2(x+1)(x﹣1)6.(3分)已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为()A.相离B.相切C.相交D.无法确定7.(3分)在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.118.(3分)下列命题:①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=0,则x2﹣2x=0它们的逆命题一定成立的有()A.①②③④B.①④C.②④D.②9.(3分)三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长正好构成等边三角形的概率是()A.B.C.D.10.(3分)青山村种的水稻2010年平均每公顷产7200kg,2012年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率,设水稻每公顷产量的年平均增长率为x,则所列方程正确的为()A.7200(1+x)=8450 B.7200(1+x)2=8450C.7200+x2=8450 D.8450(1﹣x)2=720011.(3分)在平面直角坐标系中,直线y=x+b与双曲线y=﹣只有一个公共点,则b的值是()A.1 B.±1 C.±2 D.212.(3分)如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B (1,0),直线x=﹣0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:①a﹣b=0;②当﹣2<x<1时,y>0;③四边形ACBD是菱形;④9a﹣3b+c>0你认为其中正确的是()A.②③④B.①②④C.①③④D.①②③二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:3a﹣2a=.14.(3分)2016年1月,梧州市西江特大桥完成桥墩水下桩基础,累计完成投资53 000 000元,其中53 000 000用科学记数法表示为.15.(3分)点P(2,﹣3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P′的坐标是.16.(3分)若一个正多边形的一个外角等于18°,则这个正多边形的边数是.17.(3分)如图,点B、C把分成三等分,ED是⊙O的切线,过点B、C分别作半径的垂线段,已知∠E=45°,半径OD=1,则图中阴影部分的面积是.18.(3分)如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到A n(n为正整数)点时,则A n的坐标是.三、解答题(本大题共8小题,满分66分)19.(6分)计算:|﹣3|﹣(﹣2016)0+(﹣2)×(﹣3)+tan45°.20.(6分)解不等式组,并在数轴上表示不等式组的解集.21.(6分)在“立德树人,志愿服务”活动月中,学校团委为了解本校学生一个月内参加志愿服务次数的情况,随机抽取了部分同学进行统计,并将统计结果分别分成A、B、C、D四类,根据统计结果绘制了如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)本次抽样调查了名学生,并请补全条形统计图;(2)被调查学生“一个月内参加志愿服务次数”的人数的众数落在类.22.(8分)如图,过⊙O上的两点A、B分别作切线,并交BO、AO的延长线于点C、D,连接CD,交⊙O于点E、F,过圆心O作OM⊥CD,垂足为M点.求证:(1)△ACO≌△BDO;(2)CE=DF.23.(8分)如图,四边形ABCD是一片水田,某村民小组需计算其面积,测得如下数据:∠A=90°,∠ABD=60°,∠CBD=54°,AB=200m,BC=300m.请你计算出这片水田的面积.(参考数据:sin54°≈0.809,cos54°≈0.588,tan54°≈1.376,≈1.732)24.(10分)为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:普通消费:35元/次;白金卡消费:购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费:购卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用.(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?(2)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.25.(10分)在矩形ABCD中,E为CD的中点,H为BE上的一点,,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.(1)求证:;(2)若∠CGF=90°,求的值.26.(12分)如图,抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,过点A的直线y=﹣x+4交抛物线于点C.(1)求此抛物线的解析式;(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标;(3)当动点E在直线AC与抛物线围成的封闭线A→C→B→D→A上运动时,是否存在使△BDE为直角三角形的情况,若存在,请直接写出符合要求的E点的坐标;若不存在,请说明理由.2016年广西梧州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的倒数是()A.﹣ B.C.﹣6 D.6【解答】解:的倒数是6,故选:D.2.(3分)下列“禁止行人通行,注意危险,禁止非机动车通行,限速60”四个交通标志图中,为轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.3.(3分)若式子﹣3有意义,则m的取值范围是()A.m≥3 B.m≤3 C.m≥0 D.m≤0【解答】解:∵式子﹣3有意义,∴m≥0.故选C.4.(3分)一元一次方程3x﹣3=0的解是()A.x=1 B.x=﹣1 C.x= D.x=0【解答】解:3x﹣3=0,3x=3,x=1,故选:A.5.(3分)分解因式:2x2﹣2=()A.2(x2﹣1)B.2(x2+1)C.2(x﹣1)2D.2(x+1)(x﹣1)【解答】解:原式=2(x2﹣1)=2(x+1)(x﹣1),故选D6.(3分)已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为()A.相离B.相切C.相交D.无法确定【解答】解:半径r=5,圆心到直线的距离d=3,∵5>3,即r>d,∴直线和圆相交,故选C.7.(3分)在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.11【解答】解:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=7.故选B.8.(3分)下列命题:①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=0,则x2﹣2x=0它们的逆命题一定成立的有()A.①②③④B.①④C.②④D.②【解答】解:①对顶角相等的逆命题是相等的角是对顶角,错误;②同位角相等,两直线平行的逆命题是两直线平行,同位角相等,成立;③若a=b,则|a|=|b|的逆命题是如果|a|=|b,|则a=b,错误;④若x=0,则x2﹣2x=0的逆命题是如果x2﹣2x=0,则x=0或x=2,错误;故选D.9.(3分)三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长正好构成等边三角形的概率是()A.B.C.D.【解答】解:画树状图得:∵共有27种等可能的结果,构成等边三角形的有3种情况,∴以a、b、c为边长正好构成等边三角形的概率是:=.故选A.10.(3分)青山村种的水稻2010年平均每公顷产7200kg,2012年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率,设水稻每公顷产量的年平均增长率为x,则所列方程正确的为()A.7200(1+x)=8450 B.7200(1+x)2=8450C.7200+x2=8450 D.8450(1﹣x)2=7200【解答】解:由题意可得,7200(1+x)2=8450,故选B.11.(3分)在平面直角坐标系中,直线y=x+b与双曲线y=﹣只有一个公共点,则b的值是()A.1 B.±1 C.±2 D.2【解答】解:根据题意,方程x+b=﹣只有一个解,即方程x2+bx+1=0只有一个实数根,∴b2﹣4=0,解得:b=±2,故选:C.12.(3分)如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B (1,0),直线x=﹣0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:①a﹣b=0;②当﹣2<x<1时,y>0;③四边形ACBD是菱形;④9a﹣3b+c>0你认为其中正确的是()A.②③④B.①②④C.①③④D.①②③【解答】解:①∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(1,0),∴该抛物线的对称轴为x=﹣=﹣0.5,∴a=b,a﹣b=0,①正确;②∵抛物线开口向下,且抛物线与x轴交于点A(﹣2,0)、B(1,0),∴当﹣2<x<1时,y>0,②正确;③∵点A、B关于x=0.5对称,∴AM=BM,又∵MC=MD,且CD⊥AB,∴四边形ACBD是菱形,③正确;④当x=﹣3时,y<0,即y=9a﹣3b+c<0,④错误.综上可知:正确的结论为①②③.故选D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:3a﹣2a=a.【解答】解:3a﹣2a=(3﹣2)a=a.14.(3分)2016年1月,梧州市西江特大桥完成桥墩水下桩基础,累计完成投资53 000 000元,其中53 000 000用科学记数法表示为 5.3×107.【解答】解:将53 000 000用科学记数法表示为:5.3×107.故答案为:5.3×107.15.(3分)点P(2,﹣3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P′的坐标是(﹣2,﹣2).【解答】解:点(2,﹣3),向左平移4个单位,横坐标:2﹣4=﹣2,向上平移1个单位,纵坐标:﹣3+1=﹣2,∴点P'(﹣2,﹣2),故答案为:(﹣2,﹣2)16.(3分)若一个正多边形的一个外角等于18°,则这个正多边形的边数是20.【解答】解:正多边形的一个外角等于18°,且外角和为360°,∴这个正多边形的边数是:360°÷18°=20.故答案为:20.17.(3分)如图,点B、C把分成三等分,ED是⊙O的切线,过点B、C分别作半径的垂线段,已知∠E=45°,半径OD=1,则图中阴影部分的面积是.【解答】解:∵点B、C把分成三等分,ED是⊙O的切线,∠E=45°,∴∠ODE=90°,∠DOC=45°,∴∠BOA=∠BOC=∠COD=45°,∵OD=1,∴阴影部分的面积是:+=,故答案为:.18.(3分)如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到A n(n为正整数)点时,则A n的坐标是(2×3n﹣1,0).【解答】解:∵点B1、B2、B3、…、B n在直线y=2x的图象上,∴A1B1=4,A2B2=2×(2+4)=12,A3B3=2×(2+4+12)=36,A4B4=2×(2+4+12+36)=108,…,∴A n B n=4×3n﹣1(n为正整数).∵OA n=A n B n,∴点A n的坐标为(2×3n﹣1,0).故答案为:(2×3n﹣1,0).三、解答题(本大题共8小题,满分66分)19.(6分)计算:|﹣3|﹣(﹣2016)0+(﹣2)×(﹣3)+tan45°.【解答】解:原式=3﹣1+6+1=9.20.(6分)解不等式组,并在数轴上表示不等式组的解集.【解答】解:解不等式①可得x<,解不等式②可得x≥﹣1,在数轴上表示出①②的解集如图,∴不等式组的解集为﹣1≤x<.21.(6分)在“立德树人,志愿服务”活动月中,学校团委为了解本校学生一个月内参加志愿服务次数的情况,随机抽取了部分同学进行统计,并将统计结果分别分成A、B、C、D四类,根据统计结果绘制了如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)本次抽样调查了400名学生,并请补全条形统计图;(2)被调查学生“一个月内参加志愿服务次数”的人数的众数落在B类.【解答】解:(1)根据题意得:160÷40%=400(名),C的人数为400﹣(160+160+60)=20(名),补全条形统计图,如图所示:故答案为:400;(2)被调查学生“一个月内参加志愿服务次数”的人数的众数落在B类,故答案为:B22.(8分)如图,过⊙O上的两点A、B分别作切线,并交BO、AO的延长线于点C、D,连接CD,交⊙O于点E、F,过圆心O作OM⊥CD,垂足为M点.求证:(1)△ACO≌△BDO;(2)CE=DF.【解答】证明:(1)∵过⊙O上的两点A、B分别作切线,∴∠CAO=∠DBO=90°,在△ACO和△BDO中∵,∴△ACO≌△BDO(ASA);(2)∵△ACO≌△BDO,∴CO=DO,∵OM⊥CD,∴MC=DM,EM=MF,∴CE=DF.23.(8分)如图,四边形ABCD是一片水田,某村民小组需计算其面积,测得如下数据:∠A=90°,∠ABD=60°,∠CBD=54°,AB=200m,BC=300m.请你计算出这片水田的面积.(参考数据:sin54°≈0.809,cos54°≈0.588,tan54°≈1.376,≈1.732)【解答】解:作CM⊥BD于M,如图所示:∵∠A=90°,∠ABD=60°,∴∠ADB=30°,∴BD=2AB=400m,∴AD=AB=200m,∴△ABD的面积=×200×200=20000(m2),∵∠CMB=90°,∠CBD=54°,∴CM=BC•sin54°=300×0.809=242.7m,∴△BCD的面积=×400×242.7=48540(m2),∴这片水田的面积=20000+48540≈83180(m2).24.(10分)为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:普通消费:35元/次;白金卡消费:购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费:购卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用.(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?(2)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.【解答】解:(1)35×6=210(元),210<280<560,∴李叔叔选择普通消费方式更合算.(2)根据题意得:y普通=35x.当x≤12时,y白金卡=280;当x>12时,y白金卡=280+35(x﹣12)=35x﹣140.∴y白金卡=.(3)当x=18时,y普通=35×18=630;y白金卡=35×18﹣140=490;令y白金卡=560,即35x﹣140=560,解得:x=20.当18≤x≤19时,选择白金卡消费最合算;当x=20时,选择白金卡消费和钻石卡消费费用相同;当x≥21时,选择钻石卡消费最合算.25.(10分)在矩形ABCD中,E为CD的中点,H为BE上的一点,,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.(1)求证:;(2)若∠CGF=90°,求的值.【解答】(1)证明:∵四边形ABCD是矩形,∴CD∥AB,AD=BC,AB=CD,AD∥BC,∴△CEH∽△GBH,∴.(2)解:作EM⊥AB于M,如图所示:则EM=BC=AD,AM=DE,∵E为CD的中点,∴DE=CE,设DE=CE=3a,则AB=CD=6a,由(1)得:=3,∴BG=CE=a,∴AG=5a,∵∠EDF=90°=∠CGF,∠DEF=∠GEC,∴△DEF∽△GEC,∴,∴EG•EF=DE•EC,∵CD∥AB,∴=,∴,∴EF=EG,∴EG•EG=3a•3a,解得:EG=a,在Rt△EMG中,GM=2a,∴EM==a,∴BC=a,∴==3.26.(12分)如图,抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,过点A的直线y=﹣x+4交抛物线于点C.(1)求此抛物线的解析式;(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标;(3)当动点E在直线AC与抛物线围成的封闭线A→C→B→D→A上运动时,是否存在使△BDE为直角三角形的情况,若存在,请直接写出符合要求的E点的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,∴,∴,∴抛物线解析式为y=x2﹣3x﹣4,(2)如图1,作点B关于直线AC的对称点F,连接DF交AC于点E,由(1)得,抛物线解析式为y=x2﹣3x﹣4①,∴D(0,﹣4),∵点C是直线y=﹣x+4②与抛物线的交点,∴联立①②解得,(舍)或,∴C(﹣2,6),∵A(4,0),∴直线AC解析式为y=﹣x+4,∵直线BF⊥AC,且B(﹣1,0),∴直线BF解析式为y=x+1,设点F(m,m+1),∴G(,),∵点G在直线AC上,∴﹣,∴m=4,∴F(4,5),∵D(0,﹣4),∴直线DF解析式为y=x﹣4,∵直线AC解析式为y=﹣x+4,∴直线DF和直线AC的交点E(,),(3)∵BD=,由(2)有,点B到线段AC的距离为BG=BF=×5=<BD,∵B(﹣1,0),D(0,﹣4),∴直线BD解析式为y=﹣4x﹣4,∵△BDE为直角三角形,∴①∠DBE=90°,∴BE⊥BD交AC于E,∴直线BE解析式为y=x+,∵点E在直线AC:y=﹣x+4的图象上,∴E(3,1),②∠BDE=90°,∴DE⊥BD交抛物线于E,∴直线DE的解析式为y=x﹣4,∵点E在抛物线y=x2﹣3x﹣4上,∴直线DE与抛物线的交点为(0,﹣4)和(,﹣),∴E(,﹣),即:满足条件的点E的坐标为E(3,1)或(,﹣).。

广西梧州市岑溪市2017届九年级上期中数学试卷含答案解析

广西梧州市岑溪市2017届九年级上期中数学试卷含答案解析
第 1 页(共 21 页)
A.20° B.30° C.50° D.70° 8.已知关于 x 的一元二次方程中,有两个相等的实数根的方程是( ) A.x2+4=0 B.42﹣x4x+1=0 C.2x+x+3=0D.x2+2x﹣==0 9.如图,二次函数 y=a2x+bx+c 的图象与 x 轴交于(﹣2,0)和(4,0)两点, 当函数值 y>0 时,自变量 x 的取值范围是( )
(1)求铅球推出的水平距离; (2)通过计算说明铅球行进高度能否达到 4m?
第 4 页(共 21 页)
2
5.方程 x(x﹣1)=01的解是2 ( )1
2
A6..如x=图0,B经.过x=矩1形C对.称x 中=0心,的x任=﹣意1 一D条.直x =线0把,矩x 形=1分成面积分别为 S1 和 S2 的 两部分,则 S1 与 S2 的大小关系是( )
A.S1 <S2 B.S1 >S2 C.S1 =2S D.S1 与 S2 的关系由直线的位置而定 7.如图,直线 a 与直线 b 被直线 c 所截,b⊥c,垂足为点 A,∠1=70°.若使直 线 b 与直线 a 平行,则可将直线 b 绕着点 A 顺时针旋转( )
A.x<﹣2 B.x>4C.﹣2<x<4 D.x>0 10.某校成立“情暖校园”爱心基金会,去年上半年发给每个经济困难的学生 600 元,今年上半年发给了 800 元,设每半年发给的资金金额的平均增长率为 x,则下面列出的方程中正确的是( ) A.800(1﹣x)2=600 B.600(1﹣x)2=800 C.800(1+x)2=600
D.600(1+x)2=800 11.已知函数 y=﹣2x2+x﹣4,当函数 y 随 x 的增大而增大时,x 的取值范围是 () A.x< B.x<﹣ C.x> D.x>﹣ 12.二次函数 y=a2x+bx+c 的图象如图所示,则一次函数 y=bx+a 的图象不经过 ()

广西梧州市中考数学试卷

广西梧州市中考数学试卷

广西梧州市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共13题;共26分)1. (2分) (2016七上·重庆期中) 的相反数为()A . 4B . ﹣4C .D . ﹣2. (2分)下列说法正确的是()A . ﹣4的立方是64B . 0.1的立方根是0.001C . 4的算术平方根是16D . 9的平方根是±33. (2分)有一条直的宽纸带折叠成如图所示,则∠1的度数为()A . 50°B . 65°C . 70°D . 75°4. (2分) (2017八上·梁子湖期末) 下列计划图形,不一定是轴对称图形的是()A . 角B . 等腰三角形C . 长方形D . 直角三角形5. (2分) 2011年11月17日19时32分,在太空翱翔了17天,行程11000000公里,圆满完成与天宫一号目标飞行器两次完美对接使命的神舟八号飞船,在内蒙古预定区域成功着陆,回到祖国的怀抱。

请将11000000公里用科学记数法表示为()A . 1.1×106公里B . 1.1×107公里C . 1.1×108公里D . 1.1×109公里6. (2分)(2017·思茅模拟) 如图是由3个完全相同的小正方体组成的立体图形,它的主视图是()A .B .C .D .7. (2分)如图,沿直线AD折叠,△ACD与△ABD重合,若BC=8,则BD=().A . 6B . 5C . 4D . 38. (2分)若一个正多边形的一个内角是144°,则这个多边形的边数为A . 12B . 11C . 10D . 99. (2分) (2017七下·阜阳期末) 下列调查中,适宜采用全面调查方式的是()A . 了解一批圆珠笔的使用寿命B . 了解全国九年级学生身高的现状C . 考查人们保护海洋的意识D . 检查一枚用于发射卫星的运载火箭的各零部件10. (2分)如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确()A . AB>CE>CDB . AB=CE>CDC . AB>CD>CED . AB=CD=CE11. (2分) (2017八下·新野期末) 如图,反比例函数y= 的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A . 2B . 4C . 5D . 812. (2分)某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件;现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6125元,设每件商品应降价x元,则可列方程为()A . (20+x)(300+20x)=6125B . (20﹣x)(300﹣20x)=6125C . (20﹣x)(300+20x)=6125D . (20+x)(300﹣20x)=612513. (2分) (2017九上·吴兴期中) 二次函数,自变量x与函数y的对应值如下表:x…-5-4-3-2-10…y…40-2-204…下列说法正确的是()A . 抛物线的开口向下B . 当x>-3时,y随x的增大而增大C . 二次函数的最小值是-2D . 抛物线的对称轴x=二、填空题 (共6题;共7分)14. (1分)(2017·深圳模拟) 因式分解:2x2﹣18=________.15. (1分)已知点P(x,y)位于第二象限,并且y≤x+4,x、y为整数,若以P为圆心,PO为半径画圆,则可以画出________ 个半径不同的圆来.16. (2分)在Rt△ABC中,∠C=90°,D、E、F分别为AB、BC、AC边上的中点,AC=4cm,BC=6cm,那么四边形CEDF为________,它的边长分别为________.17. (1分)(2016·南岗模拟) 如图(1),扇形AOB中,OA=10,∠AOB=36°.若固定B点,将此扇形依顺时针方向旋转,得一新扇形A′O′B,其中O′点在直线BA上,如图(2)所示,则O点旋转至O′点所经过的轨迹长度(弧长)为________.18. (1分)(2017·邢台模拟) 在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2017次后,顶点A在整个旋转过程中所经过的路程之和为________.19. (1分) (2017七下·无锡期中) 在下列代数式:①(x- y)(x+ y), ②(3a+bc)(-bc-3a),③(3-x+y)(3+x+y), ④(100+1)(100-1)中能用平方差公式计算的是________(填序号)三、解答题 (共7题;共73分)20. (10分)(2016·徐州) 计算:(1)(﹣1)2016+x0﹣ +(2)÷ .21. (15分) (2017七下·永城期末) 如图,在正方形网格中,每个小正方形的边长为1个单位长度,格点三角形ABC(顶点是网格线的交点的三角形)的顶点A,C的坐标分别为(﹣4,5),(0,3).(1)请在如图所示的网格内画出平面直角坐标系;(2)把三角形ABC先向右平移5个单位长度,再向下平移3个单位长度得到三角形A′B′C′,且点A,B,C的对应点分别为A′,B′,C′,请你在图中画出三角形A′B′C′,并写出点A′,B′,C′的坐标;(3)求三角形ABC的面积.22. (6分)(2017·渭滨模拟) 小明参加某网店的“翻牌抽奖”活动,如图,共有4张牌,分别对应5元,10元,15元,20元的现金优惠券,小明只能看到牌的背面.(1)如果随机翻一张牌,那么抽中20元现金优惠券的概率是________.(2)如果随机翻两张牌,且第一次翻的牌不参与下次翻牌,则所获现金优惠券的总值不低于30元的概率是多少?请画树状图或列表格说明问题.23. (10分) (2016九上·本溪期末) 如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).24. (10分)(2016·防城) 蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?青菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤)4 4.5(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤.但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)25. (10分) (2016九下·长兴开学考) 已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,AC=6,求⊙O的半径.26. (12分)(2019·东城模拟) 如图1所示,点E在弦AB所对的优弧上,且为半圆,C是上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:x/cm0123456(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;(3)结合函数图象,解决问题:①连接BE,则BE的长约为________cm.②当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为________cm.参考答案一、选择题 (共13题;共26分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、二、填空题 (共6题;共7分)14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共7题;共73分)20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年中考数学试题(广西梧州卷)(本试卷满分120分,考试时间120分钟)一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分。

1.(2017广西梧州3分)9等于【】A. 1B. 2C. 3D. 4【答案】C。

2.(2017广西梧州3分)某个物体的三视图形状、大小相同,则这个物体可能是【】A. 圆柱B. 圆锥C. 三棱柱D. 球【答案】D。

3.(2017广西梧州3分)我市某镇被自治区列为五个重点建设的广西特色工贸强镇之一。

按规划,该镇造1 000 000 000元特色工业集中区。

把数1 000 000 000用科学记数法表示为【】A. 1.0×106B. 1.0×107C. 1.0×108D. 1.0×109【答案】D。

4.(2017广西梧州3分)下面调查中,适宜采用全面调查方式的是【】A. 调查亚洲中小学生身体素质状况B. 调查梧州市冷饮市场某种品牌冰淇淋的质量情况C. 调查某校甲班学生出生日期D. 调查我国居民对汽车废气污染环境的看法【答案】C5.(2017广西梧州3分)如图,直线AB和CD相交于点O,若∠AOC=125°,则∠AOD=【】A. 50°B. 55°C. 60°D. 65°【答案】B。

6.(2017广西梧州3分)如图,在⊙O中,若∠AOB=120°,则∠C的度数是【】A. 70°B. 65°C. 60°D. 50°【答案】C 。

7. (2017广西梧州3分)如图,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是【 】AA. ∠3=∠4B. ∠D =∠DCEC. ∠1=∠2D. ∠D +∠ACD =180°【答案】C 。

8. (2017广西梧州3分)如图,∠AOC =∠BOC ,点P 在OC 上,PD ⊥OA 于点D ,PE ⊥OB 于点E 。

若 OD =8,OP =10,则PE 的长为【 】OCA. 5B. 6C. 7D. 8【答案】B 。

9. (2017广西梧州3分)如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC =128°,∠C =36°, 则∠DAE 的度数是【 】DE CBAA. 10°B. 12°C. 15°D. 18°【答案】A。

10. (2017广西梧州3分)关于x的分式方程x m2x1x1-=--无解,则m的值是【】A. 1B. 0C. 2D. –2【答案】A。

11. (2017广西梧州3分)关于x的一元二次方程(a+1) x2–4x–1=0有两个不相等的实数根,则a的取值范围是【】A. a>–5B. a>–5且a≠–1C. a<–5D. a≥–5且a≠–1【答案】B。

12. (2017广西梧州3分)直线y=kx+k(k为正整数)与坐标轴所构成的直角三角形的面积为S k,当k分别为1,2,3,…,199,200时,则S1+S2+S3+…+S199+S200=【】A. 10000B. 10050C. 10100 D 10150【答案】B。

二、填空题(本大题共6小题,每小题3分,共18分。

)13. (2017广西梧州3分)方程x–5=0的解是x= ▲【答案】5。

14. (2017广西梧州3分)计算:(9252)22-÷=▲【答案】2。

15. (2017广西梧州3分)如图,在△ABC中,AB=AD=DC,∠BAD=32°,则∠BAC= ▲C BD【答案】69°。

16. (2017广西梧州3分)如图,正方形ABCD的边长为4,点A的坐标为(–1,1),AB平行于x轴,则点C的坐标为▲【答案】(3,5)。

17. (2017广西梧州3分)如图,A 点是y 轴正半轴上一点,过点A 作x 轴的平行线交反比例函数4y x=- 的图象于点B ,交反比例函数ky x=的图象于点C ,若AB :AC =3:2,则k 的值是 ▲【答案】83。

18. (2017广西梧州3分)如图,在矩形ABCD 中,AB =6,BC =8,以D 为旋转中心,顺时针旋转180° 后停止,矩形ABCD 在旋转过程中所扫过的面积是 ▲【答案】48+50π。

三、解答题(本大题共8小题,满分66分) 19. (2017广西梧州6分)化简:24x y 2y 2x x⋅- 【答案】解:24x y 2220y 2x x x x⋅-=-=。

20. (2017广西梧州6分)某电脑店有A 、B 两种型号的打印机和C 、D 、E 三种芯片出售。

每种型号的 打印机均需要一种芯片配套才能打印。

(1)下列是该店用树形图或列表设计的配套方案,①的位置应填写______,②的位置应填写______ (2)若仅有B 型打印机与E 种芯片不配套,则上面(1)中的方案配套成功率是______芯片 配套方案 打印机CDE【答案】解;(1)E ;(A ,E )。

(2)56。

21. (2017广西梧州8分)如图,某校为搞好新校区的绿化,需要移植树木。

该校九年级数学兴趣小组对 某棵树木进行测量,此树木在移植时需要留出根部(即CD )1.3米。

他们在距离树木5米的E 点观测(即 CE =5米),测量仪的高度EF =1.2米,测得树顶A 的仰角∠BF A =40°,求此树的整体高度AD 。

(精确到0.1 米)(参考数据:sin 40°=0.6428, cos 40°=0.7660,tan 40°=0.8391)1.2米1.3米5米40°CF B E【答案】解:在矩形BCEF 中,BC =EF =1.2,BF =EC =5,在Rt △ABF 中,tan ∠BF A =AB BF ,即tan 40°=ABBF, ∴AB =BF ×tan 40°=5×0.8391=4.1955,AD =AB +BC +CD =4.1955+1.2+1.3=6.6955≈6.7。

答:此树的整体高度约为6.7米。

22. (2017广西梧州8分)如图,等腰梯形ABCD 中,AD ∥BC ,点E 是AD 延长线上的一点,且CE =CD 。

求证:∠B =∠EBEA (A ,C ) (A ,D ) ② B(B ,C )(B ,D )(B ,E )21BED【答案】证明:∵四边形ABCD 是等腰梯形,∴∠B =∠1。

∵AD ∥BC ,∴∠1=∠2。

∵CE =CD ,∴∠2=∠E 。

∴∠B =∠E 。

23. (2017广西梧州8分)今年5月,在中国武汉举办了汤姆斯杯羽毛球团体赛。

在27日的决赛中,中 国队占胜韩国队夺得了冠军。

某羽毛球协会组织一些会员到现场观看了该场比赛。

已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元。

请问该协会购买了这两种门票各多少张?【答案】解:设每张300元的门票买了x 张,则每张400元的门票买了(8–x )张,根据题意得 300x +400(8–x )=2700解得,x =5。

8–x =8–5=3。

答:每张300元的门票购买了5张,每张400元的门票购买了3张。

24. (2017广西梧州10分)某文具店到批发市场选购A 、B 两种文具,批发价分别为14元/个、10元/个。

若该店零售A 、B 两种文具的每天销量y (个)与零售价x (元/个)都是一次函数y =kx +20的关系,如图 所示。

(1)求此一次函数的关系式;(2)现批发市场进行促销活动,凭会员卡(240元/张)在该批发市场购买所有物品均进行打折优惠,若文具店购买A 、B 两种文具各50个,问打折小于多少折时,采用购买会员卡的方式合算; (3)在文具店不购买会员卡的情况下,若A 种文具零售价比B 种文具零售价高2元/个,求这两种文具每天的销售总利润W (元)与A 种文具零售价x (元/个)之间的函数关系式,并说明当A 种文具的零售价为多少时,每天的销售利润最大。

(说明:本题不要求写出自变量x 的取值范围)y (个)x (元/个)O1010【答案】解:(1)根据题意,把(10,10)代入y =kx +20得10=10k +20,k = –1。

∴一次函数的关系式为y = –x +20。

(2)设打折为a 折时,购买会员卡的方式合算,依题意得,50×14×0.1a +50×10×0.1a <50×14+50×10,解得,a <8。

答:当打折小于8折时,采用购买会员卡的方式合算。

(3)W =(x –14)(–x +20)+(x –2––10)[–(x –2)+20]= –2(x –17)2+34。

∴当x =17时,每天的销售利润W 最大。

25. (2017广西梧州10分)如图,AB 是⊙O 的直径,CO ⊥AB 于点O ,CD 是⊙O 的切线,切点为D .连 接BD ,交OC 于点E 。

(1)求证:∠CDE =∠CED ;(2)若AB =13,BD =12,求DE 的长。

EOCD【答案】解:(1)证明:连接OD , ∵CD 是⊙O 的是切线,∴∠ODC =90°。

∵OD =OB ,∴∠B =∠ODB 。

∵OC ⊥AB ,∴∠CED =∠OEB =90°–∠B 。

又∵∠CDE =90°–∠ODB ,∴∠CDE =∠CED 。

(2)连接AD ,∵AB 是⊙O 的直径,∴∠ADB =90°。

∵AB =13,∴OB =132。

∵∠ADB =∠BOE =90°,∠B =∠B ,∴△ABD ∽△EBO 。

∴AB DB EB BO =。

∴131213EB 2=。

∴EB =16924。

∴DE =BD –EB =12–16924=11924,即DE 的长为11924。

26. (2017广西梧州10分)如图,抛物线2y x 12x 30=-+-的顶点为A ,对称轴AB 与x 轴交于点B . 在x 轴上方的抛物线上有C 、D 两点,它们关于AB 对称,并且C 点在对称轴的左侧,CB ⊥DB 。

(1)求出此抛物线的对称轴和顶点A 的坐标;(2)在抛物线的对称轴上找出点Q ,使它到A 、C 两点的距离相等,并求出点Q 的坐标;(3)延长DB 交抛物线于点E ,在抛物线上是否存在点P ,使得△DEP 的面积等于△DEC 的面积,若存 在,请你直接写出点P 的坐标,若不存在,请说明理由。

相关文档
最新文档