2017年中考数学试题与答案

合集下载

2017年中考数学真题试题(含答案)

2017年中考数学真题试题(含答案)

2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。

2017中考数学试题a及答案

2017中考数学试题a及答案

2017中考数学试题a及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y=ax^2+bx+cB. y=a^2x+bx+cC. y=ax^2+bx+c^2D. y=ax+bx+c答案:A2. 圆的周长公式是:A. C=πdB. C=2πrC. C=πr^2D. C=2πd答案:B3. 已知一个三角形的两边长分别为3和4,第三边长x满足的条件是:A. 1<x<7B. 7<x<11C. 1<x<11D. 3<x<7答案:D4. 以下哪个选项是不等式的基本性质?A. 若a>b,则a+c>b+cB. 若a>b,则ac>bcC. 若a>b,c>0,则ac>bcD. 若a>b,c<0,则ac>bc答案:A5. 以下哪个选项是完全平方公式?A. (a+b)^2=a^2+2ab+b^2B. (a-b)^2=a^2-2ab+b^2C. (a+b)^2=a^2-2ab+b^2D. (a-b)^2=a^2+2ab+b^2答案:A6. 以下哪个选项是因式分解的正确形式?A. x^2-4=(x+2)(x-2)B. x^2-4=(x+2)(x+2)C. x^2-4=(x-2)(x-2)D. x^2-4=(x-2)(x+2)答案:A7. 以下哪个选项是等腰三角形的性质?A. 底角相等B. 底边相等C. 两腰相等D. 两底角相等答案:C8. 以下哪个选项是一元二次方程的解法?A. 配方法B. 因式分解法C. 公式法D. 以上都是答案:D9. 以下哪个选项是相似三角形的性质?A. 对应角相等B. 对应边成比例C. 面积相等D. 周长相等答案:B10. 以下哪个选项是统计图的特点?A. 条形统计图能清楚地表示数量的多少B. 折线统计图能清楚地表示数量的增减变化情况C. 扇形统计图能清楚地表示部分与整体的关系D. 以上都是答案:D二、填空题(每题3分,共30分)11. 一个数的平方根是2,这个数是______。

2017年江苏省扬州市中考数学试卷-答案

2017年江苏省扬州市中考数学试卷-答案

江苏省扬州市2017年中考试卷数学答案解析一、选择题1.【答案】D【解析】解:1|3|4AB =-=-.故选D .【提示】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【考点】数轴2.【答案】B【解析】解:A .45a a a =g ,不符合题意;B .224()a a =,符合题意;C .3332a a a +=,不符合题意;D .43a a a ÷=,不符合题意,故选B .【提示】利用有关幂的运算性质直接运算后即可确定正确的选项.【考点】幂的运算3.【答案】A【解析】解:∵2(7)4(2)570∆=-⨯-=>-,∴方程有两个不相等的实数根.故选A .【提示】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【考点】一元二次方程的根的判别式4.【答案】D【解析】解:由于方差和标准差反映数据的波动情况.故选D .【提示】根据方差和标准差的意义:体现数据的稳定性,集中程度;方差越小,数据越稳定.【考点】数据的集中趋势和离散程度5.【答案】B【解析】解:经过圆锥顶点的截面的形状可能是B 中图形,故选:B .【提示】根据已知的特点解答【考点】立体图形的截面6.【答案】C【解析】解:设第三边的长为x ,∵三角形两边的长分别是2和4,∴4224x -<<+,即26x <<. 则三角形的周长:812C <<,C 选项11符合题意,故选C .【提示】连接CO ,根据圆周角定理可得280AOC B ∠=∠=︒,进而得出OAC ∠的度数.故答案为:50.x x164∴261016CB BB BC ''=-=-=.是O 的切线.是平行四边形,又∵都是等边三角形,∴ABF DBG =∠是O 的切线.)①由(1)可知:OCE △中,∵180是O 的切线.首先证明是等边三角形即可解决问题;211 / 11。

2017年中考真题 数学(安徽卷)(含解析)

2017年中考真题 数学(安徽卷)(含解析)

D.
考点: 解一元一次不等式及其解集在数轴上的表示方法.
6.直角三角板和直尺如图放置.若 1 20 ,则 2 的度数为( )
A. 60
【答案】C 【解析】
B. 50
C. 40
D. 30
试题分析:由题意得:
a b 4 50 2 40
3=50
故选答案 C
考点:平行线的性质、外角的性质
7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中 100 名学生进行统计,并绘成
(1)根据以上数据完成下表:
平均数
中位数
方差

8
8

8

6
8
2.2
3
(2)依据表 中数据分析,哪位运动员的成绩最稳定,并简要说明理由;
(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.
【答案】解:(1)
平均数
中位数
方差

2


6
[来源:Z|xx|]
【解析】
试题分析:(1)根据中位数和方差的定义求解;(2)根据方差的意义求解;(3)用列举法求概率.

.由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12 22 32 n2 )
.
因此,12 22 32 n2 =
.
【解决问题】
根据以上发现,计算
12
22 1 2
32 2017 3 2017
2
的结果为
.
【答案】 2n +1 【解析】
(2n +1)×n(n +1)
2
1 n(n +1)(2n +1)

2017年广西南宁市北海市钦州市中考数学试卷和答案解析

2017年广西南宁市北海市钦州市中考数学试卷和答案解析

2017年广西南宁市、北海市、钦州市中考数学试卷 一、选择题(本大题共12小题,每小题3分,共36分)1.如图,△ABC中,∠A=60°,∠B=40°,则∠C等于( )A.100°B.80°C.60°D.40°2.在下列几何体中,三视图都是圆的为( )A.B.C.D.3.根据习近平总书记在“一带一路”国际合作高峰论坛开幕式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目,其中数据60 000 000 000用科学记数法表示为( )A.0.6×1010B.0.6×1011C.6×1010D.6×10114.下列运算正确的是( )•2=﹣12x4A.﹣3(x﹣4)=﹣3x+12B.(﹣3x)24xC.3x+2x2=5x3D.x6÷x2=x35.一元一次不等式组的解集在数轴上表示为( )A.B.C.D.6.今年世界环境日,某校组织的保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5,这6名选手成绩的众数和中位数分别是( )A.8.8分,8.8分B.9.5分,8.9分C.8.8分,8.9分D.9.5分,9.0分7.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC8.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( )A.B.C.D.9.如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长等于()A.B.C.D.10.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为( )A. =B. =C. =D. =11.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )A.60 n mile B.60 n mile C.30 n mile D.30 n mile 12.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C,D,过点B作E F∥x轴分别与y轴和抛物线C1交于点E,F,则的值为( )A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:|﹣6|= .14.红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有 人.15.已知是方程组的解,则3a﹣b= .16.如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为E F,则五边形AE F CD的周长为 .17.对于函数y=,当函数值y<﹣1时,自变量x的取值范围是 .18.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…则正方形铁片连续旋转2017次后,点P的坐标为 .三、解答题(本大题共8小题,共66分)19.计算:﹣(﹣2)+﹣2s in45°+(﹣1)3.20.先化简,再求值:1﹣÷,其中x=﹣1.21.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.22.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=D F.(1)求证:AE=C F;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.23.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了 名市民,扇形统计图中,C组对应的扇形圆心角是 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.24.为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?25.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作E G∥AC交CD的延长线于点G,连结AE交CD于点F,且E G=FG,连结CE.(1)求证:△EC F∽△G CE;(2)求证:E G是⊙O的切线;(3)延长AB交G E的延长线于点M,若ta n G=,A H=3,求E M的值.26.如图,已知抛物线y=a x2﹣2a x﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时, +均为定值,并求出该定值.2017年广西南宁市、北海市、钦州市、防城港市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.如图,△ABC中,∠A=60°,∠B=40°,则∠C等于( )A.100°B.80°C.60°D.40°【考点】K7:三角形内角和定理.【分析】根据三角形内角和定理计算即可.【解答】解:由三角形内角和定理得,∠C=180°﹣∠A﹣∠B=80°,故选:B.2.在下列几何体中,三视图都是圆的为( )A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据常见几何体的三视图,可得答案.【解答】解:A圆锥的主视图是三角形,左视图是三角形,俯视图是圆,故A不符合题意;B、圆柱的主视图是矩形,左视图是矩形,俯视图是圆,故B不符合题意;C、圆锥的主视图是梯形,左视图是梯形,俯视图是同心圆,故C不符合题意;D、球的三视图都是圆,故D符合题意;故选:D.3.根据习近平总书记在“一带一路”国际合作高峰论坛开幕式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目,其中数据60 000 000 000用科学记数法表示为( )A.0.6×1010B.0.6×1011C.6×1010D.6×1011【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将60000000000用科学记数法表示为:6×1010.故选:C.4.下列运算正确的是( )•2=﹣12x4A.﹣3(x﹣4)=﹣3x+12B.(﹣3x)24xC.3x+2x2=5x3D.x6÷x2=x3【考点】4I:整式的混合运算.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵﹣3(x﹣4)=﹣3x+12,故选项A正确,•2=9x24x•2=36x4,故选项B错误,∵(﹣3x)24x∵3x+2x2不能合并,故选项C错误,∵x6÷x2=x4,故选项D错误,故选A.5.一元一次不等式组的解集在数轴上表示为( )A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】根据不等式解集的表示方法即可判断.【解答】解:解不等式①得:x>﹣1,解不等式②得:x≤2,∴不等式组的解集是﹣1<x≤2,表示在数轴上,如图所示:.故选A.6.今年世界环境日,某校组织的保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5,这6名选手成绩的众数和中位数分别是( )A.8.8分,8.8分B.9.5分,8.9分C.8.8分,8.9分D.9.5分,9.0分【考点】W5:众数;W4:中位数.【分析】分别根据众数的定义及中位数的定义求解即可.【解答】解:由题中的数据可知,8.8出现的次数最多,所以众数为8.8;从小到大排列:8.5,8.8,8.8,9.0,9.4,9.5,故可得中位数是=8.9.故选C.7.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC【考点】N3:作图—复杂作图;J B:平行线的判定与性质;K8:三角形的外角性质.【分析】根据图中尺规作图的痕迹,可得∠DAE=∠B,进而判定AE∥BC,再根据平行线的性质即可得出结论.【解答】解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选:D.8.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( )A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号之和等于5的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况,∴两次摸出的小球标号之和等于5的概率是: =.故选:C.9.如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长等于()A.B.C.D.【考点】MN:弧长的计算;M5:圆周角定理.【分析】连接OB、OC,利用圆周角定理求得∠BOC=60°,属于利用弧长公式l=来计算劣弧的长.【解答】解:如图,连接OB、OC,∵∠BAC=30°,∴∠BOC=2∠BAC=60°,又OB=OC,∴△OBC是等边三角形,∴BC=OB=OC=2,∴劣弧的长为: =.故选:A.10.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为( )A. =B. =C. =D. =【考点】B6:由实际问题抽象出分式方程.【分析】根据题意可得顺水速度为(35+v)km/h,逆水速度为(35﹣v)km/h,根据题意可得等量关系:以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等,根据等量关系列出方程即可.【解答】解:设江水的流速为vkm/h,根据题意得: =,故选:D.11.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )A.60 n mile B.60 n mile C.30 n mile D.30 n mile 【考点】T B:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】如图作PE⊥AB于E.在RT△PAE中,求出PE,在Rt△PBE中,根据PB=2PE即可解决问题.【解答】解:如图作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60n mile,∴PE=AE=×60=30n mile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=60n mile,故选B12.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C,D,过点B作E F∥x轴分别与y轴和抛物线C1交于点E,F,则的值为( )A.B.C.D.【考点】H5:二次函数图象上点的坐标特征.【分析】可以设A、B横坐标为a,易求得点E、F、D的坐标,即可求得OE、CE、AD、B F的长度,即可解题.【解答】解:设点A、B横坐标为a,则点A纵坐标为a2,点B的纵坐标为,∵BE∥x轴,∴点F纵坐标为,∵点F是抛物线y=x2上的点,∴点F横坐标为x==,∵CD∥x轴,∴点D纵坐标为a2,∵点D是抛物线y=上的点,∴点D横坐标为x==2a,∴AD=a,B F=a,CE=a2,OE=a2,∴则==×=,故选 D.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:|﹣6|= 6 .【考点】15:绝对值.【分析】根据绝对值的化简,由﹣6<0,可得|﹣6|=﹣(﹣6)=6,即得答案.【解答】解:﹣6<0,则|﹣6|=﹣(﹣6)=6,故答案为6.14.红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有 680 人.【考点】V5:用样本估计总体.【分析】用样本中最喜欢的项目是跳绳的人数所占比例乘以全校总人数即可得.【解答】解:由于样本中最喜欢的项目是跳绳的人数所占比例为,∴估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有1600×=680,故答案为:680.15.已知是方程组的解,则3a﹣b= 5 .【考点】97:二元一次方程组的解.【分析】首先把方程组的解代入方程组,即可得到一个关于a,b的方程组,①+②即可求得代数式的值.【解答】解:∵是方程组的解,∴,①+②得,3a﹣b=5,故答案为:5.16.如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为E F,则五边形AE F CD的周长为 7 .【考点】PB:翻折变换(折叠问题);L8:菱形的性质.【分析】根据菱形的性质得到∠ABO=∠CBO,AC⊥BD,得到∠ABC=60°,由折叠的性质得到E F⊥BO,OE=BE,∠BE F=∠OE F,推出△BE F是等边三角形,得到∠BE F=60°,得到△AEO是等边三角形,推出E F是△ABC的中位线,求得E F= AC=1,AE=OE=1,同理C F=O F=1,于是得到结论.【解答】解:∵四边形ABCD是菱形,AC=2,BD=2,∴∠ABO=∠CBO,AC⊥BD,∵AO=1,BO=,∴ta n∠ABO==,∴∠ABO=30°,AB=2,∴∠ABC=60°,由折叠的性质得,E F⊥BO,OE=BE,∠BE F=∠OE F,∴BE=B F,E F∥AC,∴△BE F是等边三角形,∴∠BE F=60°,∴∠OE F=60°,∴∠AEO=60°,∴△AEO是等边三角形,∴AE=OE,∴BE=AE,∴E F是△ABC的中位线,∴E F=AC=1,AE=OE=1,同理C F=O F=1,∴五边形AE F CD的周长为=1+1+1+2+2=7.故答案为:7.17.对于函数y=,当函数值y<﹣1时,自变量x的取值范围是 ﹣ 2< x< 0.【考点】G4:反比例函数的性质.【分析】先求出y=﹣1时x的值,再由反比例函数的性质即可得出结论.【解答】解:∵当y=﹣1时,x=﹣2,∴当函数值y<﹣1时,﹣2<x<0.故答案为:﹣2<x<0.18.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…则正方形铁片连续旋转2017次后,点P的坐标为 .【考点】R7:坐标与图形变化﹣旋转;D2:规律型:点的坐标.【分析】首先求出P1~P5的坐标,探究规律后,利用规律解决问题.【解答】解:第一次P1(5,2),第二次P2(5,1),第三次P3(7,1),第四次P4(10,2),第五次P5(14,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为1,横坐标为5+3×504=1517,∴P2017,故答案为.三、解答题(本大题共8小题,共66分)19.计算:﹣(﹣2)+﹣2s in45°+(﹣1)3.【考点】2C:实数的运算;T5:特殊角的三角函数值.【分析】首先利用二次根式的性质以及特殊角的三角函数值分别化简得出答案.【解答】解:原式=2+2﹣2×﹣1=1+.20.先化简,再求值:1﹣÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:1﹣÷=1﹣=1﹣==,当x=﹣1时,原式=.21.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.【考点】P7:作图﹣轴对称变换;F A:待定系数法求一次函数解析式;Q4:作图﹣平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1并写出点B1的坐标即可;(2)连接AA2,作线段AA2的垂线l,再作△ABC关于直线l对称的△A2B2C2即可.【解答】解:(1)如图,△A1B1C1即为所求,B1(﹣2,﹣1);(2)如图,△A2B2C2即为所求,直线l的函数解析式为y=﹣x.22.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=D F.(1)求证:AE=C F;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.【考点】L B:矩形的性质;K D:全等三角形的判定与性质.【分析】(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=O F,由S A S证明△AOE≌△CO F,即可得出AE=C F;(2)证出△AOB是等边三角形,得出OA=AB=6,AC=2OA=12,在Rt△ABC中,由勾股定理求出BC==6,即可得出矩形ABCD的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∵BE=D F,∴OE=O F,在△AOE和△CO F中,,∴△AOE≌△CO F(S A S),∴AE=C F;(2)解:∵OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=∠COD=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=12,在Rt△ABC中,BC==6,•=36.∴矩形ABCD的面积=AB BC=6×623.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了 2000 名市民,扇形统计图中,C组对应的扇形圆心角是 108 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.【考点】X6:列表法与树状图法;V B:扇形统计图;V C:条形统计图.【分析】(1)根据B组的人数以及百分比,即可得到被调查的人数,进而得出C组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)根据C组的人数,补全条形统计图;(3)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率【解答】解:(1)被调查的人数为:800÷40%=2000(人),C组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108;(2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为: =.24.为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?【考点】AD:一元二次方程的应用;C9:一元一次不等式的应用.【分析】(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7500(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.【解答】解:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7500(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去)答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1350=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.5%.故a的值至少是12.5.25.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作E G∥AC交CD的延长线于点G,连结AE交CD于点F,且E G=FG,连结CE.(1)求证:△EC F∽△G CE;(2)求证:E G是⊙O的切线;(3)延长AB交G E的延长线于点M,若ta n G=,A H=3,求E M的值.【考点】MR:圆的综合题.【分析】(1)由AC∥E G,推出∠G=∠AC G,由AB⊥CD推出=,推出∠CE F=∠ACD,推出∠G=∠CE F,由此即可证明;(2)欲证明E G是⊙O的切线只要证明E G⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OC H中,利用勾股定理求出r,证明△A H C∽△M EO,可得=,由此即可解决问题;【解答】(1)证明:如图1中,∵AC∥E G,∴∠G=∠AC G,∵AB⊥CD,∴=,∴∠CE F=∠ACD,∴∠G=∠CE F,∵∠EC F=∠EC G,∴△EC F∽△G CE.(2)证明:如图2中,连接OE,∵GF=G E,∴∠GF E=∠G E F=∠A FH,∵OA=OE,∴∠OAE=∠OEA,∵∠A FH+∠F A H=90°,∴∠G E F+∠AEO=90°,∴∠G EO=90°,∴G E⊥OE,∴E G是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△A H C中,ta n∠AC H=ta n∠G==,∵A H=3,∴H C=4,在Rt△H OC中,∵OC=r,O H=r﹣3,H C=4,∴(r﹣3)2+(4)2=r2,∴r=,∵GM∥AC,∴∠CA H=∠M,∵∠OE M=∠A H C,∴△A H C∽△M EO,∴=,∴=,∴E M=.26.如图,已知抛物线y=a x2﹣2a x﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时, +均为定值,并求出该定值.【考点】HF:二次函数综合题.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D 的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD=PA、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到A N的长,然后利用特殊锐角三角函数值可求得A M的长,最后将A M和A N的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:a x2﹣2 x﹣9a=0,∵a≠0,∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴ta n∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=PA时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=2或a=0,∴点P的坐标为(,2)或(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,2)或(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣ m+3=0,解得:m=,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴A N=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则A G=+.∵∠M A G=60°,∠A GM=90°,∴A M=2A G=+2=.∴+=+=+===. 。

2017年安徽中考数学试题及答案

2017年安徽中考数学试题及答案

2017年安徽中考数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 已知一个直角三角形的两个直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 83. 若a和b互为相反数,a+b=0,求a的值。

A. 0B. 1C. -1D. 不确定4. 下列哪个是二次方程的解?A. x=1B. x=-1C. x=2D. x=-25. 一个圆的半径为5,求它的面积。

A. 25πB. 50πC. 75πD. 100π6. 某工厂生产产品,成本为每件10元,售价为每件15元,求利润率。

A. 25%B. 33.3%C. 50%D. 75%7. 一个数的平方根是4,求这个数。

A. 16B. 8C. 4D. 28. 一个数的立方是-27,求这个数。

A. -3B. -9C. 3D. 99. 某班有50名学生,其中男生占60%,求男生人数。

A. 20B. 30C. 40D. 5010. 若一个数的绝对值是5,求这个数。

A. 5B. -5C. 5或-5D. 0二、填空题(本大题共5小题,每小题4分,共20分)11. 一个数的相反数是-8,这个数是______。

12. 一个数的绝对值是5,这个数可以是______。

13. 已知一个数列:2, 4, 6, 8, ...,求第10项的值。

14. 一个直角三角形的两个锐角分别是30°和60°,求斜边与较短直角边的比例。

15. 若一个多项式f(x) = ax^2 + bx + c,且f(0) = c,求f(1)的值。

三、解答题(本大题共3小题,每小题10分,共30分)16. 解方程:2x + 5 = 11。

17. 已知一个二次方程ax^2 + bx + c = 0,其中a=1,b=-3,c=2,求方程的根。

18. 证明勾股定理:在一个直角三角形中,斜边的平方等于两直角边的平方和。

2017中考数学题及答案

2017中考数学题及答案

2017中考数学题及答案2017年中考是许多中学生的重要转折点,其中数学科目是考试中最重要的一门科目。

今天我们将为您整理2017年中考数学题及答案,希望对您的复习有所帮助。

第一部分:选择题1.如果一个数的7倍加4得到33,那这个数是多少?A. 3B. 4C. 5D. 6答案:D. 6。

解析:设这个数为 x,则有 7x + 4 = 33,解方程可得 x = 6。

2.一个长方形的长是宽的1.5倍,若宽为6米,则长为多少米?A. 6B. 8C. 9D. 12答案:C. 9。

解析:设长为 x,则宽为 6 米,由题意可得x = 1.5 × 6 = 9。

3.一公斤苹果售价8元,现有100元,可以买多少公斤苹果?A. 10B. 11C. 12D. 13答案:C. 12。

解析:设可买的苹果数量为 x,则有 8x = 100,解方程可得 x = 12。

第二部分:填空题4.某班级有 50 名学生,其中男生占总数的 40%,那么女生的人数为 ______ 人。

答案:30。

解析:女生人数占 60%,即0.6×50=30 人。

5.一块土地面积为 60 平方米,如果将其等分为正方形,每个正方形的面积为 ______ 平方米。

答案:4。

解析:设每个正方形的边长为 x,则面积为 x^2。

根据题意可得x^2 = 60 ÷ 15 = 4,解方程可得 x = 2。

6.已知两个数的和为 72,差为 8,那么这两个数分别是 ______ 和______。

答案:40 和 32。

解析:设两个数为 x 和 y,则有 x + y = 72,x - y = 8。

解这个方程组可得 x = 40,y = 32。

第三部分:解答题7.现有 2 个水桶,第1个水桶的容量是第2个水桶容量的3倍,若第2个水桶的水满了,倒入第1个水桶后,第1个水桶正好装满。

求两个水桶的容量分别是多少?答案:第2个水桶容量为 x,第1个水桶容量为 3x。

2017年新疆乌鲁木齐市中考数学试卷(含答案解析)

2017年新疆乌鲁木齐市中考数学试卷(含答案解析)

(2017年新疆乌鲁木齐市中考数学试卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)如图,数轴上点A表示数a,则|a|是()A.2B.1C.﹣1D.﹣22.(4分)如图,直线a∥b,∠1=72°,则∠2的度数是()A.118°B.108°C.98°D.72°3.(4分)计算(ab2)3的结果是()A.3ab2B.ab6C.a3b5D.a3b64.(4分)下列说法正确的是()A.“经过有交通信号的路口,遇到红灯,”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.处于中间位置的数一定是中位数D.方差越大数据的波动越大,方差越小数据的波动越小5.4分)如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4B.5C.6D.76.(4分)一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A.x<2B.x<0C.x>0D.x>27.(4分)2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.C.﹣+5==5D.B.﹣﹣=5=58.(4分)如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.πB.2πC.4πD.5π9.(4分)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4GE=2BG,则折痕EF的长为()且∠AFG=60°,A.1B.C.2D.10.(4分)如图,点A(a,3),B(b,1)都在双曲线y=上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为()A .B .C .D .二、填空题(本大题 5 小题,每小题 4 分,满分 20 分,将答案填在答题纸上)11.(4 分)计算|1﹣ |+()0=.12.(4 分)如图,在菱形 ABCD 中,∠DAB=60°,AB=2,则菱形 ABCD 的面积 为.13.(4 分)一件衣服售价为 200 元,六折销售,仍可获利 20%,则这件衣服的 进价是元.14.(4 分)用等分圆周的方法,在半径为 1 的图中画出如图所示图形,则图中阴影部分面积为.15.(4 分)如图,抛物线 y=ax 2+bx +c 过点(﹣1,0),且对称轴为直线 x=1,有 下列结论:①abc <0;②10a +3b +c >0;③抛物线经过点(4,y 1)与点(﹣3,y 2),则 y 1> y 2;④无论 a ,b ,c 取何值,抛物线都经过同一个点(﹣ ,0);⑤am 2+bm +a≥0,其中所有正确的结论是.“三、解答题(本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)解不等式组:.17.(8分)先化简,再求值:(﹣)÷,其中x=.18.(10分)我国古代数学名著《孙子算经》中有鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?19.(10分)如图,四边形ABCD是平行四边形,E,F是对角线BD上的两点,且BF=ED,求证:AE∥CF.20.(12分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数0≤x<40004000≤x<80008000≤x<12000频数81512频率a0.3b((12000≤x<1600016000≤x<2000020000≤x<24000c3d0.20.060.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.21.10分)一艘渔船位于港口A的北偏东60°方向,距离港口20海里B处,它沿北偏西37°方向航行至C处突然出现故障,在C处等待救援,B,C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救援的艇的航行速度.sin37°≈0.6,cos37°≈0.8,≈1.732,结果取整数)(22.(10 分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行 驶至甲地,两车之间的距离 y (千米)与行驶时间 x (小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后 y 与 x 之间的函数关系式;(4)何时两车相距 300 千米.23.(10 分)如图,AB 是⊙O 的直径,CD 与⊙O 相切于点 C ,与 AB 的延长线交 于 D .(1)求证:△ADC ∽△CDB ;(2)若 AC=2,AB= CD ,求⊙O 半径.24. 12分)如图,抛物线y=ax 2+bx +c (a ≠0)与直线 y=x +1 相交于 A (﹣1,0), B (4,m )两点,且抛物线经过点 C (5,0).(1)求抛物线的解析式;(2)点 P 是抛物线上的一个动点(不与点 A 、点 B 重合),过点 P 作直线 PD ⊥x轴于点 D ,交直线 AB 于点 E .①当 PE=2ED 时,求 P 点坐标;②是否存在点 P 使△BEC 为等腰三角形?若存在请直接写出点 P 的坐标;若不存在,请说明理由.((2017年新疆乌鲁木齐市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2017•乌鲁木齐)如图,数轴上点A表示数a,则|a|是()A.2B.1C.﹣1D.﹣2【分析】直接根据数轴上A点的位置可求a,再根据绝对值的性质即可得出结论.【解答】解:∵A点在﹣2处,∴数轴上A点表示的数a=﹣2,|a|=|﹣2|=2.故选A.【点评】本题考查的是绝对值和数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.2.4分)2017•乌鲁木齐)如图,直线a∥b,∠1=72°,则∠2的度数是()A.118°B.108°C.98°D.72°【分析】根据平行线的性质,以及邻补角的定义进行计算即可.【解答】解:∵直线a∥b,∴∠2=∠3,∵∠1=72°,∴∠3=108°,∴∠2=108°,故选:B.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.3.(4分)(2017•乌鲁木齐)计算(ab2)3的结果是()A.3ab2B.ab6C.a3b5D.a3b6【分析】根据整式的运算即可求出答案.【解答】解:原式=a3b6,故选(D)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.(4分)(2017•乌鲁木齐)下列说法正确的是()A.“经过有交通信号的路口,遇到红灯,”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.处于中间位置的数一定是中位数D.方差越大数据的波动越大,方差越小数据的波动越小【分析】根据概率的意义以及中位数的定义、方差的意义分别分析得出答案.【解答】解:A、“经过有交通信号的路口,遇到红灯,”是随机事件,故原题说法错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次,说法错误;C、处于中间位置的数一定是中位数,说法错误;D、方差越大数据的波动越大,方差越小数据的波动越小,说法正确;故选:D.【点评】此题主要考查了中位数、方差、随机事件以及概率,关键是掌握中位数、随机事件的定义,掌握概率和方差的意义.5.(4分)(2017•乌鲁木齐)如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4B.5C.6D.7【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【解答】解:设外角为x,则相邻的内角为2x,由题意得,2x+x=180°,解得,x=60°,360÷60°=6,故选:C.【点评】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.6.(4分)(2017•乌鲁木齐)一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A.x<2B.x<0C.x>0D.x>2【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集.【解答】解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值大于0,即关于x的不等式kx+b>0的解集是x<2.故选A.【点评】此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7.(4分)(2017•乌鲁木齐)2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.C.﹣+5==5D.B.﹣﹣=5=5【分析】根据题意给出的等量关系即可列出方程.【解答】解:设原计划每天植树x万棵,需要∴实际每天植树(x+0.2x)万棵,需要天完成,天完成,∵提前5天完成任务,∴﹣=5,故选(A)【点评】本题考查分式方程的应用,解题的关键是利用题目中的等量关系,本题属于基础题型.8.(4分)(2017•乌鲁木齐)如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()∴S=•2πr•l=×2π××2=2π.A.πB.2πC.4πD.5π【分析】由几何体的三视图可得出原几何体为圆锥,根据图中给定数据求出母线l的长度,再套用侧面积公式即可得出结论.【解答】解:由三视图可知,原几何体为圆锥,∵l==2,侧故选B.【点评】本题考查了由三视图判断几何体、圆锥的计算以及勾股定理,由几何体的三视图可得出原几何体为圆锥是解题的关键.9.(4分)(2017•乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1B.C.2D.【分析】由折叠的性质可知,DF=GF、HE=CE、GH=DC、∠DFE=∠GFE,结合∠AFG=60°即可得出∠GFE=60°,进而可得出△GEF为等边三角形,在Rt△GHE中,通过解含30度角的直角三角形及勾股定理即可得出GE=2EC、DC=EC,再由GE=2BG结合矩形面积为4,即可求出EC的长度,根据EF=GE=2EC即可求出结论.【解答】解:由折叠的性质可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE.( (∵∠GFE +∠DFE=180°﹣∠AFG=120°,∴∠GFE=60°.∵AF ∥GE ,∠AFG=60°,∴∠FGE=∠AFG=60°,∴△GEF 为等边三角形,∴EF=GE .∵∠FGE=60°,∠FGE +∠HGE=90°,∴∠HGE=30°.在 Rt △GHE 中,∠HGE=30°,∴GE=2HE=CE ,∴GH== HE= CE .∵GE=2BG ,∴BC=BG +GE +EC=4EC .∵矩形 ABCD 的面积为 4,∴4EC•EC=4,∴EC=1,EF=GE=2.故选 C .【点评】本题考查了翻折变换、矩形的性质、等边三角形的判定及性质以及解含30 度角的直角三角形,根据边角关系及解直角三角形找出 BC=4EC 、DC= EC 是解题的关键.10. 4 分) 2017•乌鲁木齐)如图,点A (a ,3),B (b ,1)都在双曲线 y= 上,点 C ,D ,分别是 x 轴,y 轴上的动点,则四边形 ABCD 周长的最小值为( )A .B .C .D .【分析】先把 A 点和 B 点的坐标代入反比例函数解析式中,求出 a 与 b 的值,y确定出A与B坐标,再作A点关于y轴的对称点P,B点关于x轴的对称点Q,根据对称的性质得到P点坐标为(﹣1,3),Q点坐标为(3,﹣1),PQ分别交x轴、轴于C点、D点,根据两点之间线段最短得此时四边形PABQ的周长最小,然后利用两点间的距离公式求解可得.【解答】解:分别把点A(a,3)、B(b,1)代入双曲线y=得:a=1,b=3,则点A的坐标为(1,3)、B点坐标为(3,1),作A点关于y轴的对称点P,B点关于x轴的对称点Q,所以点P坐标为(﹣1,3),Q点坐标为(3,﹣1),连结PQ分别交x轴、y轴于C点、D点,此时四边形ABCD的周长最小,四边形ABCD周长=DA+DC+CB+AB=DP+DC+CQ+AB=PQ+AB=+=4=6+2,故选:B.【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、熟练运用两点之间线段最短解决有关几何图形周长最短的问题是解题的关键.二、填空题(本大题5小题,每小题4分,满分20分,将答案填在答题纸上)11.(4分)(2017乌鲁木齐)计算|1﹣|+()0=.【分析】先利用零指数幂的意义计算,然后去绝对值后合并.【解答】解:原式==.﹣1+1=故答案为.【点评】本题考查了实数的运算:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.12.(4分)(2017•乌鲁木齐)如图,在菱形ABCD中,∠DAB=60°,AB=2,则菱形ABCD的面积为2.【分析】由菱形ABCD,得到邻边相等,且对角线互相平分,再由一个角为60°的等腰三角形为等边三角形得到三角形ABD为等边三角形,求出BD的长,再由菱形的对角线垂直求出AC的长,即可求出菱形的面积.【解答】解:∵菱形ABCD,∴AD=AB,OD=OB,OA=OC,∵∠DAB=60°,∴△ABD为等边三角形,∴BD=AB=2,∴OD=1,在Rt△AOD中,根据勾股定理得:AO=∴AC=2,=,则S菱形ABCDAC•BD=2,故答案为:2((【点评】此题考查了菱形的性质,等边三角形的判定与性质,勾股定理,熟练掌握菱形的性质是解本题的关键.13.4分)2017•乌鲁木齐)一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是100元.【分析】此题的等量关系:实际售价=标价的六折=进价×(1+获利率),设未知数,列方程求解即可.【解答】解:设进价是x元,则(1+20%)x=200×0.6,解得:x=100.则这件衬衣的进价是100元.故答案为100.【点评】本题考查了一元一次方程应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程是解决问题的关键.14.(4分)(2017•乌鲁木齐)用等分圆周的方法,在半径为1的图中画出如图所示图形,则图中阴影部分面积为π﹣.【分析】连OA,OP,AP,求出AP直线和AP弧面积,即阴影部分面积,从而求解.【解答】解:如图,设的中点我P,连接OA,OP,AP,△OAP的面积是:×12=,扇形OAP的面积是:S扇形=,AP直线和AP弧面积:S弓形=﹣,阴影面积:3×2S弓形=π﹣.故答案为:π﹣.【点评】本题考查了扇形面积的计算,解题的关键是得到阴影部分面积=6(扇形OAP 的面积﹣△OAP 的面积).15.(4 分)(2017•乌鲁木齐)如图,抛物线 y=ax 2+bx +c 过点(﹣1,0),且对称轴为直线 x=1,有下列结论:①abc <0;②10a +3b +c >0;③抛物线经过点(4,y 1)与点(﹣3,y 2),则 y 1> y 2;④无论 a ,b ,c 取何值,抛物线都经过同一个点(﹣ ,0);⑤am 2+bm +a≥0,其中所有正确的结论是 ②④⑤ .【分析】由开口方向、对称轴及抛物线与 y 轴交点位置可判断①;由 x=3 时的函数值及 a >0 可判断②;由抛物线的增减性可判断③;由当 x=﹣ 时,y=a•(﹣ )2+b•(﹣)+c= 且 a ﹣b +c=0 可判断④;由 x=1 时函数 y 取得最小值及b=﹣2a 可判断⑤.【解答】解:由图象可知,抛物线开口向上,则 a >0,顶点在 y 轴右侧,则 b <0,抛物线与 y 轴交于负半轴,则 c <0,∴abc >0,故①错误;∵抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,∴抛物线y=ax2+bx+c过点(3,0),∴当x=3时,y=9a+3b+c=0,∵a>0,∴10a+3b+c>0,故②正确;∵对称轴为x=1,且开口向上,∴离对称轴水平距离越大,函数值越大,∴y1<y2,故③错误;当x=﹣时,y=a•(﹣)2+b•(﹣)+c==,∵当x=﹣1时,y=a﹣b+c=0,∴当x=﹣时,y=a•(﹣)2+b•(﹣)+c=0,即无论a,b,c取何值,抛物线都经过同一个点(﹣,0),故④正确;x=m对应的函数值为y=am2+bm+c,x=1对应的函数值为y=a+b+c,又∵x=1时函数取得最小值,∴am2+bm+c≥a+b+c,即am2+bm≥a+b,∵b=﹣2a,∴am2+bm+a≥0,故⑤正确;故答案为:②④⑤.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.三、解答题(本大题共9小题,共90分.解答应写出文字说明、证明过程或演算(步骤.)16.(8 分)(2017•乌鲁木齐)解不等式组:【分析】分别求出两个不等式的解集,求其公共解..【解答】解:,由①得,x >1,由②得,x <4,所以,不等式组的解集为 1<x <4.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17.(8 分)(2017•乌鲁木齐)先化简,再求值:x=.﹣ )÷ ,其中【分析】先把除法化为乘法,再根据运算顺序与计算方法先化简,再把 x=入求解即可.代【解答】解:原式=(﹣ )•== ••= ,当 x= 时,原式==.【点评】本题考查的是分式的化简求值及实数的运算,熟知分式混合运算的法则是解答此题的关键.18.(10 分)(2017•乌鲁木齐)我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?【分析】设笼中鸡有x只,兔有y只,本题中的等量关系有:鸡头+兔头=35头;鸡足+兔足=94足,需要注意的是,一只鸡有一头两足,一只兔有一头四足.【解答】解:设笼中鸡有x只,兔有y只,由题意得:,解得.答:笼中鸡有23只,兔有12只.【点评】本题考查二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.需要注意的是,一只鸡有一头两足,一只兔有一头四足.19.(10分)(2017•乌鲁木齐)如图,四边形ABCD是平行四边形,E,F是对角线BD上的两点,且BF=ED,求证:AE∥CF.【分析】连接AC,交BD于点O,由“平行四边形ABCD的对角线互相平分”得到OA=OC,OB=OD;然后结合已知条件证得OE=OF,则“对角线互相平分的四边形是平行四边形”,即可得出结论.【解答】证明:连接AC,交BD于点O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BF=ED,∴OE=OF,∵OA=OC,∴四边形AECF是平行四边形,∴AE∥CF.【点评】本题考查了平行四边形的判定与性质,平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法是解决问题的关键.20.(12分)(2017•乌鲁木齐)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数0≤x<4000 4000≤x<8000 8000≤x<12000 12000≤x<16000 16000≤x<20000 20000≤x<24000频数81512c3d频率a0.3b0.20.060.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.(【分析】1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.21.(10分)(2017乌鲁木齐)一艘渔船位于港口A的北偏东60°方向,距离港口20海里B处,它沿北偏西37°方向航行至C处突然出现故障,在C处等待救援,B,C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救援的艇的航行速度.(sin37°≈0.6,cos37°≈0.8,≈1.732,结果取整数)【分析】辅助线如图所示:BD⊥AD,BE⊥CE,CF⊥AF,在Rt△ABD中,根据勾股定理可求AD,在△Rt BCE中,根据三角函数可求CE,EB,在△Rt AFC中,根据勾股定理可求AC,再根据路程÷时间=速度求解即可.【解答】解:辅助线如图所示:BD⊥AD,BE⊥CE,CF⊥AF,有题意知,∠FAB=60°,∠CBE=37°,∴∠BAD=30°,∵AB=20海里,∴BD=10海里,在Rt△ABD中,AD==10≈17.32海里,在Rt△BCE中,sin37°=,∴CE=BC•sin37°≈0.6×10=6海里,∵cos37°=,∴EB=BC•cos37°≈0.8×10=8海里,EF=AD=17.32海里,∴FC=EF﹣CE=11.32海里,AF=ED=EB+BD=18海里,在Rt△AFC中,AC==≈21.26海里,21.26×3≈64海里/小时.答:救援的艇的航行速度大约是64海里/小时.【点评】考查了解直角三角形的应用﹣方向角问题,用到的知识点是方向角、勾股定理、解直角三角形、三角函数值,关键是做出辅助线,构造直角三角形.22.(10分)(2017•乌鲁木齐)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:( (1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后 y 与 x 之间的函数关系式;(4)何时两车相距 300 千米.【分析】 1)由图象容易得出答案;(2)由题意得出慢车速度为 =60(千米/小时);设快车速度为 x 千米/小时,由图象得出方程,解方程即可;(3)求出相遇的时间和慢车行驶的路程,即可得出答案;(4)分两种情况,由题意得出方程,解方程即可.【解答】解:(1)由图象得:甲乙两地相距 600 千米;(2)由题意得:慢车总用时 10 小时,∴慢车速度为=60(千米/小时);设快车速度为 x 千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为 90 千米/小时,慢车速度为 60 千米/小时;(3)由图象得: = (小时),60× =400(千米),时间为 小时时快车已到达甲地,此时慢车走了 400 千米,∴两车相遇后 y 与 x 的函数关系式为;(4)设出发 x 小时后,两车相距 300 千米.①当两车没有相遇时,由题意得:60x +90x=600﹣300,解得:x=2;②当两车相遇后,( ( 由题意得:60x +90x=600+300,解得:x=6;即两车 2 小时或 6 小时时,两车相距 300 千米.【点评】此题主要考查了一次函数的应用,解题的关键是正确理解题意,求出两车的速度.23.(10 分)(2017 乌鲁木齐)如图,AB 是⊙O 的直径,CD 与⊙O 相切于点 C ,与 AB 的延长线交于 D .(1)求证:△ADC ∽△CDB ;(2)若 AC=2,AB= CD ,求⊙O 半径.【分析】 1)首先连接 CO ,根据 CD 与⊙O 相切于点 C ,可得:∠OCD=90°;然后根据 AB 是圆 O 的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD ,即可推得△ADC ∽△CDB .(2)首先设 CD 为 x ,则 AB= x ,OC=OB= x ,用 x 表示出 OD 、BD ;然后根据△ADC ∽△CDB ,可得: = ,据此求出 CB 的值是多少,即可求出⊙O 半径是多少.【解答】 1)证明:如图,连接 CO ,,∵CD 与⊙O 相切于点 C ,∴∠OCD=90°,∵AB 是圆 O 的直径,∴∠ACB=90°,∴∠ACO=∠BCD ,∵∠ACO=∠CAD ,∴∠CAD=∠BCD,在△ADC和△CDB中,∴△ADC∽△CDB.(2)解:设CD为x,则AB=x,OC=OB=x,∵∠OCD=90°,∴OD===x,∴BD=OD﹣OB=x﹣x=x,由(1)知,△ADC∽△CDB,∴=,即,解得CB=1,∴AB=∴⊙O半径是=.,【点评】此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.24.(12分)(2017乌鲁木齐)如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x 轴于点D,交直线AB于点E.①当PE=2ED时,求P点坐标;②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存( 在,请说明理由.【分析】 1)由直线解析式可求得 B 点坐标,由 A 、B 、C 三点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出 P 点坐标,则可表示出 E 、D 的坐标,从而可表示出 PE 和 ED 的长,由条件可知到关于 P 点坐标的方程,则可求得 P 点坐标;②由 E 、B 、C 三点坐标可表示出 BE 、CE 和 BC 的长,由等腰三角形的性质可得到关于 E 点坐标的方程,可求得 E 点坐标,则可求得 P 点坐标.【解答】解:(1)∵点 B (4,m )在直线 y=x +1 上,∴m=4+1=5,∴B (4,5),把 A 、B 、C 三点坐标代入抛物线解析式可得,解得 ,∴抛物线解析式为 y=﹣x 2+4x +5;(2)①设 P (x ,﹣x 2+4x +5),则 E (x ,x +1),D (x ,0),则 PE=|﹣x 2+4x +5﹣(x +1)|=|﹣x 2+3x +4|,DE=|x +1|,∵PE=2ED ,∴|﹣x 2+3x +4|=2|x +1|,当﹣x 2+3x +4=2(x +1)时,解得 x =﹣1 或 x=2,但当 x=﹣1 时,P 与 A 重合不合题意,舍去,∴P (2,9);当﹣x 2+3x +4=﹣2(x +1)时,解得 x =﹣1 或 x=6,但当 x=﹣1 时,P 与 A 重合不合题意,舍去,= ∴P (6,﹣7);综上可知 P 点坐标为(2,9)或(6,﹣7);②设 P (x ,﹣x 2+4x +5),则 E (x ,x +1),且 B (4,5),C (5,0),∴ BE=BC== = ,|x ﹣ 4| , CE= = ,当△BEC 为等腰三角形时,则有 BE=CE 、BE=BC 或 CE=BC 三种情况,当 BE=CE 时,则 |x ﹣4|= ,解得 x= ,此时 P 点坐标为( , );当 BE=BC 时,则 |x ﹣4|= ,解得 x=4+ 或 x=4﹣ ,此时 P 点坐标为(4+ ,﹣4 ﹣8)或(4﹣,4 ﹣8); 当 CE=BC 时,则,解得 x=0 或 x=4,当 x=4 时 E 点与 B 点重合,不合题意,舍去,此时 P 点坐标为(0,5);综上可知存在满足条件的点 P ,其坐标为( , )或(4+ ,﹣4 ﹣8)或(4﹣,4 ﹣8)或(0,5).【点评】本题为二次函数的综合应用,涉及待定系数法、勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.在( 1)中注意待定系数法的应用,在(2)①中用 P 点坐标分别表示出 PE 和 ED 的长是解题关键,在(2)②中用 P点坐标表示出 BE 、CE 和 BC 的长是解题的关键,注意分三种情况讨论.本题考查知识点较多,综合性较强,难度适中.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年广东、汕头市中考数学试题与答案 考试说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( ) A.15 B.5 C.-15D.-5 2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×910B.0.4×1010C.4×910D.4×10103. 已知70A ∠=︒,则A ∠的补角为( )A.110︒B.70︒C.30︒D.20︒ 4. 如果2是方程230x x k -+=的一个根,则常数k 的值为( )A.1B.2C.-1D.-25. 在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.806. 下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆7. 如下图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2),则点B 的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2)8. 下列运算正确的是( )A.223a a a += B.325·a a a = C.426()a a = D.424a a a +=9. 如下图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°,则∠DAC 的大小为( )A.130°B.100°C.65°D.50° 10. 如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△;④2ADF CDF S S =△△,其中正确的是( )A.①③B.②③C.①④D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是720︒,那么n= .13.已知实数a,b 在数轴上的对应点的位置如题13图所示,则a b ÷ 0(填“>”,“<”或“=”).14. 在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15. 已知431a b ÷=,则整式863a b ÷-的值为 .16. 如图(1),矩形纸片ABCD 中,AB=5,BC=3,先按图(2)操作,将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭. 18.先化简,再求值211(x 4)22x x ⎛⎫+÷- ⎪-+⎝⎭,其中.19.学校团委组织志愿者到图书馆整理一批新进的图书。

若干男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本,求男生 、女生志愿者各有多少人?(二)(本大题共3题,每小题7分,共21分)20. 如图,在ABC ∆中,A B ∠>∠.(1)作边AB 的垂直平分线DE ,与AB 、BC 分别相交于点D 、E (用尺规作图,保留作图痕迹,不要求写作法):(2)在(1)的条件下,连接AE ,若50B ∠=︒,求AEC ∠的度数。

21.如图所示,已知四边形ABCD 、ADEF 都是菱形,BAD FAD BAD ∠=∠∠、为锐角.(1)求证:AD BF ⊥;(2)若BF=BC,求ADC ∠的度数。

22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如题22图表所示,请根据图表信息回答下列问题:(1) 填空:①m= (直接写出结果);②在扇形统计图中,C 组所在扇形的圆心角的度数等于 度;(2) 如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?(三)(本大题共3题,每小题9分,共27分)23.如图23图,在平面直角坐标系中,抛物线2y x ax b =-++交x 轴于A(1,0),B(3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C.(1)求抛物线2y x ax b =-++的解析式;(2)当点P 是线段BC 的中点时,求点P 的坐标;(3)在(2)的条件,求sin OCB ∠的值.24.如图,AB 是⊙O 的直径,AB=43,点E 为线段OB 上一点(不与O 、B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连结CB.(1)求证:CB 是的平分线;(2)求证:CF=CE;(3)当43 CPCF 时,求劣弧的长度(结果保留π).25.如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A 、C 的坐标分别是A(0,1)和C (23,0),点D 是对角线AC 上一动点(不与A 、C 重合),连结BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE 、DB 为邻边作矩形BDEF.(1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:; ②设,矩形BDEF 的面积为,求关于的函数关系式(可利用①的结论),并求出的最小值参考答案一、选择题1.D2.C3.A4.B5.B6.D7.A8.B9.C 10.C二、填空题11. a (a+1) 12. 6 13. > 14. 52 15. -1 16. 10三、解答题(一)17. 原式=7-1+3 =918.解:()()()()222222-++--++=x x x x x x 原式x 2=当5=x 时,上式=5219.解:设男生x 人,女生y 人,则有⎩⎨⎧==⎩⎨⎧=+=+1612124040506802030y x y x y x 解得答:男生有12人,女生16人。

(二)20.(1)作图略(2)∵ED 是AB 的垂直平分线∴EA=EB∴∠EAC=∠B =50°∵∠AEC 是△ABE 的外角∴∠AEC=∠EBA+∠B =100°21、(1)如图,∵ABCD 、ADEF 是菱形∴AB=AD=A F又∵∠BAD=∠FAD由等腰三角形的三线合一性质可得AD ⊥BF(2)∵BF=BC∴BF=AB=AF∵△ABF 是等比三角形∴∠BAF =60°又∵∠BAD=∠FAD∴∠BAD =30°∴∠ADC =180°-30°=150°22、(1)①、52(2)144(3)(人)720%1002008052121000=⨯++⨯ 答:略五、解答题(三)23、解(1)把A (1,0)B (3,0)代入b ax x y ++-=2得 ⎩⎨⎧-==⎩⎨⎧=++-=++3403901-b a b a b a 解得 ∴342-+-=x x y(2)过P 做PM ⊥x 轴与M∵P 为BC 的中点,PM ∥y 轴∴M 为OB 的中点∴P 的横坐标为23 把x=23代入342-+-=x x y 得43=y ∴⎪⎭⎫ ⎝⎛43,23P (3)∵PM ∥OC∴∠OCB =∠MPB ,2343==MB PM , ∴54349169=+=PB∴sin ∠MPB=55254323==PB BM∴sin ∠OCB=55224、证明:连接AC ,∵AB 为直径,∴∠ACB =90°∴∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3又∵CP 为切线∴∠OCP =90°∵DC 为直径∴∠DBC =90°∴∠4+∠DCB =90°,∠DCB+∠D =90°∴∠4=∠D又∵弧BC=弧BC∴∠3=∠D∴∠1=∠4即:CB 是∠ECP 的平分线(2)∵∠ACB =90°∴∠5+∠4=90°,∠ACE+∠1=90°由(1)得∠1=∠4∴∠5=∠ACE在Rt △AFC 和Rt △AEC 中AEC AFC ACAC ECA FCA AEC F ≌△△∴⎪⎩⎪⎨⎧=∠=∠︒=∠=∠90∴CF=CE(3)延长C E 交DB 于Qxx x EQ xCQ CP PQCB QCB CB xCE CF xCP x CF CP CF =-=∴==∴⊥∠=====344324343的角平分线是∵)得由(,设:ππ332321806032346060-60-18060333tan 33290219019022=⨯∴=∴=︒=︒︒︒=∠∴︒=∠∴===∠=∴=⋅⋅=∴=∴∴∠=∠∴︒=∠+∠︒=∠+∠︒=∠⊥的长度为:弧∵中,在△即∽△△,,,BC OB AB CBE CBE x x EB CE CBE CEB xEB EB x x EQ CE EB EQEB EB CE BEQCEB CQBCQB CBQ EB CE25、(1)()232,(2)存在理由:①如图1 若ED=EC由题知:∠ECD=∠EDC =30°∵DE ⊥DB∴∠BDC =60°∵∠BCD =90°-∠ECD =60°∴△BDC 是等边三角形,CD=BD=BC=2∴AC=422=+OC OA ∴AD=AC-C D=4-2=2②如图2 若CD=CE依题意知:∠ACO =30°,∠CDE=∠CED =15°∵DE ⊥DB ,∠DBE=90°∴∠ADB =180°-∠ADB-∠CDE =75° ∵∠BAC=∠OCA =30° ∴∠ABD =180°-∠ADB-∠BAC =75°∴△ABD 是等腰三角形,AD=AB=32 ③:若DC=DE 则∠DEC=∠DCE=30°或∠DEC=∠DCE=150°∴∠DEC >90°,不符合题意,舍去综上所述:AD 的值为2或者32,△CDE 为等腰三角形(3)①如图(1),过点D 作DG ⊥OC 于点G ,DH ⊥BC 于点H 。

相关文档
最新文档