接地电容电流分析
单相接地电流分析

一、正常运行情况中性点不接地又叫做中性点绝缘。
中性点位移:中性点对地的电位偏移。
中性点位移的程度,对系统绝缘的运行条件来说是至为重要的。
电力系统正常运行时,各相导线间的电容及其所引起的电容电流较小,可以不予考虑。
各相导线对地之间的分布电容,分别用集中的等效电容C U、C V、C W表示,电源三相电压分别为、、,各相对地电压分别用、、表示。
中性点不接地系统的正常运行情况电路图中性点N对地的电位为零。
各相对地电压作用在各相的分布电容上,如正常运行时各相导线对地的电容相等并等于C,正常时各相对地电容电流的有效值也相等,且有:各相的对地电容电流、、大小相等,相位相差120°。
各相对地电容电流的相量和为零,所以大地中没有电容电流过。
各相电流、、为各相负荷电流、、与相应的对地电容电流、、的相量和,以下仅画出U相的情况。
二、单相接地故障完全接地(金属性接地):接地处的电阻近似等于零。
中性点不接地三相系统单相接地电路图以W相k点发生完全接地的情况做一分析:故障相的对地电压为零,即则有:中性点对地电压与接地相的相电压大小相等、方向相反,中性点对地的电压不再为零,上升为相电压。
非故障相U相和V相的对地电压、分别为:非故障相的对地电压升高到线电压,升高为相电压的倍,各相对地电压的相量关系如下所示:中性点不接地三相系统单相接地系统三相的线电压仍保持对称且大小不变。
对接于线电压的用电设备的工作并无影响,无须立即中断对用户供电。
由于非故障相U、V两相对地电压由正常时的相电压升高为故障后的线电压,对地的电容电流也相应增大倍,为。
三相对地电容电流之和不再等于零,大地中有容性电流流过,并通过接地点形成回路。
接地电流超前90°,为容性电流,其有效值为。
单相接地故障时流过大地的电容电流,等于正常运行时一相对地电容电流的3倍。
单相接地电容电流的实用计算中可按下式计算:式中:I C 为接地电容电流,单位A;U为系统的线电压,单位kV;L1与L2分别为电压同为U,并具有电联系的所有架空线路及的电缆线路的总长度,单位km。
测量小接地电流系统电容电流的方法及注意事项

方 法 相 比 的 各 种 优 点 , 详 细 介 绍 其 测 量 过 程 应 注 意 的 各 种 事 项 和 影 响 测 晕= 果 的 各 种 因素 。 并 结 关 键 词 .J 地 电 流 系 统 电 容 电 流 ; 量 方 法 ; 意 事 项 ,接 、 测 注
目前 ,我 1 ~3 V 配 电系 统 以 中性 点 不接 地 或 经 消弧 线 0 5k
相对
z, 2n
15 2 9 .94 3 8 .1 7 52 0 。
对地 之 间) 外加 一 个 电容 , 量 电压 的变 化 从而 间接 计 算 出 电容 电 测 流值 , 但测 量 时要涉及 一 次设备 , 因此操作 烦琐 , 备工作 时间长 。 准
2
较 简 便 的 测 量 方 法
现 在 困 内很 多 厂 家 都研 制 出一 种 新 型 的 电容 电流测 试 仪 , 利
对地 阻抗 模值 的最 大相 对误 差不 超过 l %。
表 1 对地阻抗测 量及计算数据
并 联
缘 监测 的 并联 电阻法 加 以改 进 , 应用 于 交流 浮地 供 电 系统 中, 并进 行 仿 真试 验 , 验证 了该 方法 能 够准 确 测 量 系统 的对
地阻抗, 从而 达 到绝 缘监 测 的 目的 。
D qnhg 。h iige z nu ag cnu ga n。 Y i d
霍
测 量 小 接 地 电流 系 统 电容 电流 的 方 法 及 注 意 事项
刘 坚
( 东 电 网公 司 江 门 供 电局 , 东 江 门 5 9 0 ) 广 2 0 0
摘
要 : 要 介 绍 了 在 小 接 地 电流 系 统 的 P 二 次 辅 助 线 圈 注 入 小 电流 变 频 测 量 信 号来 测 最 系 统 电 容 电流 的 方 法 与 原 理 , 概 T 以及 与 传 统 测 量
单相接地电容电流

自动化论坛:单相接地电容电流的计算方法单相接地电容电流的计算4.1 空载电缆电容电流的计算方法有以下两种:(1)根据单相对地电容,计算电容电流(见参考文献2)。
Ic=√3×UP×ω×C×103式中: UP━电网线电压(kV)C ━单相对地电容(F)一般电缆单位电容为200-400 pF/m左右(可查电缆厂家样本)。
(2)根据经验公式,计算电容电流Ic=0.1×UP ×L式中: UP━电网线电压(kV)L ━电缆长度(km)4.2 架空线电容电流的计算有以下两种:(1)根据单相对地电容,计算电容电流Ic=√3×UP×ω×C×103式中: UP━电网线电压(kV)C ━单相对地电容(F)一般架空线单位电容为5-6 pF/m。
(2)根据经验公式,计算电容电流Ic= (2.7~3.3)×UP×L×10-3式中: UP━电网线电压(kV)L ━架空线长度(km)2.7━系数,适用于无架空地线的线路3.3━系数,适用于有架空地线的线路关于单相接地电容电流计算单相接地电容电流我所知道估算公式:对架空线:Ic=UL / 350对电缆:Ic=UL / 10我想请问的是L是指的架空线长度还是架空线距离?比如是三相的L是不是为距离X 3 另请问有没有更详细的计算方法?工业与民用配电设计手册上对L的定义是线路的长度,单位km,这里的长度与楼主说的距离是同一个概念,也就是说L是指架空线或电缆的距离,三相不需要再用距离乘以3更详细的单相接地电容电流计算公式见附件,摘自工业与民用配电设计手册152页描述:没有文件说明附件:( 189 K)单相接地电容电流计算.pdf下载次数(27)首先应该明确为什么要算这个电容电流,一般计算单相接地电容电流首先要了解,中性点接地系统的分类,什么样的系统才要计算单相接地电容电流,相关国家规定是怎样规定的,算出这个电流怎样进行相关的补偿,选用什么装置进行补偿,补偿的分类是欠补偿,还是过补偿,还是完全补偿,为什么要选用过补偿,单单理解怎样计算是没有任何用处的,中性点接地系统是个综合问题,考虑的要全面。
浅谈接地电容电流及其补偿容量计算

单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入接地网后由于接地电阻的原因,使整个接地电网电压升高,危害人身安全。
3)交流杂散电流危害
电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃可燃气体、煤尘爆炸等,可能造成雷管先期放炮,并且腐蚀水管,气管等金属设施。
浅谈接地电容电流及其补偿容量计算
梁金明,李国明
河北省沧州市沧炼工程设计有限公司
摘要:介绍了10KV中性点不接地系统中电容电流过大的危害及补偿原则,阐述了智能型自动补偿装置的组成及特点,给出了电容电流及补偿容量的计算方法。
关键词:电容电流 消弧线圈
1 前言
众所周知10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员可在2小时内选择和排除接地故障,保证连续不间断供电。
kV侧采用的是三角形接线,10 kV系统是没有中性点的,解决的办法是将消弧线圈接在星形接线的10
kV站用接地变压器中性点上。这样,系统零序网络等效于由对地电容和消弧线圈构成的LC串联电路。
脱谐度决定了一是弧道中的残余电流;二是恢复电压上升到最大值的时间;三是恢复电压的上升速度,它是影响灭弧的主要因素。工程上用脱谐度V来描述调谐程度
(6)接地变压器容量选择
接地变除可带消弧圈外,兼作所用变。
(5-4)
式中:Q — 消弧线圈容量,kVA
S — 所变容量,kVA
Ф — 功率因素角
单相接地电容电流及保护定值计算

摘自本人撰写的《余热(中册)》一一五、已知热电厂10KV 供电线路有8回,额定电压为10.5KV ,架空线路总长度为9.6Km ,电缆线路总长度为6Km ,计算单相接地时系统总的零序(电容)电流为多少安? 由于热电厂10KV 供电系统为中性点不接地的运行方式,所以应按照公式1、2进行计算:1.对于架空线路 I dC0(架空)=350UL (A ) 2.对于电缆线路 I dC0(电缆)=10UL (A ) 式中 U ——线路额定线电压(KV )L ——与电压U 具有电联系的线路长度(Km )解:根据公式1、2计算出10KV 供电线路单相接地时的零序(电容)电流为: I dC0(总)=3509.610.5⨯+10610.5⨯=0.288+6.3≈6.6(A ) 一一六、如何计算10KV 中性点不接地系统,线路单相接地的零序电流保护定值? 中性点不接地系统发生单相接地故障时,非故障线路流过的零序电流为本线路的对地电容电流,而故障线路流过的零序电流为所有非故障线路的对地电容电流之和。
为使保护装置具有高度的灵敏性,所以非故障线路的零序电流保护不应动作,故零序电流保护的动作电流必须大于外部接地故障时流过本线路的零序电流,因此零序电流保护的动作电流I dz 应为: I dz =K K 3U φωC 0=K K I dC0式中 K K ——可靠系数。
本次计算按8回线路中的4回在运行,故选取4。
I dC0——本线路的对地电容电流。
举例:已知上题10KV 线路单相接地时,系统总的零序电流I dC (总)=6.6安,计算其中1回线路零序电流保护的定值为多少安?解: I dz =K K I dC0 本计算的可靠系数按照K K =4选取则: I dz =4×86.6=3.3(A ) 选取3.3A 该电流系流过零序电流互感器一次侧的动作电流。
如果零序电流互感器标明了其变流比,则应根据变流比计算出零序电流保护装置的动作电流;若零序电流互感器未标明其变流比,则应通过现场实测的方法,测量零序电流互感器二次测的电流,该电流就是保护装置的动作电流。
(完整word版)接地电容电流分析

中性点不接地系统电容电流中性点不接地的运行方式,电力系统的中性点不与大地相接.我国3~66kV系统,特别是3~10kV系统,一般采用中性点不接地的运行方式。
中性点不接地系统正常运行时,各相对地电压是对称的,中性点对地电压为零,电网中无零序电压。
由于任意两个导体之间隔以绝缘介质时,就形成电容,所以三相交流电力系统中相与相之间及相与地之间都存在着一定的电容。
系统正常运行时,三相电压UA、UB、UC是对称的,三相的对地电容电流Ico.A、Ico.B、Ico.C 也是平衡的。
所以三相的电容电流相量和等于0,没有电流在地中流动。
每个相对地电压就等于相电压.当系统出现单相接地故障时(假设C相接地),故障电流Id(在下图中实际就是Ic)没有返回电源的通路,只能通过另外两非故障相(如A、B相)的对地电容返回电源。
I=U/Xc=ωCU,而C∝S/d,即与电容极板面积成正比、而与极板距离成反比。
所以线路对地电容,特别是架空线路对地电容很小,容抗很大,所以Id 很小,按照规范,不得大于20A,同时作为此系统(如10KV系统)负载工作的10KV变电所(10/0.38KV),其保护接地电阻按规范不得大于4Ω(交流电气装置的接地设计技术规范,DL/T 621),所以低压系统对地电位升高有限(一般不超80V,保护接地电阻做重复接地时不超50V)。
此时C相对地电压为0,而A相对地电压而B相相对地电压,同时U’a、U’b相差60度.由此可见,C相接地时,不接地的A、B两相对地电压由原来的相电压升高到线电压(即升高到原来对地电压的√3倍,即1.732倍),相位差60度.C相接地时,系统接地电流(电容电流)IC应为A、B两相对地电容电流之和。
由于一般习惯将从电源到负荷方向取为各相电流的正方向,所以:。
IC=√3ICA又因Ica=U’A/XC=√3UA/XC=√3IC0,因此IC=√3Ica=3IC0,即一相接地的电容电流为正常运行时每相电容电流的三倍。
单相接地故障电容电流

单相接地故障电容电流在电力系统中,电容是一种常见的电器元件,其具有存储电能的能力。
当电容器发生故障时,可能会产生单相接地故障电流。
本文将探讨单相接地故障电容电流的产生原理、特点以及对电力系统的影响。
一、单相接地故障电容电流的产生原理电容器由两个导体板和介质组成,当电容器的绝缘介质发生击穿或损坏时,就会导致电容器内部的导体板发生短路。
在电力系统中,如果一个相位的电容器发生故障,即其中一个导体板与地接触,就会产生单相接地故障电容电流。
二、单相接地故障电容电流的特点1. 高频特性:电容器的故障通常会引起电流频率的变化。
由于电容器内部的电荷变化速度非常快,所以产生的电容电流通常是高频电流。
2. 波形特点:单相接地故障电容电流的波形通常是尖峰状或类似脉冲的形状。
这是由于故障导致电容器内部的电荷突然释放,产生了一个瞬时的电流脉冲。
3. 持续时间短:由于电容器内部的电荷释放速度非常快,所以单相接地故障电容电流的持续时间通常非常短暂,一般只有几个毫秒。
三、单相接地故障电容电流对电力系统的影响1. 电压暂降:由于单相接地故障电容电流的产生,电流会通过故障点到达地面,导致故障线路的电压暂时下降。
这可能会对电力系统的稳定性和设备的正常运行产生一定影响。
2. 故障电流大小:故障电容电流的大小取决于电容器的额定容量以及故障点与地之间的电阻大小。
通常情况下,故障电容电流较小,不会对电力系统产生严重的影响。
3. 故障检测和定位:通过检测故障电容电流的存在和特征,可以用于故障的检测和定位。
这有助于快速排除故障,减少停电时间,并提高电力系统的可靠性和稳定性。
四、如何减小单相接地故障电容电流的影响1. 定期检测和维护电容器,确保其正常运行。
通过定期检查电容器的绝缘状况和接地情况,可以及时发现潜在的故障,并采取相应的措施修复或更换电容器。
2. 加强故障检测和定位技术。
利用先进的故障检测设备和方法,可以更准确地检测和定位故障点,提高故障处理的效率和准确性。
单相接地电容电流

单相接地电容电流
单相接地电容电流是指电力系统中出现的一种电流,它与系统接地电容有关。
这种电流会引起电力设备损坏,甚至会导致人身安全事故的发生。
因此,我们需要了解单相接地电容电流及其防护措施。
在电力系统中,接地电容是指电力设备与大地之间的绝缘物质。
在正常情况下,接地电容的电场是均匀的,接地电流很小,并且不危险。
但在某些情况下,比如设备被雷击等不正常情况下,接地电容的电场就会变得不均匀,从而导致接地电流增大。
单相接地电容电流的产生,往往是由于接地电容与其他受到外部干扰的因素共同作用的结果。
例如,在接地电容电压升高时,会产生较大的谐波电流,这些电流会引起设备的损坏。
因此,我们需要寻找方法来减小这种电流的危害。
一种解决单相接地电容电流的方法是通过对系统接地方式的改变。
我们可以采用多点接地系统,这样可以减小单一点的接地电容。
还可以采用天线接地、沟槽接地等方式来降低接地电容的大小。
此外,我们还可以使用接地电阻器、接地反推电抗器等装置来减小单相接地电容电流,从而降低设备的损坏风险。
这些装置能够使得接地电压在一定的范围内波动,从而引起的单相接地电容电流得以减小。
总之,单相接地电容电流是电力系统中的一种特殊电流,它的产生对电力设备和人身安全会造成很大的威胁。
减小单相接地电容电流的方法有很多种,可以采用多点接地、天线接地、接地电阻器等装置。
我们在电力系统的建设和运行中,应时刻注意单相接地电容电流的问题,制定相应的防护措施,保障电力系统的安全运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中性点不接地系统电容电流
中性点不接地的运行方式,电力系统的中性点不与大地相接。
我国3~66kV系统,特别是3~10kV系统,一般采用中性点不接地的运行方式。
中性点不接地系统正常运行时,各相对地电压是对称的,中性点对地电压为零,电网中无零序电压。
由于任意两个导体之间隔以绝缘介质时,就形成电容,所以三相交流电力系统中相与相之间及相与地之间都存在着一定的电容。
系统正常运行时,三相电压UA、UB、UC是对称的,三相的对地电容电流Ico.A、Ico.B、Ico.C也是平衡的。
所以三相的电容电流相量和等于0,没有电流在地中流动。
每个相对地电压就等于相电压。
当系统出现单相接地故障时(假设C相接地),故障电流Id(在下图中实际就是Ic)没有返回电源的通路,只能通过另外两非故障相(如A、B相)的对地电容返回电源。
I=U/Xc=ωCU,而C∝S/d,即与电容极板面积成正比、而与极板距离成反比。
所以线路对地电容,特别是架空线路对地电容很小,容抗很大,所以Id很小,按照规范,不得大于20A,同时作为此系统(如10KV系统)负载工作的10KV变电所(10/0.38KV),其保护接地电阻按规范不得大于4Ω(交流电气装置的接地设计技术规范,DL/T 621),所以低压系统对地电位升高有限(一般不超80V,保护接地电阻做重复接地时不超50V)。
此时C相对地电压为0,而A相对地电压
而B相相对地电压,同时U'a、U'b相差60度。
由此可见,C相接地时,不接地的A、B两相对地电压由原来的相电压升高到线电压(即升高到原来对地电压的√3倍,即1.732倍),相位差60度。
C相接地时,系统接地电流(电容电流)IC应为A、B两相对地电容电流之和。
由于一般
习惯将从电源到负荷方向取为各相电流的正方向,所以:。
IC=√3 ICA 又因Ica=U’A/XC=√3 UA/XC=√3 IC0,因此IC=√3Ica= 3IC0,即一相接地的电容电流为正常运行时每相电容电流的三倍。
特别注意:对地电容电流、接地电容电流是不同的两个概念;前者是正常运行的线路,后者是接地故障线路。
《工业与民用配电设计手册》三版中的继电保护中,涉及到这个问题的有电力线路单相接地保护和电动机单相接地保护,公式给定都是接地电容电流。
实际问题中,特别小心辨别。
笔者就卡在这里几天,后来发现是一字之差,惨痛!
另外,电网电容电流包括两部分:电源端(如发电机、或者变配电所的变压器)、线路上的,这是线路保护情况;电源端、电动机上,这是电动机单相故障接地保护的,这种情况实际上把发电机(变压器)和线路统统算在电源里了。
(1)如果分别给定系统(电网)的电容电流、线路(或电动机)的电容电流,若是接地电容电流那么直接代入公式求整定电流,若是对地电容电流那么还要乘3倍再代入公式求整定电流;(2)线路单地保护中,若只给线路的电容电流,除了考虑(1)中乘3、不乘3的问题外,还需要在使用Ic∑(系统总单相接地电容电流)时,考虑变电所增加的部分(即电源端引起的部分),因系统总单相接地电容电流包括线路、电源两部分,参考配电设计手册P153。