配电网电容电流计算
配电网电容电流测量方法的比较与应用

而
因为 : C= C ^+ C + C c 所 以 : l U。 U。 = L一 可 c一
j 0= a U C
十
金属接地法是电容电流测量的最传统 、最直接的方
法。
( 5 )
2 常用 的 2种 测试 方 法及 分 析
2 1 中性点外 加 电容 法及 其分析 .
式 中 C为 系 统三 相 对 地 电容 ,F; 为 中性点 不 p U。
当的电容量 ,测量 中性点的对地电压 ,然后用计算
的方 法 间接得 到 系统 的电容 电流 。 由于三相 对地 电容 C , C 和外 加 电容 c 的 C , f 0 损耗 电阻很小 。 忽略不 计 , 中性点 用克 氏第 一定 可 对 律, 可得 中性点 位 移电压 【。。 , 。
一
U + U6 Y Yb+ U Y 一 + +
业 方式 , 绝缘 棒 把 中性 点 电压 引 到耐 压 合 格 的绝 用 缘 子上 , 再用绝 缘棒 投入 电压 表 , 电容器 和 电流表依 次测量 中性 点不 对 称 电压 。位 移 电压 o 或 对地 ,
短路 电流 , 然后按 式 ( )或式 ( )计 算 电 网电 5 7 容 电流 。 2 1 3 中性 点 外 加 电容 法 测 量 系统 电容 电流 的特 . .
为 了 消 弧线 圈调 谐 或选 择 消 弧 线 圈 容 量 的需 要 ,需对 配 电网 的电容 电流进 行 测量 。测 量 电容 电 流 的方 法 有 多种 ,常 用 的有 3种 :单 相 金 属 接 地 法 n ;中性点外 加 容法n ; ’ 偏置 电容 法 。其 中单 相
百
= = :
点
u
( + C, C。 - )+ 口 C。 口 e +
配电网络电气计算.pptx

(三)谐波分布计算的特点
配电网是输电网和用户之间的纽带,它实现 直接向用户供电的功能,而用户是谐波的滋生 地,因此配电网是谐波的首要受害者和传播者, 它本身的结构和参数以及并联电容器装置的参 数,决定了它对谐波的传播特性,即是放大了 还是抑制了谐波。谐波源应视为电流源,并按 阻抗分流原理确定它在配电网中的分布。
在配电网有功电源的分布一定的情况下, 配电网的有功网损是各节点无功补偿容量 的函数,因此,配电网的有功网损,即无 功补偿的目标函数可以写成
P P (QC1, QC 2 , , QCj , , QCm )
第22页/共38页
经过无功最优补偿以后,无功功率应该满足下面 的平衡方程,即等式约束条件
P QCj
OP , ( j
1,2,, m)
或
第27页/共38页
(二)遗传算法
遗传算法是一种基于自然群体遗传演化机制的高 效探索算法。它摒弃了传统的搜索方式,模拟自 然界生物进化过程,采用人工进化的方式对目标 空间进行随机化搜索。它将问题域中的可能解看 作是群体的一个个体或染色体,并将每一个体编 码成符号串形式,模拟达尔文的遗传选择和自然 淘汰的生物进化过程,对群体反复进行基于遗传 学的操作(选择、交叉和变异),根据预定的目标适 应度函数对每个个体进行评价,依据“适者生存, 优胜劣汰”的进化规则,不断得到更优的群体, 同时以全局并行搜索方式来搜索优化群体中的最 优个体,求得满足要求的最优解。
一、配电网潮流计算的特点
网设施
配电系统多采用闭式网络结构, 具有开式运行的特点,因此,网络 往往呈现放射状。在6~10kV的配 电网中,往往只有一个电源点,因 此线路上的功率通常具有单向流动 性等等。
不能简单套用高压输电网潮流计 第1页/共38页 算常用的高斯-赛德尔法、牛顿法拉夫逊法或PQ分解法等方法。
单相接地电容电流

自动化论坛:单相接地电容电流的计算方法单相接地电容电流的计算4.1 空载电缆电容电流的计算方法有以下两种:(1)根据单相对地电容,计算电容电流(见参考文献2)。
Ic=√3×UP×ω×C×103式中: UP━电网线电压(kV)C ━单相对地电容(F)一般电缆单位电容为200-400 pF/m左右(可查电缆厂家样本)。
(2)根据经验公式,计算电容电流Ic=0.1×UP ×L式中: UP━电网线电压(kV)L ━电缆长度(km)4.2 架空线电容电流的计算有以下两种:(1)根据单相对地电容,计算电容电流Ic=√3×UP×ω×C×103式中: UP━电网线电压(kV)C ━单相对地电容(F)一般架空线单位电容为5-6 pF/m。
(2)根据经验公式,计算电容电流Ic= (2.7~3.3)×UP×L×10-3式中: UP━电网线电压(kV)L ━架空线长度(km)2.7━系数,适用于无架空地线的线路3.3━系数,适用于有架空地线的线路关于单相接地电容电流计算单相接地电容电流我所知道估算公式:对架空线:Ic=UL / 350对电缆:Ic=UL / 10我想请问的是L是指的架空线长度还是架空线距离?比如是三相的L是不是为距离X 3 另请问有没有更详细的计算方法?工业与民用配电设计手册上对L的定义是线路的长度,单位km,这里的长度与楼主说的距离是同一个概念,也就是说L是指架空线或电缆的距离,三相不需要再用距离乘以3更详细的单相接地电容电流计算公式见附件,摘自工业与民用配电设计手册152页描述:没有文件说明附件:( 189 K)单相接地电容电流计算.pdf下载次数(27)首先应该明确为什么要算这个电容电流,一般计算单相接地电容电流首先要了解,中性点接地系统的分类,什么样的系统才要计算单相接地电容电流,相关国家规定是怎样规定的,算出这个电流怎样进行相关的补偿,选用什么装置进行补偿,补偿的分类是欠补偿,还是过补偿,还是完全补偿,为什么要选用过补偿,单单理解怎样计算是没有任何用处的,中性点接地系统是个综合问题,考虑的要全面。
配电网电容电流测试研究

关 键 词 :配 电 网 ;变 电站 ;电容 电 流 ; 测试 方 法
S u n t e Te to it i to e w o k’ pa ii e Cur e t dy o h s f s r bu i n N t r SCa c tv D r nt
R p n , hrn , I i n , A AN Qie g HU Z i g Z r gY NG h n u WANGY x, AN Jn L iu o Me o C uy , u i YU , I u We n k
s n lnet nme o ar u s o ec r n s edo 7sbtt n 0k /5k ss ms f n n o r i a i c o t dt cr o t t f h u etet i f l f u s i si 1 V 3 V t migP we g j i h o y mo t t s ni 2 ao n y e o Ku
Grd a d c lu ae h u rn so e s b t t n t i h t eme s r d v l e r ea i ey l r e , o n i g o t h t h i e e c i , n a c lt st ec re t ft u sa i sa h o wh c a u e au sa e r lt l g r p i t u a ed f r n e h v a n t t f b t e e me s r d a d t e r tc l au si u ot ef c o so r p rt s meh d c a g fs se So e ai n m o e a d S ewe n t a u e n o ei a l e sd et a t r f mp o e t t o , h n e o t m’ p r t d n O h h v h i e y o o . o e n r i e ep p r n F rs v r l y e f b o ma s s t e s l t s e gv n i t a e . t a c o a nh Ke r s d s iu in n t r ; u sai n c p c tn ec re t t s meh d y wo d : it b t ewo k s b t t ; a a i c u r n ; e t t o r o o a
35kV系统接地电容电流的计算

35KV配电网络中性点接地华北水利水电大学周国安摘要电网中性点接地是关系到电网安全可靠运行的关键问题之一。
该文通过介绍中性点接地的基本概念、设计思想和理论联系实际的方法展开分析与研究。
阐明了35kV 配电网络中性点采取消弧线圈接地方式的原因及解决其接线的具体措施。
通过理论分析,明确了消弧线圈的作用,并深入地讨论了消弧线圈的调整范围及方法。
清楚地表达了35KV配电网络中性点消弧线圈的整定值的合理性。
文中还明确了35KV配电网络进一步完善措施与该网络形成的接地设施之间的内在联系,从而提出了对35KV配电网络完善要求的具体措施。
关键词35KV 配电消弧线前言农村和城市配电网的负荷逐步在增大,就有110KV和35KV 电网直接深入负荷区,这样给供电的安全、可靠性提出了更高的要求。
为此,必须分析和研究关系到整个供电系统安全、可靠的关键问题之一即35KV配电网络中性点接地方式问题。
对于大型变电站主变压器一般选择220/110/35KV 或220/110/10KV ,其接线组别为Y0/Y0/ Δ,三角形接线侧为35KV或10KV,35KV或10KV是中性点不直接接地系统,只有选择接地变压器接在不同的母线段上,来完成接地补偿等问题。
另外,弄清这个问题,便于进一步完善该网络时,尽可能考虑采取技术合理、经济节省的相应措施。
1规划设计的中性点接地方式1.1中性点接地方式基本概念电力系统中电网中性点接地方式分直接接地和不接地(或称绝缘)的两种方式。
电网中性点直接接地,中性点就不可能积累电荷而发生电弧接地过电压,其各种形式的操作过电压均比中性点绝缘电网要低,但接地为短路故障,特别是瞬间接地短路,必须通过保护动作切除,再依靠重合闸恢复正常供电。
现今110KV及以上电网大都采用中性点直接接地方式。
但若较低电压等级的电网采用中性点接地的运行方式,则其接地事故频繁,甚至引起很多更严重的事故,操作次数多,且会因此增加许多设备,即可能引起供电可靠性降低,又不经济,故在我国3~35KV甚至60KV电网中性点采用非直接接地运行方式。
10KV的电网中性点不接地单相接地时的电容电流

10KV的电网中性点不接地单相接地时的电容电流下面是一些摘录资料:在GB50070-94《矿山电力设计规范》第2。
0。
10条中规定,“矿井6-10KV电网,当单相接地电容电流小于等于10A时,宜采用电源中性点不接地方式;大于10A时,必须采取限制措施”。
这条规定是依据国内外有关科研成果和国内外现行规程、标准以及人身触电安全要求等三方面作出的。
现分述如下:1、试验研究和运行经验数据①《电缆网络单相接地电弧电流不自熄下限试验研究》技术鉴定书指出,“电弧引弧试验的数据近200个。
这些数据客观地、真实地描述了在给定工况条件下,电缆接地电弧电流的熄灭情况”。
部级鉴定委员会同意由西北电力中试所和北京煤炭设计研究院完成的试验研究报告,并肯定该报告可供修改规程、规范时参考。
该报告的结论是,电弧接地不自熄电流下限值:全塑电缆25A;油浸纸绝缘电缆15A;交联电缆10A。
以安全计应取其中最小值10A。
②华中、湖北电力试验研究所1992年试验研究的成果表明,3-10KV架空配电线路,当电容电流在16A及以上时,不能自熄电弧;当电容电流小于10A,几乎全能自熄。
③湖北省6-10KV配电网运行经验与上述试验研究结果一致。
④开滦矿务局赵各庄煤矿从60年代以来,单相接地电容电流达18A左右,井下高压电缆发生着火事故次数显著增多。
⑤原中国统配煤矿总公司6KV电网安全调研组于1988年对引起矿井电缆“放炮”事故做了统计分析。
结论是,电容电流在20A左右的矿井电缆“放炮”事故仍很严重。
⑥(GB50070-94)《矿山电力设计规范》专题组编写的《关于矿井高压电网单相接地电流限值问题的分析讨论》报告中指出,某矿实测6KV电网电容电流为16A,曾发生多重接地故障。
⑦中国矿业大学《矿井6KV电网单相接地电流及限制方案的制定》一文指出,实验研究和仿真计算结果表明,当单相接地电弧电流小于10A时,电弧可自熄。
⑧前苏联《煤矿供电效率的提高》专著中指出,当接地电容电流大于10A时,中性点应采用消弧线圈补偿方式。
基于单相接地故障的配电网馈电线路电容电流测算方法

基于单相接地故障的配电网馈电线路电容电流测算方法周永其;陈挥瀚;常勇;王莹;杨洪灿;孙建华【摘要】介绍随着城市配电网的规模不断扩大,电缆线路大面积的应用,配电网线路的电容电流日益增大,电容电流的大小决定消弧线圈调控,对电网的规划设计和运行安全有重要影响.本文研究了配电网发生单相接地故障时线路零序电流和电容电流之间的关系,基于单相接地故障时馈电分支线路的零序电流测量值,提出一种线路电容电流的测算方法.【期刊名称】《云南电力技术》【年(卷),期】2018(046)003【总页数】2页(P73-74)【关键词】配电网;单相接地故障;零序电流;电容电流【作者】周永其;陈挥瀚;常勇;王莹;杨洪灿;孙建华【作者单位】云南电网有限责任公司曲靖供电局,云南曲靖 655000;昆明同弘瑞能电力科技有限公司,昆明 650000;昆明理工大学,昆明 650500;昆明理工大学,昆明650500;云南电网有限责任公司曲靖供电局,云南曲靖 655000;云南电网有限责任公司曲靖供电局,云南曲靖 655000【正文语种】中文【中图分类】TM740 前言低压配电网一般采用小电流接地系统运行方式[1],配电网系统发生单相接地故障时故障电流与配电线路电容电流大小相关。
配电网对地电容电流决定了是否装设消弧线圈以及消弧线圈的补偿容量[2],同时对分析铁磁谐振过电压也有重要意义[3]。
传统的电容电流测量方法分为直接法和间接法[4]。
直接法操作繁杂,危险性高,容易引起事故,基本不再采用。
间接法虽然比直接法简单,但是其测量时涉及一次侧,人员与设备安全无保障、操作繁琐、准备工作耗时长、测量工作效率低,同时存在误操作危险。
信号注入法是目前常采用的方法,主要采用三频法、双频法和扫频法等方式[5]。
信号注入法存在受互感器漏阻抗影响较大、频率选取困难等问题。
本文根据配电网发生单相接地故障时电容电流与零序电流的关系,测量得到发生单相接地故障时配电馈线路上的零序电流,得出各个线路运行时的线路电容电流。
20 kV配电网线一缆混合线路电容电流实用计算

研究报告科技创新导报 Science and Technology Innovation Herald1目前,我国已有部分地区采用20 k V 配电网,并对原有的10 kV配电网进行升压改造。
20 k V 配电网的电容电流是确定其采用何种中性点接地方式的主要依据。
在20 kV配电网中,架空线与电缆混合线路是馈电线路的主要形式。
随着建设与改造工作的不断推进,这种线缆混合线路将越来越多,电缆线路的比例将逐渐上升。
但对于线_缆混合线路对地电容值多采用估算的方法获得,误差较大。
该文中将结合本地区20 k V 配电网实例介绍架空线与电缆的电容电流计算方法,计算出实际的电容电流。
1 架空线参数计算方法1.1 杆塔几何参数计算杆塔模型如(图1)所示。
单回导线的几何均距为m d =由图1可见,d 12、d 23、d 13分别为0.64 m、1.36 m、1.32 m,根据公式求得m d 为1.047 m。
其他两点的间距可通过几何计算得到。
1.2 架空线阻抗参数计算单位长度的正序阻抗计算公式为:1j 0.145lg0.0157mmd Z R r =++()(2)式中R —— 单位长度电阻(Ω/km)。
m r —— 导线等值半径。
1R 与m r 可通过查对应导线的参数资料获得。
对于单回路架空线路,其零序阻抗计算可采用以下公式:40I +0.15+j87f 10Z R −=××× (3)式中ρ—为土壤电阻率;取20(m )Ω•。
对于同塔架设的平行双回线路,先计算零序互阻抗影响:-40(I-II)-6m I-II2.0850.15+j8710lg10Z f f d ρ×=××××() (4)式中m I-II d ()--同塔双回线路等值间距。
其每回线路的综合零序阻抗为:000-=+I Z Z Z (I I I )(5)架空线正序电容为(单位为F/k m):-61m m0.0243110=lg /C d r × (6)架空线零序电容为(单位为F/k m):×××6m 0m 2=1/(2l n +22l n 1))910h C r (7)式中h m ——三相导线平均架设高度;D mm ——三相导线平均距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配电网电容电流计算
一、概述
随着城市电网的扩大,电缆出线的增多,系统电容电流大大增大。
当系统发生单相接地故障,其接地电弧不能自熄,极易产生间隙性弧光接地过电压,持续时间一长,在线路绝缘弱点还会发展成两相短路事故。
因此,当网络足够大时,就需要采用消弧线圈补偿电容电流,这是保证电力系统安全运行的重要技术措施之一。
为避免不适当的补偿给电力系统安全运行带来威胁,首先必须正确测定系统的电容电流值,并据此合理调整消弧线圈电流值,才能做到正确调谐,既可以很好地躲过单相接地的弧光过电流,又不影响继电保护的选择性和可靠性。
目前,电容电流的测定方法很多,通常采用附加电容法和金属接地法进行测量和计算,但前者测量方法复杂,附加电容对测量结果影响较大,后者试验中具有一定危险性。
目前,根据各种消弧线圈不同的调谐原理,有多种间接测量电网电容电流的方法。
其根本思想都是利用电网正常运行时的中性点位移电压、中性点电流以及消弧线圈电感值等参数,计算得到电网的对地总容抗,然后由单相故障时的零序回路,计算当前运行方式下的电容电流。
在实际运行中,对于出线数较多、线路较长或包含大量电缆线路的配电系统,当其发生单相接地故障时,对地电容电流会相当大,接地电弧如果不能自熄灭,极易产生间隙性弧光接地过电压或激发铁磁谐振,持续时间长,影响面大,线路绝缘薄弱点往往还会发展成两相短路事故。
因此,DL/T620-1997《交流电气装置的过电压保护和绝缘配合》规定:3~10kV钢筋混凝土或金属杆塔的架空线路构成的系统和所有35kV、66kV系统,当单相接地故障电流大于10A时应装设消弧线圈;3~10kV电缆线路构成的系统,当单相接地故障电流大于30A,又需在接地故障条件下运行时,应采用消弧线圈接地方式。
消弧线圈一般为过补偿运行(即流过消弧线圈的电感电流大于电容电流),也就是说装设的消弧线圈的电感必须根据对地电容电流的大小来确定,以防止中性点不接地系统发生单相接地而引起弧光过电压。
故障后,消弧线圈必须快速合理地补偿电容电流,以使接地电弧快速自熄,所以消弧线圈应实时跟踪电网运行方式的变化,在电网正常运行时,测量计算当前运行方式下的电容电流,以合理调节消弧线圈的出力。
显然,电网电容电流的
计算精度,将直接影响消弧线圈的调谐和补偿效果。
随着电力系统对安全可靠性要求的日益提高,用户对消弧线圈调谐精度和补偿效果的要求也越来越高。
而现有的各种消弧线圈自动跟踪补偿装置中所采用的计算理论和方法,无法很好满足用户的要求。
要提高消弧线圈的调谐精度和补偿效果,首先就要进一步提高电容电流的计算精度。
本章对电容电流的计算理论和计算方法作了进一步深入的研究,减小和消除了对地容抗计算的误差,并计及电网不平衡对电容电流计算的影响,提高了电容电流的计算精度。
二、电容电流的估算
1. 架空电力线路电容电流估算法
中性点不接地系统对地电容电流近似计算公式为:
无架空地线:31.1 2.710C I U L A =⨯⨯⨯⨯
有架空地线:31.1 3.310C I U L A =⨯⨯⨯⨯
式中,U ——额定线电压(千伏);
L ——线路长度(公里)
; 1.1——系数,因水泥杆,铁塔线路增10%。
几点说明:○1双回线路的电容电流为单回路的1.4倍(6—10kV 系统);
○
2一般实测表明:夏季比冬季电容电流增值10%; ○
3由于变电所中电力设备所引起的电容电流增值估算见表4–1。
○
4一般估算 6kV :C I =0.015(安/公里)
10kV :C I =0.025(安/公里)
表4–1 因变电所设备引起的电容电流增值估算。