钢的凝固理论教材
合集下载
重庆大学金属凝固原理 课件 第1章 概述

铸件和“无限长”的柱状晶
·计算机数值模拟技术得到迅猛发展,可预计铸件
的质量(组织、缺陷和性能),工艺设计更加科 学化,降低了制造成本。
四、需探讨解决的问题
·金属遗传问题的机理 ·固-液界面结晶形貌因第三组元加入后改变的机理 ·宏观偏析的形成机理(特别是大型钢锭的“V”型
和逆“V”型偏析
·高速及超高速冷却(快速凝固)的基础理论研究
·枝晶熔断、游离和增殖的形核理论应用到工业中
的机械振动、电磁搅拌等措施来细化组织。
·半固态铸造工艺
· 超高速(106~109℃/s)凝固,获得成分均匀、超
细的粒状晶甚至非晶、纳米晶
· 建立了枝晶间距—热参数—机械性能的数学模型
通过控制热参数来提高材料性能
·定向凝固技术发展,可制得无偏析和缺陷的单晶
课程名称
《材料成形原理》
先了解材料成形和加工的主要方法
一、 材料成形与制造业
液态成形 连接成形 塑性成形 (含注塑成 形) 粉末成形 切削成形
表面加工
原材料
(锭料、轧材) 液态成形 连接成形 塑性成形 (含注塑成 形) 粉末成形 切削成形
毛坯
切削加工
零件
装配
机器Βιβλιοθήκη 热处理切削加工二、材料加工的主要方法
还很欠缺
§1-3 本篇课程内容及要求 一、课程内容 共分8章 第一章 概述 第二章 液态金属的结构与性质 第三章 形核 第四章 纯金属晶体生长界面动力学过程 第五章 单相合金的凝固 第六章 共晶合金的凝固 第七章 金属凝固的宏观组织与凝固方式 第八章 液态成形件的主要缺陷及质量控制 重点为第五章和第七章
液态金属
凝固
(金属的一次结晶)
固态金属的
状态转变,是液态成形最基本的过 程,金属凝固是液态成形的理论基 础。
·计算机数值模拟技术得到迅猛发展,可预计铸件
的质量(组织、缺陷和性能),工艺设计更加科 学化,降低了制造成本。
四、需探讨解决的问题
·金属遗传问题的机理 ·固-液界面结晶形貌因第三组元加入后改变的机理 ·宏观偏析的形成机理(特别是大型钢锭的“V”型
和逆“V”型偏析
·高速及超高速冷却(快速凝固)的基础理论研究
·枝晶熔断、游离和增殖的形核理论应用到工业中
的机械振动、电磁搅拌等措施来细化组织。
·半固态铸造工艺
· 超高速(106~109℃/s)凝固,获得成分均匀、超
细的粒状晶甚至非晶、纳米晶
· 建立了枝晶间距—热参数—机械性能的数学模型
通过控制热参数来提高材料性能
·定向凝固技术发展,可制得无偏析和缺陷的单晶
课程名称
《材料成形原理》
先了解材料成形和加工的主要方法
一、 材料成形与制造业
液态成形 连接成形 塑性成形 (含注塑成 形) 粉末成形 切削成形
表面加工
原材料
(锭料、轧材) 液态成形 连接成形 塑性成形 (含注塑成 形) 粉末成形 切削成形
毛坯
切削加工
零件
装配
机器Βιβλιοθήκη 热处理切削加工二、材料加工的主要方法
还很欠缺
§1-3 本篇课程内容及要求 一、课程内容 共分8章 第一章 概述 第二章 液态金属的结构与性质 第三章 形核 第四章 纯金属晶体生长界面动力学过程 第五章 单相合金的凝固 第六章 共晶合金的凝固 第七章 金属凝固的宏观组织与凝固方式 第八章 液态成形件的主要缺陷及质量控制 重点为第五章和第七章
液态金属
凝固
(金属的一次结晶)
固态金属的
状态转变,是液态成形最基本的过 程,金属凝固是液态成形的理论基 础。
钢的凝固理论讲解

热。
(3)成分过冷与结构 ·当固液交界面前沿出现成分过冷时, 交界面就不
稳定了,不再保持平面结构。
· 按过冷度的大小,开始形成晶胞、晶胞树枝晶、 树
枝晶结构。
· 随成分过冷度的增加,结构形貌由晶胞发展为树 枝
晶。
8.1.3.3 树枝晶凝固
图8-8为晶体长大成树枝晶示意图。铁为立方晶格,成 正六面体结晶,由于结晶总是在结晶面溶质偏析小的地 方和结晶潜热散出最快的地方优先生长,在晶核长大过 程中,棱角比其他方向导热性好,而且棱角离未被溶质 富集的液体最近。因此棱角方向长大速度比其他方向要 快,从八个角成长为菱锥体的尖端,其生长方向几乎平 行于热流,构成树枝晶主轴,称之为一次树枝臂。垂直 于一次枝晶臂而长出分叉的枝晶叫二次枝晶臂。冷却速 度继续增加时,在二次枝晶臂上垂直长出三次枝晶臂, 这些枝晶彼此交错在一起宛如茂密的树枝。从而使结晶 潜热从液体中可以很容易的通过彼此连接的枝晶而传导 出来,直到完全凝固为止
试验指出,二次枝晶间距与区域凝固时间 tc 关系如图8-14。它
们的经验关系式:
l 0.00716tc0.5 (1.5%C,1.1%Mn) lI 0.0518tc0.44 (0.6%C,1.1%Mn)
树枝晶间距对钢锭结构、显微偏析有重要影响。实际钢锭凝固时 凝固速度与温度梯度不可能彼此独立变化,而通过凝固时放出热 量来影响整个凝固过程。这样就可用冷却速度来控制树枝晶间距 ,以得到细的树枝结构。而影响冷却速度最重要的因素是凝固方 法。图
第八章 钢的凝固理论
凝固理论
凝固理论
8.1 钢液结晶与凝固结构
8.1.1 均质形核
(1)新核的形成引起系统的自由能的变化: · 体积自由能的下降: ΔGv=-(4/3)(πγ3 (GA-GB)) 式中:γ:球形晶核的半径;GA:A相体积自由能; GB:A相体积自由能 · 表面自由能的增加: ΔGF=4πγ2σ 式中:σ:A、B两相界面自由能
(3)成分过冷与结构 ·当固液交界面前沿出现成分过冷时, 交界面就不
稳定了,不再保持平面结构。
· 按过冷度的大小,开始形成晶胞、晶胞树枝晶、 树
枝晶结构。
· 随成分过冷度的增加,结构形貌由晶胞发展为树 枝
晶。
8.1.3.3 树枝晶凝固
图8-8为晶体长大成树枝晶示意图。铁为立方晶格,成 正六面体结晶,由于结晶总是在结晶面溶质偏析小的地 方和结晶潜热散出最快的地方优先生长,在晶核长大过 程中,棱角比其他方向导热性好,而且棱角离未被溶质 富集的液体最近。因此棱角方向长大速度比其他方向要 快,从八个角成长为菱锥体的尖端,其生长方向几乎平 行于热流,构成树枝晶主轴,称之为一次树枝臂。垂直 于一次枝晶臂而长出分叉的枝晶叫二次枝晶臂。冷却速 度继续增加时,在二次枝晶臂上垂直长出三次枝晶臂, 这些枝晶彼此交错在一起宛如茂密的树枝。从而使结晶 潜热从液体中可以很容易的通过彼此连接的枝晶而传导 出来,直到完全凝固为止
试验指出,二次枝晶间距与区域凝固时间 tc 关系如图8-14。它
们的经验关系式:
l 0.00716tc0.5 (1.5%C,1.1%Mn) lI 0.0518tc0.44 (0.6%C,1.1%Mn)
树枝晶间距对钢锭结构、显微偏析有重要影响。实际钢锭凝固时 凝固速度与温度梯度不可能彼此独立变化,而通过凝固时放出热 量来影响整个凝固过程。这样就可用冷却速度来控制树枝晶间距 ,以得到细的树枝结构。而影响冷却速度最重要的因素是凝固方 法。图
第八章 钢的凝固理论
凝固理论
凝固理论
8.1 钢液结晶与凝固结构
8.1.1 均质形核
(1)新核的形成引起系统的自由能的变化: · 体积自由能的下降: ΔGv=-(4/3)(πγ3 (GA-GB)) 式中:γ:球形晶核的半径;GA:A相体积自由能; GB:A相体积自由能 · 表面自由能的增加: ΔGF=4πγ2σ 式中:σ:A、B两相界面自由能
第8章凝固理论

(
)
(
)
(16)
(4)求ΔG 和r :
∂ (∆GΣ ) =0 ∂r
﹡
﹡
(17)
lc
(2 − 3 cosθ + cos θ )[2πr * σ
3
− πr*2 ∆G = 0
]
(18)
而
2 − 3 cosθ + cos 3 θ ≠ 0, 故: 2πr*σ lc − πr*2 ∆G = 0
(19)
r* =
构都不相同的晶粒。各种共晶合金系和包晶合金系中绝大部分合金的结晶属于这一 类。铸态合金的复相组织大多由此而形成。 8.1.3 结晶的微观基本过程 尽管结晶的类型较多, 表现形式不一, 各有其特点, 但是其基本过程却是一致的。 结晶是晶体在液态中从无到有、由小到大的过程。从无到有可看作是晶体由“胚 胎”到“出生”的过程,称为生核;由小变大可以看作是晶体出生后的长大过程, 称为长大。二者即紧密联系又相互区别。在铸态组织中所观察到的许许多多晶粒就 是这样形成的。图 1 为微体积内结晶过程的示意图[1],这里假设液体在相当于图中 所示的小体积内,第一秒钟生出 5 个晶核,至第二秒钟时,它们已长大到可观程度, 并呈现出规则的几何外形,与此同时,又有 5 个新晶核形成。以下依次类推。直到 第七秒钟时,各晶粒已由单个地孤立自由长大,经过中间局部接触相互干扰,而犬 牙交错地完全相互接触了,若这时液体也完全消失,那么整个结晶过程就完成了。 显然,结晶刚完成时所获得的组织应是形状和尺寸都不甚规则的多晶粒组织。
(6)
由(6)式可知:临界晶核半径 r*是与过冷度成反比。由图(2)可知: · r<r*: 晶核长大导致系统自由能增加,新相不稳定; · r>r*: 晶核长大导致系统自由能减少,新相能稳定生长; · r=r*: 形核和晶核溶解处于平衡。 因此:在一定温度下,任何大于临界半径的晶核趋向于长大,小于临界半径晶核 趋向消失。 虽然 r>r*的晶核长大能够使体系的自由能降低。但是当 r=r*时,ΔG 为正,这 * 说明形成临界晶核时,需要一定的能量,这个补充的能量叫形核功ΔG 。也就是只 有获得了大小相当于形核功ΔG*的额外能量的原子集团才能形成临界晶核。这部分 额外能量主要靠液态金属的能量涨落来供给的。 所谓能量涨落是指微元体积内自由能短暂的偏离平均值,因此在液体中具有能量 涨落的微元体,在某一瞬间,获得了足够高的能量以补偿形成临界晶核所欠缺的那 部分能量,使其形成晶核。如果没有能量涨落,则原子集团就无从得到缺少的那部 分能量的补充,晶核就不能形成。因此可以说,能量涨落是晶核形成的动力学条件。 将式(6)代入(5)式就可以得到形成临界晶核半径的形核功: ΔG*=(16πσ3Tf2)/ (3(Lf△T)2)=(1/3) (4πr2σ) (7) 由(7)式可见,形核功是临界晶核表面能的三分之一。过冷度△T 越大,ΔG*越 小。因此,要形成稳定的晶核,必须有过冷度与其相适应的能量涨落。所以,形核 速率随过冷度增加而增加。形核速率 I 为: I=Fsi·Sc·N·exp(-ΔG*/kT) (8) 2 式中 Fsi 为原子从液体向晶核表面的跳跃频率,Fsi=DI / α (DI 为液体中原子扩 2 2 散系数,α为跳跃距离) 。Sc 为围绕在晶核周围的原子数,大致表示为 4πr /σ ,N
冶炼技术课件——第八章 钢的浇铸

16
浇注工艺
钢液的镇静
当钢液精炼结束后,在桶内应静置5~10分钟。在镇静 时间内,钢液进一步均匀成分和温度,夹杂物充分上 浮。通过镇静可以调整浇注温度。
浇注温度和浇注速度
注温: 镇静钢的浇注温度通常高于液相线温度80— 100℃
钢的熔点可按公式 T熔=1539-∑⊿tixi 式中 1539-纯铁熔点,℃;
⊿ti—钢中某种元素i含量增加1%时熔点降低 值,℃。 xi—该元素的重量百分含量%
17
浇注速度
浇注速度是指单位时间内注入模内钢液重量或者液面上升 的高度。为了便于计算起见,生产中习惯于用注满锭 身所需要的时间来表示。显然浇注速度大,注满锭身 的时间就短。
18保护Βιβλιοθήκη 注钢液从钢包注入到钢锭模内,会与大气、耐火材料相接触, 导致钢液的二次氧化,为此在浇注过程中一般采用保护浇 注。目前的保护浇注可分为: 气体保护:一般采用氩气保护浇注。 固体保护:浇注时,加入模中的保护剂以固态状态担当 保护钢液的作用。这类保护剂主要有石墨渣、固体渣 等。 真空保护:浇注过程中,将钢包水口以下部位及浇注系 统均置于真空内。真空保护浇注不仅解决了钢液的再 次氧化,而且还能进一步脱气和去除钢中的非金属夹 杂物。
4
第一节钢的凝固理论
钢液结晶的一般规律 在液态金属中产生极小的晶体作为结晶中 心,这极小的晶体称为晶核; 晶核逐渐长大成较大的晶体。 形核率:一定的过冷度下,单位时间内, 单位体积的液态金属中所形成的晶核数 目。单位为晶核数目/(S.-mm3)。 在一定的过冷度下进行结晶时,液态金属 中以一定的形核率产生晶核,过冷度越 大,形核率越大,晶核的数目越多,与 此同时,已经产生的晶核按一定的长大 线速度(mm/s)长大,这样结晶到所有的 液态金属耗尽为止。
浇注工艺
钢液的镇静
当钢液精炼结束后,在桶内应静置5~10分钟。在镇静 时间内,钢液进一步均匀成分和温度,夹杂物充分上 浮。通过镇静可以调整浇注温度。
浇注温度和浇注速度
注温: 镇静钢的浇注温度通常高于液相线温度80— 100℃
钢的熔点可按公式 T熔=1539-∑⊿tixi 式中 1539-纯铁熔点,℃;
⊿ti—钢中某种元素i含量增加1%时熔点降低 值,℃。 xi—该元素的重量百分含量%
17
浇注速度
浇注速度是指单位时间内注入模内钢液重量或者液面上升 的高度。为了便于计算起见,生产中习惯于用注满锭 身所需要的时间来表示。显然浇注速度大,注满锭身 的时间就短。
18保护Βιβλιοθήκη 注钢液从钢包注入到钢锭模内,会与大气、耐火材料相接触, 导致钢液的二次氧化,为此在浇注过程中一般采用保护浇 注。目前的保护浇注可分为: 气体保护:一般采用氩气保护浇注。 固体保护:浇注时,加入模中的保护剂以固态状态担当 保护钢液的作用。这类保护剂主要有石墨渣、固体渣 等。 真空保护:浇注过程中,将钢包水口以下部位及浇注系 统均置于真空内。真空保护浇注不仅解决了钢液的再 次氧化,而且还能进一步脱气和去除钢中的非金属夹 杂物。
4
第一节钢的凝固理论
钢液结晶的一般规律 在液态金属中产生极小的晶体作为结晶中 心,这极小的晶体称为晶核; 晶核逐渐长大成较大的晶体。 形核率:一定的过冷度下,单位时间内, 单位体积的液态金属中所形成的晶核数 目。单位为晶核数目/(S.-mm3)。 在一定的过冷度下进行结晶时,液态金属 中以一定的形核率产生晶核,过冷度越 大,形核率越大,晶核的数目越多,与 此同时,已经产生的晶核按一定的长大 线速度(mm/s)长大,这样结晶到所有的 液态金属耗尽为止。
钢锭的凝固PPT课件

内部形成缩孔。
缩孔的类型
02
根据缩孔的位置和大小,可分为集中缩孔和分散缩孔。集中缩
孔较大,分散缩孔较小。
缩孔的影响
03
缩孔会导致钢锭的致密度下降,影响钢材的机械性能和可靠性。
钢锭的成分控制
01
02
03
成分的重要性
钢锭的成分是影响其机械 性能、耐腐蚀性和加工性 能的重要因素。
成分的控制方法
通过调整炼钢过程中的原 料配比、加入合金元素等 方式控制钢锭的成分。
Байду номын сангаас
02
钢液成分
钢液中的元素含量会影响其凝固过程中的物理和化学变 化,从而影响钢锭的质量。
03
钢锭模设计
钢锭模的设计会影响钢液的冷却速度和流动状态,进而 影响钢锭的结晶结构和质量。
02
钢锭凝固原理
钢锭的结晶过程
01
钢锭的结晶过程是指液态钢转变为固态钢的过程,包括 形核和晶核长大两个阶段。
02
形核阶段是钢锭内部形成晶核的过程,这些晶核在液态 钢中形成,并逐渐长大。
钢锭在凝固过程中,由于热应力和组 织应力的作用,在钢锭表面或内部形 成裂纹。
裂纹的影响
裂纹会导致钢锭的强度和韧性下降, 影响钢材的质量和安全性。
裂纹的类型
根据裂纹的形状和位置,可分为热裂纹和 冷裂纹。热裂纹发生在钢锭凝固过程中, 冷裂纹则发生在钢锭冷却或加工过程中。
钢锭的缩孔问题
缩孔的形成
01
钢锭在凝固过程中,由于体积收缩和温度梯度的影响,在钢锭
加工性能好
钢锭经过适当的加工后, 具有良好的切削加工性能, 能够提高机械零件的加工 效率。
钢锭在建筑行业中的应用
建筑结构件
金属凝固原理ppt课件

3、通过大量的实验研究,Chalmers及大野笃美等人 提出“激冷等轴晶游离”理论,Jackson、Southi等 人提出“枝晶熔断”及“结晶雨”理论,以此为指 导可有效控制结晶过程和凝固组织。在这些理论的 基础上,机械及超声波振动、机械及电磁液相搅拌、 孕育处理、变质处理等技术得以发展与推广并仍在 不断改进及完善。
可锻铸铁、球墨铸铁:战国时期已有白心、黑心可锻铸铁。 西汉时期此技术达成熟,成为铸作坊中的常规工艺。近年来 发现近十件石墨为球形的铸铁农具。
层叠铸造:王莽时代,一次铸184枚铜钱、河南温县窑出 土的2000年前叠箱浇注的铸件,一组18个马嚼子。
大型及特大型铸件:沧州铁狮子:公元953年:50吨;当 阳铁塔:公元1061年,50吨;正定铜佛:公元971年: 50吨;永乐大钟:公元1418年,46吨。
“王冠上的明珠” 航空发动机是航空航 天器的核心部件,其发展水平已成为一个国 家科技水平、军事实力和综合国力的重要标 志之一。人类航空史上航空动力技术的每一 次重大革命性进展,无不与凝固技术的突破 和进步相关。
“金融经济”、“网络经济”、“知识经济”等 意识的强烈冲击→传统的金属材料成形加工工业被 看成了“老气横秋”的“夕阳工业”。
1
AR 2
A
DL2
mls( )
3、Flemings等从工程的角度出发,进一步考 虑了SP两相区的液相流动效应,提出局部溶 质再分配方程等理论模型。
4、俄裔捷克铸造工程师Chvorinov通过对大量 冷却曲线的分析,巧妙地引入铸件模数的概 念,导出了著名的平方根定律,至今仍是铸 造工艺设计的理论依据2 之一。
例: 小尺寸铸件 金属型 快速凝固 凝固时间极短 (几秒) 溶质的扩散和对流的作用将不明显,导 热成为SP的控制环节。
可锻铸铁、球墨铸铁:战国时期已有白心、黑心可锻铸铁。 西汉时期此技术达成熟,成为铸作坊中的常规工艺。近年来 发现近十件石墨为球形的铸铁农具。
层叠铸造:王莽时代,一次铸184枚铜钱、河南温县窑出 土的2000年前叠箱浇注的铸件,一组18个马嚼子。
大型及特大型铸件:沧州铁狮子:公元953年:50吨;当 阳铁塔:公元1061年,50吨;正定铜佛:公元971年: 50吨;永乐大钟:公元1418年,46吨。
“王冠上的明珠” 航空发动机是航空航 天器的核心部件,其发展水平已成为一个国 家科技水平、军事实力和综合国力的重要标 志之一。人类航空史上航空动力技术的每一 次重大革命性进展,无不与凝固技术的突破 和进步相关。
“金融经济”、“网络经济”、“知识经济”等 意识的强烈冲击→传统的金属材料成形加工工业被 看成了“老气横秋”的“夕阳工业”。
1
AR 2
A
DL2
mls( )
3、Flemings等从工程的角度出发,进一步考 虑了SP两相区的液相流动效应,提出局部溶 质再分配方程等理论模型。
4、俄裔捷克铸造工程师Chvorinov通过对大量 冷却曲线的分析,巧妙地引入铸件模数的概 念,导出了著名的平方根定律,至今仍是铸 造工艺设计的理论依据2 之一。
例: 小尺寸铸件 金属型 快速凝固 凝固时间极短 (几秒) 溶质的扩散和对流的作用将不明显,导 热成为SP的控制环节。
凝固理论

空气卷入机构图解
影响二次氧化的因素
钢液成分
与钢中含碳量成反比,含C越高,二次氧化程度越小; C与O2反应,形成保护气膜; 在高碳钢中,大颗粒夹杂少。
注流形态
光滑致密注流吸氧量少,0.7ppm 波浪形注流吸氧量增加 散流吸氧量大大增加(20-40ppm)
连铸浇注温度是指中间包钢水温度,一般表示: TL为液相线温度,根据钢种不同可由公式计算。 文献中有多种公式:
合适浇注温度的确定
根据钢种计算了TL, 再加上ΔT 就可决定 浇注温度,再加上各 个阶段上温度损失, 就可决定出钢温度。 钢水温度与钢中碳含 量的关系
出钢后钢水温度调节方法
均温:
若补充到中间包内钢水热量损失等于中间包散热 损失,则中间包钢水温度趋于稳定. 由计算和实际测定,浇注开始后十几分钟,中间 包钢水温度基本上能稳定在某一温度范围,拉速 微小的变化对中间包钢水温度影响不明显。
连铸过程温度损失的分析——中间包温降
钢包吹Ar与未吹Ar中间包钢水温度分布
合适浇注温度的确定
氧化是指一定温度下氧溶解在钢液中的能力。
• 当向钢液中加入脱氧元素时,溶解氧与元素生成脱 氧产物而沉淀出来,脱氧元素与氧建立新的平衡。
二次氧化是指溶解在钢液中的合金元素与空气 中的氧、耐火材料和炉渣中的氧化物发生化学 反应,生成氧化相的反应产物。
浇注过程中发生二次氧化的氧源
注流与空气接触的直接氧 化; 注流卷入空气与中间包结 晶器内钢液的相互作用; 包衬耐火材料与钢水的相 互作用; 机械卷入钢液的悬浮渣滴 与钢水的相互作用。
钢中氧的行为
钢中的氧是控制冶炼和钢质量的重要因素。 液体钢中氧含量决定冶炼的进程、脱氧剂消耗、合金 元素的回收率、钢锭凝固行为、固体钢的纯净度。 钢水氧化性主要决定于钢中[C]含量和渣中(FeO)含量。 炼钢是属于氧化性熔炼。在冶炼末期,钢中除含有规 定的[C]外,还含有过多的[O]。 在出钢时必须加入脱氧剂脱除钢水中过多的氧。
钢液凝固的基本理论

过冷度越大,则自由能差越大,结晶潜热也越大;另外,结 晶时的潜热析出将补偿晶体物质向环境散热引起的温度下降, 使过冷度减小。其结果将形成一种动态平衡,可使过冷度ΔT保 持不变,换句话说,在一定的环境条件下,晶体的结晶温度是 不变的,结晶过程是在恒温下进行的,直至结晶结束。
利用上述现象,我们可以进行晶体实际结晶温度
T0 Tn
作出的τ-T曲线。(如右图)
冷却曲线中出现的水平台阶的
温度就是实际结晶温度。
纯金属结晶冷却曲线示意图
NETZSCH 404G3 高温差示扫描量热仪
主要用于对材料进行高温热分析,包括相转变温度及转变焓、多晶形 转变温度和转变焓、物质的比热、材料的玻璃化转变温度与比热变 化程度、熔点与熔化焓、晶体的结晶温度与结晶热焓、结晶度、固 化温度等。
图2—2是用热分析测定液态金属结晶时3种冷却曲线的情况。曲线中各转点表 示结晶的开始或终结。其中:a表示接近平衡的冷却,结晶在一定的过冷度下开始、 进行和终结,由于潜热的释放和逸散相等,所以结晶温度始终保持恒定,一直 到完全结晶后,温度才下降3b表示金属液冷却速度较快(实际生产的通常倩况) 的状态,结晶在较大的过冷度下开始,所以进行较快,而使潜热的释放大于热 的逸散,这样便使湿度逐渐回升,直至两者相等,而后结晶便在恒温下进行; 直到结晶完成后,温度才会下降;c表示冷却很快,结晶在更大的过冷度下开 始,而且浴热的释放始终小于热的逸散,所以结晶一直在连续降温的过程中进 行,直到结晶终结后,温度便又更快地下降。这后一种情况只能在较小体积的 液体中,或在大体积液体的局部区域内进行。
(二)理论结晶温度:
凡是纯元素(金属 非金属)都有一个严格不变的温 度点,在这温度下,液体与晶体永远共存,这个温度 就称为理论结晶温度 。T0符号 。
利用上述现象,我们可以进行晶体实际结晶温度
T0 Tn
作出的τ-T曲线。(如右图)
冷却曲线中出现的水平台阶的
温度就是实际结晶温度。
纯金属结晶冷却曲线示意图
NETZSCH 404G3 高温差示扫描量热仪
主要用于对材料进行高温热分析,包括相转变温度及转变焓、多晶形 转变温度和转变焓、物质的比热、材料的玻璃化转变温度与比热变 化程度、熔点与熔化焓、晶体的结晶温度与结晶热焓、结晶度、固 化温度等。
图2—2是用热分析测定液态金属结晶时3种冷却曲线的情况。曲线中各转点表 示结晶的开始或终结。其中:a表示接近平衡的冷却,结晶在一定的过冷度下开始、 进行和终结,由于潜热的释放和逸散相等,所以结晶温度始终保持恒定,一直 到完全结晶后,温度才下降3b表示金属液冷却速度较快(实际生产的通常倩况) 的状态,结晶在较大的过冷度下开始,所以进行较快,而使潜热的释放大于热 的逸散,这样便使湿度逐渐回升,直至两者相等,而后结晶便在恒温下进行; 直到结晶完成后,温度才会下降;c表示冷却很快,结晶在更大的过冷度下开 始,而且浴热的释放始终小于热的逸散,所以结晶一直在连续降温的过程中进 行,直到结晶终结后,温度便又更快地下降。这后一种情况只能在较小体积的 液体中,或在大体积液体的局部区域内进行。
(二)理论结晶温度:
凡是纯元素(金属 非金属)都有一个严格不变的温 度点,在这温度下,液体与晶体永远共存,这个温度 就称为理论结晶温度 。T0符号 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶核与夹杂物接触面积:
r 2 (1 cos2 )
球缺体积: 球缺表面积:
1 r 2 (2 3cos cos2 )
3
2rh 2r 2 (1 cos )
形成晶核时系统自由能变化:
(1)体积自由能 Gr :
Gr
1 r 2 (2 3cos
3
cos2 )G
(2)产生新相界表面自由能 Gr :
结论是:在一定温度下,任何大于临界半径的晶核趋向于长大, 小于冷度
金属
Sn Pb Al Cu Mn Fe Ni Co
熔点
f (K)
505.7 605.7 931.7 1356 1493 1803 1725 1736
过冷度
ΔT(k)
103 80 130 130 308 295 319 330
第八章 钢的凝固理论
凝固理论
凝固理论
8.1 钢液结晶与凝固结构
8.1.1 均质形核
(1)新核的形成引起系统的自由能的变化: · 体积自由能的下降: ΔGv=-(4/3)(πγ3 (GA-GB)) 式中:γ:球形晶核的半径;GA:A相体积自由能; GB:A相体积自由能 · 表面自由能的增加: ΔGF=4πγ2σ 式中:σ:A、B两相界面自由能
G 4 lc 2 2 3cos cos2 3(G) 2
非均质形核功与均质形核功相差 1 (2 3cos cos2 ) 。又知
4
— 180 ,cos180 0 ,晶体独立于液体中,形核功与均质形核相同;
— 0 , cos0 1 液体中质点已是一个晶核,不需任何过冷度就可形核;
T T f
0.208 0.133 0.110 0.174 0.206 0.161 0.186 0.181
8.1.2 非均质形核
上图为一个平面的夹杂物上形成一个半球缺的固体晶核,晶核与液
体、固体有三个界面。处于平衡时:
cos lr cx lc
式中: 为界面张力; 表示晶体在夹杂物表面的润湿倾向。
— 0 180 ,依附于外来质点形成晶核。
结论是非均质形核有效性决定于润湿角 。越小 ,形核功就越小,就易形核
,形核速率比较如图4-4。非均质形核的过冷度比均质形核大为减少。在实际生 产中主要是非均质形核,除模壁表面作为“依托”形成晶核外,液体金属中需含 有两类小质点:一类叫活性质点,如金属氧化物(Al2O3),其晶体结构与金属 晶体结构相似,它们之间界面张力小,可作为“依托”而形成核心。另一类是难 熔物质的质点,它们的结构虽然与金属晶体结构相差较远,但这些难熔质点表面 往往存在细微凹坑和裂纹,其中尚未熔化的金属,可作为“依托”而形成晶体核 心。因此,可以在钢液中加入形核剂以细化晶粒。
(3)总自由能变化 G :
G
(2 3cos
c
os2
)(
1 3
r
2
G
r
2
lc
)
(4)求 G 和 r :
(G ) 0 r
(2 3cos cos2 ) 2r lc r 2G 0
而 2 3cos cos2 0, 故: 2r lc r 2G 0
r 2 lc
G
以 r 代入 G 得:
8.1.3 晶体的长大
1.1.3.1 晶体的长大的能量消耗 - 原子的扩散 - 晶体的缺陷 - 原子的粘附 - 结晶潜热的导出
8.1.3.2 晶核长大的驱动力-成分过冷理论
(1)成分过冷的产生 · 纯金属凝固:过冷是靠模壁向外传热控制 · 合金凝固: 选分结晶 溶质元素在固相和液相的再分配 溶质浓度的不同使液相线温度不同
热。
(3)成分过冷与结构 ·当固液交界面前沿出现成分过冷时, 交界面就不
稳定了,不再保持平面结构。
· 按过冷度的大小,开始形成晶胞、晶胞树枝晶、 树
枝晶结构。
· 随成分过冷度的增加,结构形貌由晶胞发展为树 枝
晶。
8.1.3.3 树枝晶凝固
图8-8为晶体长大成树枝晶示意图。铁为立方晶格,成 正六面体结晶,由于结晶总是在结晶面溶质偏析小的地 方和结晶潜热散出最快的地方优先生长,在晶核长大过 程中,棱角比其他方向导热性好,而且棱角离未被溶质 富集的液体最近。因此棱角方向长大速度比其他方向要 快,从八个角成长为菱锥体的尖端,其生长方向几乎平 行于热流,构成树枝晶主轴,称之为一次树枝臂。垂直 于一次枝晶臂而长出分叉的枝晶叫二次枝晶臂。冷却速 度继续增加时,在二次枝晶臂上垂直长出三次枝晶臂, 这些枝晶彼此交错在一起宛如茂密的树枝。从而使结晶 潜热从液体中可以很容易的通过彼此连接的枝晶而传导 出来,直到完全凝固为止
实验测定:
实验研究指出,树枝晶间距 l 与凝固速度 R 和温度梯度有关。
l CRmGn
雅可比试验不同温度梯度和凝固速度对树枝形态的影响,并测定
了 l 和 l与 R 和 G 关系,如图8-13所示。由图可得出:
上述两经验式中,对一次晶间距,指数m、n值相差较大;对二次 晶间距,m、n值近似相等。不同作者得到的m、n值相差较大。
(2) 均质形核的条件: ΔGΣ=ΔGv+ΔGF=-(4/3)(πγ3 (GA-GB))+4πγ2σ
由图8-1可知,当ΔGΣ达到最大值时的晶核大小叫临界半径,在
时,r求:r
由上式可知,临界晶核半径是与过冷度成反比。由图(8-1)可知: — 晶核长大导致系统自由能增加,新相不稳定; — 晶核长大导致系统自由能减少,新相能稳定生长; — 形核和晶核溶解处于平衡。
(2) 成分过冷条件,由平衡相图可知:
dT m dC dx dx
式中: dT 为凝固前沿液相线温度梯度; dC 为凝
dx
dx
固前沿浓度梯度; m为液相线斜率。
当液体中实际温度低于液相线温度时就产生了成分过冷 区。那么不产生过冷的条件应该是实际温度梯度大于或 等于液相线温度梯度。即:
式中:GG为dd液Tx 体r中t 实际温或度梯度G,它m决dd定Cx于向外界的传
试验指出,二次枝晶间距与区域凝固时间 tc 关系如图8-14。它
们的经验关系式:
l 0.00716tc0.5 (1.5%C,1.1%Mn) lI 0.0518tc0.44 (0.6%C,1.1%Mn)
树枝晶间距对钢锭结构、显微偏析有重要影响。实际钢锭凝固时 凝固速度与温度梯度不可能彼此独立变化,而通过凝固时放出热 量来影响整个凝固过程。这样就可用冷却速度来控制树枝晶间距 ,以得到细的树枝结构。而影响冷却速度最重要的因素是凝固方 法。图