齿轮故障诊断方法综述
汽车变速器齿轮故障诊断方法探讨

汽车变速器齿轮故障诊断方法探讨汽车变速器是汽车动力传动系统中的重要组成部分,它通过变速器齿轮的转动实现汽车的换挡和变速功能。
随着汽车行驶里程的增加,变速器齿轮也会面临故障和损坏的问题。
本文将探讨汽车变速器齿轮故障的诊断方法,希望能帮助广大车主和汽车维修人员更好地了解和诊断变速器齿轮故障。
一、外观上的检查要检查变速器齿轮的外观是否有明显的损坏和磨损。
正常情况下,变速器齿轮应该光滑平整,没有裂纹、断裂和变形现象。
还需要检查齿轮的齿面是否有严重的磨损和磨损不均匀的情况。
如果发现这些问题,那么很可能是变速器齿轮出现了故障。
二、声音的判断在汽车行驶过程中,如果听到从变速器处传出的异常声音,比如嘎嘎声、咯咯声等,通常意味着变速器齿轮出现了故障。
因为正常情况下,变速器齿轮的运转应该是相对平稳的,不会发出明显的异常声音。
通过观察行驶过程中的声音变化,可以初步判断变速器齿轮是否出现了故障。
三、检查运行状态除了外观和声音方面的检查,还可以通过检查汽车在行驶过程中的运行状态来判断变速器齿轮是否出现了故障。
具体来说,可以观察车辆在换挡时是否存在明显的顿挫感和振动感,以及换挡的速度是否有明显的延迟。
如果发现这些问题,很有可能是变速器齿轮出现了故障。
四、使用故障诊断仪器在上述方法无法明确诊断变速器齿轮故障的情况下,还可以使用专业的故障诊断仪器进行诊断。
目前市面上有许多针对汽车变速器齿轮的故障诊断仪器,通过连接到汽车的OBD接口,可以实时监测变速器齿轮的运行状态,并对可能存在的故障进行诊断。
这种方法具有较高的准确性和可靠性,可以帮助快速、准确地判断变速器齿轮是否出现了故障。
汽车变速器齿轮故障的诊断方法可以通过外观检查、声音判断、运行状态检查以及使用故障诊断仪器等多种方式进行。
在实际操作中,可以根据车辆的具体情况综合运用这些方法,以便更加准确地诊断变速器齿轮的故障。
一旦发现变速器齿轮出现了故障,一定要及时进行修理和更换,以免影响车辆的正常行驶和安全性能。
齿轮减速机的故障诊断与维护方法

齿轮减速机的故障诊断与维护方法齿轮减速机是一种常见的机械传动装置,广泛应用于机械设备中。
然而,在长时间的运行过程中,由于各种原因可能会出现故障。
因此,了解齿轮减速机的故障诊断和维护方法,对于延长设备寿命、保持高效工作状态至关重要。
本文将介绍齿轮减速机的常见故障及其诊断方法,以及维护齿轮减速机的一些建议。
首先,我们来了解齿轮减速机的常见故障及其诊断方法。
1. 齿轮磨损和断裂:齿轮减速机长时间使用后,齿轮表面会磨损或出现断裂,导致传动效率下降甚至中断。
为了及时诊断这种故障,我们可以通过观察齿轮表面的磨损情况来判断。
如果齿轮表面出现明显的磨损,甚至断裂,那么说明齿轮出现了故障。
此时需要更换损坏的齿轮,并检查是否有更深层次的问题。
2. 轴承故障:轴承是齿轮减速机中承受载荷的重要部件,常常会由于磨损、过热等原因出现故障。
当轴承故障时,通常会发出明显的噪音,并伴有振动。
为了诊断这种故障,我们可以通过观察轴承是否出现异响和检测轴承的温度变化来判断。
如果轴承发出异常噪音,并且温度升高,则可以判断轴承存在故障。
此时需要及时更换故障的轴承,并检查是否有其他原因导致轴承故障。
3. 油液问题:齿轮减速机的运行需要润滑油来保持齿轮的正常运转。
然而,油液可能会因为老化、过热或污染等原因造成故障。
为了诊断这种故障,我们可以通过观察油液的颜色和气味来判断。
如果发现油液变黑、变稠或发出不正常的气味,那么需要更换油液。
此外,还应定期检查油液的油面高度和清洁度,以确保齿轮减速机的正常运行。
接下来,我们将重点介绍齿轮减速机的维护方法,以延长其寿命和保持高效工作状态。
1. 定期清洁:定期清洁齿轮减速机是保持其正常运行的关键。
在清洁过程中,应注意避免过度清洗,以免损坏重要零部件。
同时,要使用适当的清洗剂和工具进行清洁,并彻底清除污垢和沉积物。
2. 合理润滑:齿轮减速机的运行需要适量的润滑油,以减少摩擦和磨损。
因此,在使用过程中,需要定期检查润滑油的油面高度和清洁度,并及时更换老化或变质的润滑油。
汽车变速器齿轮故障诊断方法探讨

汽车变速器齿轮故障诊断方法探讨齿轮是汽车变速器中的重要部件,其质量和运行状态直接影响到变速器的性能和寿命。
齿轮故障诊断是汽车维修中的重要环节,它可以通过分析齿轮工作过程中的振动、噪声、热量等参数,找出齿轮故障的位置、类型和原因,为维修提供重要的依据和指导。
本文通过对齿轮故障的分析和实践经验总结,提出了一些常用的齿轮故障诊断方法供参考。
一、齿轮故障的类型和原因齿轮故障主要有磨损、断裂、齿面裂纹、变形等几种类型,具体表现为:1.磨损:主要是因为齿轮长时间工作磨损而导致的,其表现为齿面粘着、齿面磨损、齿宽缩小等。
2.断裂:主要是因为齿轮在工作中受到了过大的应力而导致的,其表现为齿轮齿面裂纹和齿轮齿根裂纹。
3.齿面裂纹:主要是因为齿轮材料的松散、钢材缺陷、热处理不当等原因导致的,其表现为齿面上有明显的微小裂纹。
上述齿轮故障的原因主要有以下几点:1.设计与加工不良:齿轮设计的不合理、加工质量差、表面质量差等都会导致齿轮故障。
2.缺乏维护:由于常规保养不到位或者规律性检查不到位,时间一长会导致齿轮故障。
3.使用过度:齿轮长时间高速运转或超过设计负载时,易导致齿轮故障。
4.使用环境恶劣:如使用在腐蚀性或高温高压、重载重磨损等环境下,也会导致齿轮故障。
1.齿轮振动检测法齿轮振动检测法是一种常用的齿轮故障诊断方法,其原理是通过对齿轮工作时振动信号的分析,找出齿轮故障的类型和位置。
其具体操作流程为:(1)安装加速度传感器:将加速度传感器安装在齿轮箱顶盖等位置,使其可以有效地接收到齿轮旋转时产生的振动信号。
(2)检测齿轮振动:对齿轮进行旋转,并记录下齿轮旋转时产生的振动信号。
(3)信号分析:通过对齿轮振动信号进行频谱分析、时域分析、幅值分析等,判断齿轮故障的类型和位置。
2.齿轮声谱分析法(1)测量齿轮表面温度:使用红外仪等温度测量仪器,测量齿轮表面的温度值。
(1)获取样品:从齿轮箱中取得一定量的润滑油样品。
(2)分析润滑油:通过对润滑油样品进行粘度、酸值、闪点等参数的分析,找出其中是否存在金属颗粒、碎屑等异常物质,并对其进行形态和化学成分的分析。
齿轮的故障诊断(推荐)

---------------------------------------------------------------最新资料推荐------------------------------------------------------齿轮的故障诊断(推荐)齿轮的故障诊断齿轮的故障诊断齿轮的故障诊断一、齿轮的常见故障一、齿轮的常见故障齿轮是最常用的机械传动零件,齿轮故障也是转动设备常见的故障。
据有关资料统计,齿轮故障占旋转机械故障的 10.3%。
齿轮故障可划分为两大类,一类是轴承损伤、不平衡、不对中、齿轮偏心、轴弯曲等,另一类是齿轮本身(即轮齿)在传动过程中形成的故障。
在齿轮箱的各零件中,齿轮本身的故障比例最大,据统计其故障率达 60%以上。
齿轮本身的常见故障形式有以下几种。
1. 断齿断齿是最常见的齿轮故障,轮齿的折断一般发生在齿根,因为齿根处的弯曲应力最大,而且是应力集中之源。
断齿有三种情况:①疲劳断齿由于轮齿根部在载荷作用下所产生的弯曲应力为脉动循环交变应力,以及在齿根圆角、加工刀痕、材料缺陷等应力集中源的复合作用下,会产生疲劳裂纹。
裂纹逐步蔓延扩展,最终导致轮齿发生疲劳断齿。
②过载断齿对于由铸铁或高硬度合金钢等脆性材料制成的齿轮,由于严重过载或受到冲击载荷作用,会使齿根危险截面上的应力超过极限值而发生突然断齿。
1 / 18③局部断齿当齿面加工精度较低、或齿轮检修安装质量较差时,沿齿面接触线会产生一端接触、另一端不接触的偏载现象。
偏载使局部接触的轮齿齿根处应力明显增大,超过极限值而发生局部断齿。
局部断齿总是发生在轮齿的端部。
2. 点蚀点蚀是闭式齿轮传动常见的损坏形式,一般多出现在靠近节线的齿根表面上,发生的原因是齿面脉动循环接触应力超过了材料的极限应力。
在齿面处的脉动循环变化的接触应力超过了材料的极限应力时,齿面上就会产生疲劳裂纹。
裂纹在啮合时闭合而促使裂纹缝隙中的油压增高,从而又加速了裂纹的扩展。
汽车变速器齿轮故障诊断方法探讨

汽车变速器齿轮故障诊断方法探讨汽车变速器齿轮是传动系统中较为重要的一部分,齿轮故障会严重影响汽车的性能和寿命,甚至会导致事故发生。
因此,及时发现和解决齿轮故障非常关键。
本文将探讨汽车变速器齿轮故障的诊断方法。
一、外观检查法外观检查法是最简单的一种方法,是通过观察齿轮的外观,来判断是否存在裂纹、磨损等问题。
通常,用肉眼直接找到影响变速器齿轮性能的损伤部位。
如果齿面磨损或产生一定程度的大面积磨损,则说明其齿轮的工作寿命已经到达极限,需要及时更换。
二、声音检查法通过听声音也可以判断汽车变速器是否有齿轮故障。
通常,变速器中的齿轮,会发出各种不同的声音,比如卡顿声、杂音等等。
卡顿声通常发生在变速器档位变速时,而杂音则会随着车速和发动机转速的变化而变化。
如果发现了上述问题,建议及时去修理厂进行检查和修理。
三、性能检查法性能检查法主要是对汽车变速器进行试车,通过检测车辆在加速、减速、换挡等过程中的性能表现,来判断齿轮是否存在故障。
比如,加速过程中是否顺畅,换挡是否有卡顿等。
如果发现车辆出现了突然失速、顿挫现象或变速器换挡异常,那么极有可能是变速器齿轮出现了问题。
四、精密测量法精密测量法,通常使用精度较高的工具,比如测试装置、测量仪器等,对变速器齿轮进行精密测量。
通过测量齿轮齿距、齿面等各项尺寸,来确定齿轮是否存在磨损或损伤问题。
这种方法需要专业的技术和设备支持,需要在修理厂或专业的检测机构中进行。
总而言之,针对汽车变速器齿轮故障,以上四种方法都是可以有效诊断的。
在日常使用中,应该多关注车辆的性能表现,及时发现问题并及时进行修理。
同时,定期对汽车进行保养和维护,也是非常关键的。
两种特定齿轮的故障诊断方法研究中期报告

两种特定齿轮的故障诊断方法研究中期报告
中期报告:两种特定齿轮的故障诊断方法研究
概述:
此次中期报告介绍了两种特定齿轮的故障诊断方法研究的进展情况。
分别是直齿锥齿轮和行星轮系的齿轮。
通过实验和数据分析,初步探讨
了故障诊断方法的实施方案。
研究方法:
1. 直齿锥齿轮的故障诊断方法
通过实验考察了直齿锥齿轮在故障前、后的振动特征。
使用传感器
对其进行实时监测,得到了齿轮的振动信号。
分别针对不同故障模式,
用时域信号和频域信号的方法进行特征提取。
最终采用人工神经网络模
型对齿轮进行诊断。
2. 行星轮系的故障诊断方法
通过实验测试行星轮系在故障前、后的声音和振动信号。
使用该行星轮系的加速度传感器在其固定于测试平台上的状态下,可以记录齿轮
故障前和故障后的振动信号,分析判断出行星轮故障所造成的各种特征
信号,采用分类模型对齿轮故障进行诊断。
研究结果:
1. 直齿锥齿轮的故障诊断方法实验结果表明,采用时域和频域信息
结合的方法具有较好的故障诊断能力。
人工神经网络模型可以自适应学
习齿轮的振动特征,重叠受损齿和齿面损伤的诊断准确率高达90%。
2. 行星轮系的故障诊断方法实验结果表明,采用特征提取和分类器
结合的方法能够监测行星轮轴承的损伤,特别是齿轮表面微裂纹、齿面
疲劳、轴向空隙等缺陷。
分类器模型的准确性高达94%。
结论:
通过实验和数据分析,我们初步探讨了直齿锥齿轮和行星轮系的故障诊断方法,该方法能够有效监测并预测齿轮故障的发生。
本研究在进一步应用中将更加完善并成熟。
齿轮和滚动轴承故障的振动诊断

齿轮和滚动轴承故障的振动诊断在现代工业中,齿轮和滚动轴承作为传动系统的重要元件,其运行状态直接影响着设备的稳定性和可靠性。
然而,由于负载、环境、材料等多种因素,这些元件在运转过程中常常会出现各种故障。
不及时诊断和维修,会对生产造成严重影响。
因此,本文将围绕齿轮和滚动轴承故障的振动诊断展开讨论,旨在为设备管理人员提供有益的参考。
齿轮故障主要是指齿轮在运转过程中出现的各种损伤或异常现象,如齿面磨损、齿面疲劳、断齿等。
这些故障主要源于设计缺陷、制造误差、装配不当、润滑不良等因素。
根据故障性质,齿轮故障可分为突发性故障和渐发性故障。
滚动轴承故障主要是指轴承元件在运转过程中出现的各种损伤或异常现象,如滚珠磨损、滚珠疲劳、保持架损坏等。
这些故障主要源于设计缺陷、制造误差、装配不当、润滑不良等因素。
根据故障性质,滚动轴承故障可分为初期故障、稳定故障和疲劳故障。
齿轮和滚动轴承在传动系统中紧密,共同维持设备的正常运转。
然而,它们出现的故障却有所不同。
齿轮故障主要表现为齿面磨损、变形等,而滚动轴承故障则主要表现为滚珠、保持架等元件的磨损、疲劳等。
齿轮故障通常在较大的冲击载荷下发生,而滚动轴承故障则通常在长时间的平稳载荷下逐渐出现。
振动诊断是通过采集设备在运行过程中的振动数据,分析其特征和规律,以此判断设备是否存在故障以及故障的性质和程度。
通过振动诊断,可以及早发现潜在的故障隐患,防止设备在生产过程中出现停机或损坏,从而提高设备的可靠性和稳定性。
针对齿轮故障的振动诊断,可以通过采集齿轮箱体或轴承座的振动信号,分析其频谱特性和时域波形。
通过比较正常状态和故障状态下的振动数据,可以判断出齿轮是否存在故障以及故障的性质和程度。
还可以采用共振解调技术、波形分析技术等方法,进一步提高诊断的准确性和可靠性。
针对滚动轴承故障的振动诊断,可以通过采集轴承座或设备的振动信号,分析其频谱特性和时域波形。
通过比较正常状态和故障状态下的振动数据,可以判断出滚动轴承是否存在故障以及故障的性质和程度。
第七章:齿轮故障与诊断

二、齿轮振动的频率分析齿轮缺陷分布对边频带的影响(a)集中缺陷,(b)分布缺陷频率调制及边频带不同调制指数下的边频带二、齿轮振动的频率分析实际的齿轮系统中,调幅与调频总是同时存在,边频成分是两种调制单独作用时所产生的边频成分的叠加,所以诊断时应注意:齿轮振动信号频谱(a)理想情况,(b)实际情况齿轮振动信号中分解出附加脉冲(a)总信号,(b)附加脉冲,(c)调幅信号载荷对鬼线及啮合频率分量的影响(a)轻载,(b)重载7.3 齿轮故障诊断一、功率谱分析通过细化谱提高频率分辨率,识别边频带二、倒谱分析倒谱的主要优点:(a)齿轮箱振动信号频谱,频率为:400;(b) 对(a)中3.5~13.5Hz频段内细化至2000(c) 将图(b)中7.5~9.5kHz横向放大得到的频谱;由图得到的倒谱二、倒谱分析例2:倒谱对信号源与系统传递特性影响的分离(a)频谱图,(b)倒谱图三、时域分析1、时域平均时域平均的实现方法:(1)多次平均:保留齿轮回转频率及其各阶倍频成分,逐渐消除噪声分量。
(2)在齿轮传动过程中,需对若干个齿轮逐个诊断时,可先将时标信号延伸或压缩,按不同的周期来作时域平均,可得到代表不同齿轮状态的振动信号。
齿轮在各种状态下的时域平均信号转速波动对时域平均的影响(a)正常齿轮的时域平均信号,(a)转速均匀,(b)齿轮安装对中不良的时域平均信号,(b)转速飘移,(c)齿轮齿面严重磨损时的时域平均信号,(c)转速颤抖。
(d)齿轮局部剥落的时域平均信号。
齿轮的常规振动成分残差分析法(1)齿轮振动平均,(2)常规振动,(3) 残差,(4) 残差平方三、时域分析解调法齿轮故障频率特征为:啮合频率及高次谐波——均布故障频谱与倒谱分析是通过边频识别故障。
解调法是直接分析调制函数在齿轮故障影响下的变化。
,与信号本身强弱无关—突出相位变化的信息—频率解调—用包络分析来实现—幅值解调。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
齿轮故障诊断方法综述摘要齿轮是机械设备中常用的部件,而齿轮传动也是机械传动中最常见的方式之一。
在许多情况下,齿轮故障又是导致设备失效的主要原因.因此对齿轮进行故障诊断具有非常重要的意义。
介绍了故障的特点和几种诊断方法,并比较了基于粒子群优化的小波神经网络,基于相关分析与小波变换,基于小波包和BP神经网络和基于小波分析等故障诊断方法的优缺点,并提出了齿轮故障诊断的难点和发展方向。
关键字齿轮故障诊断诊断方法分析比较发展目录第一章齿轮故障诊断发展及故障特点 (1)1.1 齿轮故障诊断的发展 (1)1. 2齿轮故障形式与震动特征 (1)第二章齿轮传动故障诊断的方法 (2)2. 1高阶谱分析 (2)2。
1。
1参数化双谱估计的原理 (3)2.1.2试验装置与信号获取 (3)2。
1.3 故障诊断 (4)2.1.4应用双谱分析识别齿轮故障 (5)2.2基于边频分析的齿轮故障诊断 (6)2.2.1分析原理 (6)2。
2.2铣床振动测试 (6)2。
2。
3边频带分析 (8)2。
2.4故障诊断 (9)2. 3时域分析 (10)2.3。
1时域指标 (10)2。
3。
2非线性时间分析 (11)第一章齿轮故障诊断发展及故障特点1。
1 齿轮故障诊断的发展齿轮故障诊断始于七十年代初,早期的齿轮故障诊断仅限于在旋转式机械上测量一些简单的振动参数,用一些简单的方法进行诊断.这些简单的参数和诊断方法对齿轮故障诊断反应灵敏度较低,根本无法准确判断发生故障的部位。
七十年代末到八十年代中期,旋转式机械中齿轮故障诊断的频域法发展很快,其中R.B。
Randall和James1.Taylor等人做好了许多有益的工作,积累了不少故障诊断的成功实例,出现了一些较好的频域分析方法,对齿轮磨损和齿根断裂等故障诊断较为成功。
进入九十年代以后,神经网络、模糊推理和网络技术的发展和融合使得齿轮系统故障诊断进入了蓬勃发展的时期。
我国学者在齿轮故障诊断研究方面也做了大量工作。
1986年,屈梁生、何正嘉在《机械故障诊断学》中分析了齿轮故障的时频域特点.1988年,颜玉玲、赵淳生对滚动轴承的振动监测及故障诊断进行了分析。
1997年,郑州工业大学韩捷等在“齿轮故障的振动频谱机理研究”中对齿轮的故障机理做了探讨。
西安交通大学张西宁等在“齿轮状态监测和识别方法的研究”中提出了一种新方法即基于一致度分析。
1. 2齿轮故障形式与震动特征通常齿轮在运转时,由于制造不良或操作维护不善会产生各种形式的故障。
故障形式又随齿轮材料、热处理、运转状态等因素的不同而不同,常见的齿轮故障形式有齿面磨损、齿面胶合和擦伤、齿面接触疲劳和弯曲疲劳与断齿.在齿轮运转状态下,伴随着内部故障的发生与发展,必然会产生振动上的异常。
实践证明,振动分析是齿轮故障检测中最有效的方法。
若齿轮副主轮转速为n1,齿数为z1,频率为f1;从轮转速为n2,齿数为z2,频率为f2,则齿轮啮合频率fC为:fC=Nf1z1=Nf2z2=Nn160z1=Nn260z2(1) 式中:N=1,2,3,…。
齿轮处于正常或异常状态下,啮合频率振动成分及其倍频总是存在的,但两种状态下的振动水平有差异。
如果仅仅齿轮故障诊断分析第1页依靠对齿轮振动信号的啮合频率及其倍频成分的差异来识别齿轮的故障是不够的,因故障对振动信号的影响是多方面的,其中包括幅值调制、频率调制和其他频率成分.第二章齿轮传动故障诊断的方法齿轮故障的诊断方法从难易程度来说可以分为简易诊断方法和精密诊断方法.简易诊断方法包括:有经验的人员可以通过直接听噪声,或感受振动强度来初步判断齿轮系统是否处在正常状态。
通过直接观察信号波形的幅值、变化趋势来判断齿轮的工作状态。
简易诊断方法简单、快速,但效果一般.精密诊断方法利用精密仪器来获取系统运行的信号,并对信号进行一系列处理来获得所需要的信息。
精密诊断方法的准确性高,但对人员素质要求高,需要的仪器也比较精密。
齿轮系统在运行过程中,和运行状态有关的一系列物理量都是随时间的变化,以各种各样的信号表达出来。
因此,信号处理方法是齿轮故障诊断中最关键的一个环节。
它对前面环节所得到的信号进行分析,又给后面最终的决策环节提供信息。
有关齿轮的信号处理方法目前已经取得了很大的发展,它借鉴了振动力学、摩擦学、系统论、控制论、计算机技术、人工智能技术和非线性理论等多个领域的研究成果,广泛采用传感器技术、计算机和信息处理等现代科学技术作为其技术支持。
2. 1高阶谱分析高阶谱是在高阶累积量的基础上发展起来的,是近年来国际上在一个信号处理方面比较新的方向。
它是用来分析非高斯、非线性、非最小相位的有力工具,相对于相关函数和功率谱来说,它不仅能提供时间、幅值、频率上的信息,还能提供相位上的信息。
目前国内外已经将其引入齿轮检测中.双谱技术用于齿轮故障诊断,利用该方法能有效地识别出信号中的二次相位耦合情况,可以准确地检测出齿轮中存在的分布缺陷。
将双谱和双相干谱进行比较,通过对齿轮在正常、磨损、断齿状态下的分析表明双谱比双相干谱的能量分布更集中,更利于故障特征提取。
齿轮故障诊断分析第2页齿轮啮合过程中的振动信号往往呈现出非线性、非高斯性,加上强噪声的干扰,给故障特征的提取带来了较大的困难。
为实现齿轮单一故障的分类和诊断,采用时序参数化的双谱分析方法,对齿轮故障模拟试验台上采集的正常状态和3种故障状态的振动信号进行了分析,根据双谱谱峰的分布及数目的差异性,实现了齿轮正常、裂纹、磨损、剥落4种状态的识别和分类。
结果表明,双谱分析可以抑制背景噪声,并有效提取信号中的非高斯成分,是一种有效的故障诊断方法.2。
1。
1参数化双谱估计的原理双谱的计算方法有2种:①直接由定义计算双谱(实质上,双谱定义为平稳时序的3阶自相关函数的二维傅立叶变换);②间接由参数模型估计双谱,其计算简便,本研究利用AR(p)模型来估计双谱。
2。
1.2试验装置与信号获取试验装置为齿轮故障模拟实验台,它由控制台、直流电动机、加载电机、直流调速加载系统、齿轮减速器组成,如图1所示.传感器的安装位置是正确获取信号的关键,对于齿轮箱而言,齿轮故障的振动信号在传递中经过环节较多(齿轮—轴-轴承—轴承座—测点),很多高频信号在传递中可能丧失了,所以,进行测试时应选择轴承座附近刚性较好的部位,两个压电式传感器分别布置在中间轴和输出轴的轴承座外壁上,方向均为竖直向上。
齿轮故障诊断分析第3页齿轮箱是由三轴式二级变速器组成,输入轴与输出轴上齿轮均为正常齿轮(z1=26,z4=85,m =2),中间轴上齿轮为二联齿轮(z2=64,m =2)和三联齿轮(z3=40,m =2),上面布置有模拟故障,故障的变换由齿轮箱前后两个换档手柄调节实验中采样频率设定为10 kHz,数据长度为12 902,分3种转速(400、700和1 000 r/min),在3种承载(无载,轻载,重载)工况下进行采样。
2。
1.3 故障诊断实验中,在1 000 r/min重载工况下采集正常信号和3种故障信号的时域图及FFT频谱图如图3、图4所示从时域波形图中可见,齿轮的4种运行状态的差别较小.从FFT频谱图可见,当存在故障时,能量的分布发生了一定的变化,出现了新的能量集中区域,但是4种状态在低频处的能量集中有一定的相似性,因此直接用肉眼区分存在一定的困难,需进一步处理才能进行准确的分类和诊断。
齿轮故障诊断分析第4页2.1。
4应用双谱分析识别齿轮故障当齿轮出现裂纹、局部剥落等故障时,将产生周期性的冲击信号,信号的分布则发生一定的变化,呈现出一定的非高斯性,故将双谱分析应用到齿轮故障的分类和诊断中。
Matlab信号处理工具箱提供的函数arorder和arrcest指令可用于AR模型定阶和模型的参数估计,调用相关指令对已经估计出的参数再进行双谱分析, 4种状态的双谱估计结果如图5所示齿轮故障诊断分析第5页由图5可以看出,不论是正常齿轮还是故障齿轮,双谱图上都存在着谱峰,其高斯偏离性很明显。
在正常情况下,主峰值仅在低频处有一处,而故障情况下,裂纹和剥落故障均出现了6个谱峰,但谱峰的形状及能量有一定的差异,而磨损故障的谱峰个数较多也较集中,且故障状态下的谱峰在低频及高频处均有分布,这是由于不同齿轮故障的调制作用不同,由此产生“调制频率各分量之间发生耦合程度不同”的必然结果.根据4种状态谱峰的数目及分布不同,可以完成较好的分类和诊断.2.2基于边频分析的齿轮故障诊断2。
2.1分析原理边频带的产生主要与振动信号被调制有关,如齿轮箱中齿轮轴上若存在偏心故障或者啮合齿轮的某些齿上出现较为严重故障时,就会产生调制,即在特征频的两旁有一些边频带[3-4]97-101。
为了准确的诊断,就必须进行细化分析。
细化分析[5-6]的基本思想是利用频移定理,对被分析信号进行复调制,再进行重新采样做傅立叶变换,即可得到较高的频率分辨率,其主要步骤为:假定要在频带(f1~f2)范围内进行频率细化,此频带中心频率为f0=(f1+f2)/2,对被分析信号x(k)进行复调制,得到频移信号y(k)=x(k)e-i2πKL/N,L=f0Δf式中,Δf是未细化分析前的频率间隔。
根据频移定理,Y(n)=X(n+L),相当于把X(n)中的第L条线移到Y(n)的零谱线位置了。
此时降低采样频率为2NΔf/D,对频移信号重新采样或对已采样数据频移处理后进行选抽,就能提高频率分辨率D倍分析Y(n)零谱线附近的频谱,也即X(n)中第L 条谱线附近的频谱.2。
2.2铣床振动测试本次试验中,首先对铣床的振动信号进行了采集和分析,并且进行了故障分析。
(1)测试系统试验仪器信号的采集是由压电式加速度传感器进行,经DLF系列多通道电荷电压滤波积分放大器转换为电压信号,用INV310大容量数据自动采集系统和DASP软件进行信号处理,分析其频齿轮故障诊断分析第6页谱.(2)试验方案和测试过程(1)确定测点和转速。
首先,在机床空载状态下,通过触摸找出振动较大的部位.其次,在各部位用测试仪器确定在铣床空载状态下,振动较大的位置。
选定主轴转速在n=75、150、300、475、600、750、950、1180、1500r/min时,传动路线为其中1~10号点(图1)振动较大,并且大部分的振动与加工精度有直接关系,因此作为这次研究的主要测试点(对称点也进行相应测试,但没在图中标出)。
(2)计算测试转速下的轴的转动频率、齿轮啮合频率(表1、表2)。
齿轮故障诊断分析第7页(3)测试过程。
①连接仪器,对仪器仪表进行零位调整,设置参数;②启动机床,观察接收的信号,当信号稳定后进行采集;③改变转速和测点,记录每种工作状况下各点的数据。
2.2。
3边频带分析边频带成分包含有丰富的齿轮故障信息,要提取边频带信息,在频谱分析时必须有足够高的频率分辨率[4]97—101。