romax软件应用——齿轮箱振动分析

合集下载

基于Romax Design的车用减速器齿轮修形与接触分析

基于Romax Design的车用减速器齿轮修形与接触分析
第 57 卷 第 5 期 Vol. 57 No. 5
农业装备与车辆工程
AGRICULTURAL EQUIPMENT & VEHICLE ENGINEERING
2019 年 5 月 May 2019
doi:10.3969/j.issn.1673-3142.2019.05.025
基于Romax Design的车用减速器齿轮修形与接触分析
谢坤琪,张开元,刘欣荣
(200082 上海市 上海理工大学 机械工程学院)
[ 摘要 ] 目前减速器大多存在齿轮磨损、振动冲击、噪音大等问题,齿轮修形被认为是可以解决此类问题
的有效技术。针对上述问题,利用 RomaxDesign 软件,以齿轮修形理论为基础,对修形前后的齿轮进行
传递误差分析、齿轮接触分析、齿根应力分析并进行了优化。结果显示,优化后齿轮传动时会更加平稳,
图 1 齿轮箱局部示意图 Fig.1 Part schematic of gearbox
0 引言
减速器是车辆动力传递的核心部件,影响着 汽车动力传递的效率以及动力传递的平稳性。齿 轮作为减速器的关键部件,其质量以及传递效率 直接作用于减速器,若加工质量或装配公差不达 标,则会在工作中产生啮合冲击、齿轮偏载现象, 引起剧烈振动和噪音,影响承载性能。目前,齿 轮修形 [1] 作为改善齿轮性能的一种方法已经得到 国内外一致认同,合理地修形可以提高齿轮的传 递性能,延长齿轮的使用寿命 [2]。
收稿日期 : 2018-04-17 修回日期 : 2018-05-03
三要素包括:最大修形量、修形曲线、修形长度,
且需要考虑主从动轮彼此之间的分配关系。齿廓
修形最关键的部分就是修形量的选取 [4]。本文采
用齿轮手册 [5] 所推荐的公式

用romax软件进行齿轮强度分析及齿形优化流程

用romax软件进行齿轮强度分析及齿形优化流程

用romax软件进行齿轮强度分析及齿形优化流程(吕浚潮)目录1.建立流程目的2.用romax软件建模过程3.强度分析过程4.齿轮优化过程4.1 齿向优化4.2 齿廓优化5.结论1.建立流程目的用romax软件对齿轮及轴进行建模,首先进行强度分析。

由于轴、轴承、齿轮的变形及受载,必然导致轮齿变形及及错位,减小单位啮合长度的最大载荷及传递误差(减小啮合噪声),对轮齿进行齿向及齿形修形,这样可以有效减小啮合线单位长度上的载荷,减小载荷突变,可减小啮合噪声。

2.用romax软件建模过程本部分简要地阐述了用romax软件建立换挡机构的过程,按先后顺序建立轴、轴承、齿轮,然后装配到一起,最后设置边界条件,建立分析工况。

具体过程如下:(1) 通过菜单栏的components按钮增加一个组(add Newassemble/component),弹出图2所示对话框。

图2.1 为模型增加一个部件(2) 首先增加一个轴组件,如图2.2,单击ok按钮。

图2.2 增加一个轴组件(3) 建立轴各段的截面形式、直径和长度,如图2.3。

设置轴各段的长度、截面直径、圆锥方向图2.3 建立轴各段的直径、长度及截面形式(4)当建完轴后,点击增加轴承按钮,打开轴承增加页面,选择符合要求的轴承。

增加轴承按钮选择轴承界面图2.4 增加轴承界面(5) 指定轴承安装在轴上的位置,如图2.5。

设定轴承在轴上位置图2.5 设置轴承位置截面(6) 按上述方法,把换挡机构的主轴、副轴全部建完。

然后按图2.1,增加一个齿轮部件,如图2.6。

增加一个齿轮部件图2.6(7) 继第6步,出现齿轮参数选择界面,如图2.7,选择齿轮类型(直齿或斜齿),螺旋角,螺旋方向,模数,主动齿轮或被动齿轮,压力角等参数。

设置齿轮的模数、压力角、直(斜)齿、主被动形式图2.7 齿轮参数选择界面(8) 单击next,进入齿轮参数设置页面,设定齿轮的齿宽、变位系数、齿顶高系数、齿根高系数、齿顶倒角、齿根倒角、跨齿数等参数。

基于Romax的变速箱建模及模态分析

基于Romax的变速箱建模及模态分析

基于Romax的变速箱建模及模态分析Romax是著名的机械设计软件,该软件可以用来进行机械系统的建模、仿真和分析,其中包括变速箱的建模及模态分析。

本文将详细介绍Romax的变速箱建模及模态分析流程。

一、变速箱建模在Romax中,变速箱的建模分为三个步骤:建立齿轮、建立轴承和连接齿轮。

1.建立齿轮首先,需要选择相应的齿轮进行建模,可以根据实际情况选择不同类型的齿轮。

进入Romax Gear模块,选择“New Gear”,然后从“Model Library”中选择相应的齿轮。

通常情况下需要填写参数,例如模数、齿轮宽度等,以确保齿轮的正确性。

2.建立轴承建立完齿轮之后,需要对其进行支撑。

在Romax Bearing模块中选择“New Bearing”,然后选择合适的轴承类型,如球轴承、滚子轴承等。

填写相应的参数后,可以将轴承放置在相应的位置上。

3.连接齿轮在将齿轮连接起来之前,需要在Romax Gears模块中选择“New Shaft Assembly”,然后选择正确的轴承类型。

然后在“New Gear”中选择齿轮并放置到相应的位置上,最后将齿轮进行连接。

二、模态分析在建立完变速箱的三维模型之后,就可以进入模态分析。

Romax使用有限元方法来预测变速箱的固有频率和固有振型,以便确定变速箱的可靠性和稳定性。

1.建立模态分析模型模态分析模型需要包括整个变速箱的结构,包括轴、齿轮、轴承、支撑等所有部分。

在Romax中,可以使用“Create New Model”来建立模态分析模型。

在建立模型时需要将齿轮和轴承等等加入到模型中。

2.设置分析参数确定好模态分析模型之后,需要设置一些分析参数,如边界条件、网格密度、模型尺寸和接触范围等等。

设置完这些参数后,可以使用FEA技术进行模态分析。

3.模态分析结果模态分析结果可以得到变速箱的固有频率和固有振型,这些结果可以用来判断变速箱的稳定性和可靠性。

同时,也可以进一步优化设计,以提高变速箱的实际性能。

基于Romax的风电齿轮箱齿轮修形仿真分析_李瑞亮

基于Romax的风电齿轮箱齿轮修形仿真分析_李瑞亮
5] 。齿廓修形是指将齿轮副啮合的 会出现啮 合 干 涉 [
风力发电机关键部件之一 , 功率等级从几百千瓦级到
3-4] , 如 何 提 高 齿 轮 箱 的 性 能、 兆瓦级 [ 延长寿命一直
是风力发电 领 域 的 热 点 问 题 。 齿 轮 修 形 正 是 一 种 可 有效改善齿 轮 啮 合 性 能 , 避 免 出 现 偏 载 等 不 良 现 象, 提高齿轮承载能力 , 延长齿轮箱寿命的方法 。 本文借助 R 对 a x W i n d 出色的 仿真 分 析 功 能 , o m 得 2. 5 MW 风电齿轮箱高 速 级 小 齿 轮 进 行 仿 真 分 析 ,
图 4 高速齿轮副传动误差变化曲线图
2 齿轮修形前的仿真分析
根据表 1 建 模 后 , 在 等 效 载 荷 作 用 下, 对高速级 齿轮副进行运行模 拟 , 得到齿面载荷分布情况如图2
修形前 由高速级大小齿轮载 荷 分 布 图 可 以 看 出 , 高速级齿轮出现极其严重 的 偏 载 现 象 , 高速级齿轮副 的低速端几乎不承受载 荷 , 而 高 速 端 载 荷 很 大。这 样 易造成轮齿一端出现早期 胶 合 等 故 障 , 从而影响齿轮 箱的工作性能 。 从图 4 可 以 看 出 , 修形前的齿轮副传
, 长 修 形 长 度 为 1=
中心距

) , 短 修 形 长 度 为 1= ε p b( -1 mm。
1 ( ) , 单位为 p b ε -1 2
常用的修形曲线有直线和抛物线 。 1. 2 齿向修形 进行齿轮修 形 的 目 的 就 是 使 齿 向 载 荷 分 布 趋 于 均匀 , 同时齿面上不产生应力集中 。 如果齿面上接触线一直 延 伸 到 轮 齿 端 部 , 将导致 轮齿的转角处局部应力过 大 , 从而引起齿面剥落或疲 劳损伤 , 所以 我 们 在 齿 向 修 形 方 面 , 对高速级小齿轮 采用齿端修薄 + 鼓形修形 + 螺 旋 角 修 形 的 综 合 方 法 , 如图 1。

用romax软件进行齿轮强度分析及齿形优化流程

用romax软件进行齿轮强度分析及齿形优化流程

用romax软件进行齿轮强度分析及齿形优化流程用romax软件进行齿轮强度分析及齿形优化流程(吕浚潮)目录1.建立流程目的2.用romax软件建模过程3.强度分析过程4.齿轮优化过程4.1 齿向优化4.2 齿廓优化5.结论1.建立流程目的用romax软件对齿轮及轴进行建模,首先进行强度分析。

由于轴、轴承、齿轮的变形及受载,必然导致轮齿变形及及错位,减小单位啮合长度的最大载荷及传递误差(减小啮合噪声),对轮齿进行齿向及齿形修形,这样可以有效减小啮合线单位长度上的载荷,减小载荷突变,可减小啮合噪声。

2.用romax软件建模过程本部分简要地阐述了用romax软件建立换挡机构的过程,按先后顺序建立轴、轴承、齿轮,然后装配到一起,最后设置边界条件,建立分析工况。

具体过程如下:(1) 通过菜单栏的components按钮增加一个组(add New assemble/component),弹出图2所示对话框。

图2.1 为模型增加一个部件(2) 首先增加一个轴组件,如图2.2,单击ok按钮。

图2.2 增加一个轴组件(3) 建立轴各段的截面形式、直径和长度,如图2.3。

设置轴各段的长度、截面直径、圆锥方向图2.3 建立轴各段的直径、长度及截面形式(4)当建完轴后,点击增加轴承按钮,打开轴承增加页面,选择符合要求的轴承。

增加轴承按钮选择轴承界面图2.4 增加轴承界面(5) 指定轴承安装在轴上的位置,如图2.5。

设定轴承在轴上位置图2.5 设置轴承位置截面(6) 按上述方法,把换挡机构的主轴、副轴全部建完。

然后按图2.1,增加一个齿轮部件,如图2.6。

增加一个齿轮部件图2.6(7) 继第6步,出现齿轮参数选择界面,如图2.7,选择齿轮类型(直齿或斜齿),螺旋角,螺旋方向,模数,主动齿轮或被动齿轮,压力角等参数。

设置齿轮的模数、压力角、直(斜)齿、主被动形式图2.7 齿轮参数选择界面(8) 单击next,进入齿轮参数设置页面,设定齿轮的齿宽、变位系数、齿顶高系数、齿根高系数、齿顶倒角、齿根倒角、跨齿数等参数。

基于RomaxCLOUD的风电齿轮箱轴承设计分析及验证

基于RomaxCLOUD的风电齿轮箱轴承设计分析及验证

基于RomaxCLOUD的风电齿轮箱轴承设计分析及验证赵圣卿1,2,3,陈原1,2,3,牛青波1,2,3,李燕春1,2,3(1.洛阳轴研科技股份有限公司,河南洛阳471039;2.河南省高性能轴承技术重点实验室,河南洛阳471039;3.滚动轴承产业技术创新战略联盟,河南洛阳471039)摘要:以1.5MW风电齿轮箱高速轴支承轴承NU228轴承为研究对象,利用RomaxCLOUD轴承设计与仿真分析云平台,建立齿轮箱高速轴-轴系统模型,对其主参数、主要结构参数、润滑进行设计分析,并模拟使用工况搭建试验台架,通过台架试验验证了轴承相关参数设计的合理性。

关键词:RomaxCLOUD;风电齿轮箱;圆柱滚子轴承;设计分析;试验验证中图分类号: TH133.3;文献标志码:B 文章编号:Design and Analysis of Wind Turbine Gearbox BearingBased on RomaxCLOUDZhaoShengqing1,2,3,Chenyuan1,2,3,NiuQingbo1,2,3,LiYanchun1,2,3( 1.Luoyang Bearing Science & Technology Co.,Ltd.,Luoyang 471039,China;2. Henan Key Laboratory of High Performance Bearing Technology, Luoyang 471039,China;3. Strategic Alliance for Technology Innovation in Rolling Bearing Industry,Luoyang 471039,China)Abstract:NU228 bearing on the 1.5MW wind turbine gearbox high-speed shaft was researched in this article, using the RomaxCLOUD design and simulation analysis of bearing platform to establish the model of bearing and high-speed shaft - system of gearbox , The design and analysis of the main parameters, main structural parameters and lubrication were carried out.And simulate the working conditions to set up the test bench, The rationality of the design parameters of bearing is verified by the bench test. Key words:RomaxCLOUD;Wind Turbine Gearbox;Cylindrical roller bearing;design and analysis;test verification风力发电机增速齿轮箱是联接风叶主轴和发电机的中间部件,要求寿命长、可靠性高、运转平稳,传动效率高。

用romax软件进行齿轮强度分析报告及齿形优化流程

用romax软件进行齿轮强度分析报告及齿形优化流程

用romax软件进行齿轮强度分析及齿形优化流程(吕浚潮)目录1.建立流程目的2.用romax软件建模过程3.强度分析过程4.齿轮优化过程4.1 齿向优化4.2 齿廓优化5.结论1.建立流程目的用romax软件对齿轮及轴进行建模,首先进行强度分析。

由于轴、轴承、齿轮的变形及受载,必然导致轮齿变形及及错位,减小单位啮合长度的最大载荷及传递误差(减小啮合噪声),对轮齿进行齿向及齿形修形,这样可以有效减小啮合线单位长度上的载荷,减小载荷突变,可减小啮合噪声。

2.用romax软件建模过程本部分简要地阐述了用romax软件建立换挡机构的过程,按先后顺序建立轴、轴承、齿轮,然后装配到一起,最后设置边界条件,建立分析工况。

具体过程如下:(1) 通过菜单栏的components按钮增加一个组(add Newassemble/component),弹出图2所示对话框。

图2.1 为模型增加一个部件(2) 首先增加一个轴组件,如图2.2,单击ok按钮。

图2.2 增加一个轴组件(3) 建立轴各段的截面形式、直径和长度,如图2.3。

设置轴各段的长度、截面直径、圆锥方向图2.3 建立轴各段的直径、长度及截面形式(4)当建完轴后,点击增加轴承按钮,打开轴承增加页面,选择符合要求的轴承。

增加轴承按钮选择轴承界面图2.4 增加轴承界面(5) 指定轴承安装在轴上的位置,如图2.5。

设定轴承在轴上位置图2.5 设置轴承位置截面(6) 按上述方法,把换挡机构的主轴、副轴全部建完。

然后按图2.1,增加一个齿轮部件,如图2.6。

增加一个齿轮部件图2.6(7) 继第6步,出现齿轮参数选择界面,如图2.7,选择齿轮类型(直齿或斜齿),螺旋角,螺旋方向,模数,主动齿轮或被动齿轮,压力角等参数。

设置齿轮的模数、压力角、直(斜)齿、主被动形式图2.7 齿轮参数选择界面(8) 单击next,进入齿轮参数设置页面,设定齿轮的齿宽、变位系数、齿顶高系数、齿根高系数、齿顶倒角、齿根倒角、跨齿数等参数。

Romax软件在行星齿轮机构中的应用

Romax软件在行星齿轮机构中的应用

Romax软件在行星齿轮机构中的应用摘要本文介绍了四档拉维娜行星齿轮机构换挡工作规律和速比计算。

在Romax软件中建立四档拉维娜行星齿轮机构的虚拟样机模型,仿真分析得到了拉威娜齿轮机构各档的输出转速,与理论计算值完全吻合,传动比的一致性也同时得到验证。

关键词拉维娜行星齿轮机构;传动比;Romax行星齿轮机构广泛应用于车辆的自动变速器中,其速比计算是自动变速器设计的重要内容。

以四档拉维娜行星齿轮机构为例,利用Romax软件建立虚拟样机模型,通过仿真分析,在验证模型参数及结构正确性的同时可以方便求得齿轮机构各档的输出转速与传动比,提高设计效率。

1 拉维娜行星齿轮机构简述图1所示为拉维娜行星齿轮机构。

该行星齿轮机构由一个单行星轮式后行星排和一个双行星轮式前行星排组合而成。

前行星排太阳轮可以被离合器C1带为主动;后行星排太阳轮可以被离合器C2带为主动,也可以被制动器B1制动;共用行星架可以被离合器C3带为主动,也可以被制动器B2制动。

该机构取消了后齿圈,前、后行星排共用行星架,简化了行星齿轮机构。

工作时每个档位为了得到确定的运动和速比,需要结合两个离合器或制动器来实现。

结构紧凑、轴向尺寸小、转速较低。

既可用于前桥驱动车辆,也可用于后桥驱动车辆。

注:1-后排太阳轮;2-后排行星轮;3-前排外行星轮;4-前排太阳轮;5-前排内行星轮;6-共用行星架;7-前排内齿圈C1.前排太阳轮离合器C2.后排太阳轮离合器C3.共用行星架离合器B1.后排太阳轮制动器B2.共用行星架制动器2 拉威娜行星齿轮机构换挡工作规律、传动比2.1 换挡工作规律拉维娜行星齿轮机构各档工作规律如表2所示。

1档、2档为减速前进档,3档为直接档,4档为超速档。

与三档拉维娜行星轮系机构相比,四档拉维娜行星齿轮机构多了共用行星架离合器C3,因此可以比三档拉维娜行星齿轮机构多一档,即4档(超速档)。

在三档拉维娜行星齿轮机构中,3档(直接档)的实现是通过接合离合器C1、C2来实现的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要齿轮箱作为风电机组中最重要的传动部件,负责将风轮叶片的低转速转换为发电机所需要的高转速,实现能量与扭矩的高效传输;振动是风电机组齿轮箱故障失效的主要原因,随着机组容量的增加, 长期处于恶劣条件下的齿轮箱,由于结构体积的增大和弹性增加,更易引发振动问题。

本文主要研究齿轮箱在变速变载下的振动特性,基于Romax软件建立齿轮箱的振动模型,分析齿轮箱各级齿轮的啮合频率和固有频率。

本文研究内容可为风电机组齿轮箱的优化设计、故障、预防和处理提供技术基础。

关键词: 齿轮箱,固有频率,啮合频率,共振,RomaxABSTRACTGear box is the most transmission Parts in the Wind turbine,it is responsible for the low-speed wind turbine blade into the high-speed generator required to achieve the efficient transmission of energy and torque.Vibration is the main reason of wind turbine gear box failure , along with the increase of unit capacity, long-term adverse conditions in the gear box, due to the increase of the structure and flexibility to increase volume, caused more vibration problems.This paper mainly research gear box's vibration characteristics in the speed change, established gearbox vibration model based on Romax software,analysis of gearbox gear mesh frequency and levels of natural frequency.The contents of this paper provide wind turbine gearbox optimized design, failure for technical basis for the prevention and treatment.Key words : Gear Box , Natural frequency , Meshing frequency, Resonance, Romax目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1选题背景和意义 (1)1.2国内外研究现状 (2)1.3本文工作 (3)1.4本章小结 (3)第2章风电机组齿轮箱力学特点 (4)2.1 前言 (4)2.2 风电机组齿轮箱机械结构 (4)2.3 风电机组齿轮箱外部载荷 (5)2.4 风电机组齿轮箱内部激励 (6)2.5 齿轮箱振动机理 (6)2.6 机械振动系统 (8)2.7本章小结 (10)第3章基于romax的风电齿轮箱建模 (11)3.1世界各地对romax的应用 (11)3.2 Romax软件介绍 (11)3.3 Romax建模 (12)3.4本章小结 (17)第4章固有频率和啮合频率分析 (18)4.1传动比及啮合频率计算 (18)4.2固有频率和啮合频率分析比较 (21)4.3本章小结 (22)第5章结论和展望 (23)5.1结论 (23)5.2展望 (23)参考文献 (24)致谢 (25)第1章绪论1.1 选题背景和意义在人类越来越渴望清洁能源和环保能源的大时代背景下,风电作为一种新兴的清洁能源,受到全世界人类的广泛关注。

美国,德国,日本等国家都在积极地研究风电这一清洁、高效的发电方式。

在中国,风电也在蓬勃发展,金风,华锐,明阳这些企业已经走在了科研的前列,而东方汽轮机厂,华能也新建了风电厂。

从九十年代到2007年,我国风电机组装机总容量已超过560万kW,风电机组共计6469台,分布在全国22个省、市和自治区。

目前已装机的风电机组中,大部分采用的是水平轴结构,并采用齿轮箱作为风轮与发电机之间的传动部件。

齿轮箱负责将风轮叶片的低转速转换为发电机所需要的高转速,实现能量与扭矩的高效传输。

因此,齿轮箱是风电机组中最重要的传动部件。

风电齿轮箱具有质量大、重心高等特点,随着风电机组装机容量的不断增大,轮毂高度逐渐增加,齿轮箱受力变得复杂化,这就造成有些齿轮箱可能在设计上存在缺陷。

一般风电机组都安装在高山、荒野、海滩、海岛等风口处,受无规律的变向变负荷的风力作用以及强阵风的冲击,常年经受酷暑严寒和极端温差的影响,加之所处自然环境交通不便,齿轮箱安装在塔顶的狭小空间内,一旦出现故障,修复非常困难。

由于齿轮箱长期处于这样的恶劣条件下,会出现粘附磨损、腐蚀磨损、表面疲劳磨损、微动磨损和气蚀等失效形式,轻则导致润滑油失效,重则轴、轴承、轮齿的断裂,导致风电机组的停机[5]。

在变速变载这样的情况下,还会出现轮齿折断、齿面点蚀等的情况。

根据国际上有关机构对25台实际运行机组在3个月时间段的故障统计,机组各部件故障造成发电量损失见图1,齿轮箱是风电机组中故障率最高的部件,其主要失效形式为轮齿折断、齿面点蚀、齿面胶合、齿面磨损、齿面塑性变形[6]。

图1-1 风电机组故障所造成的发电量损失估计上述齿轮箱失效形式主要由风电机组所承受的变速、变载的复杂作用力引起,其故障特点皆可通过齿轮箱的振动信息表征出来。

因此,分析大型风电机组齿轮箱的振动特点,对于判断零件的失效原因,明确故障部位,并对齿轮箱进行优化设计具有指导意义。

1.2国内外研究现状1.2.1 国外研究现状由于人类认识到风能是清洁、可再生能源,因此世界的风力发电工业正以不同的方式提高风力发电的经济性,各国的公司也都在想方设法提高现有的技术水平,选择最优秀的设计方案。

对振动特性的研究和应用,美国、德国已经走在了世界的前列。

在国外,已经把齿轮的振动和噪声问题作为评价一个齿轮装置好坏的重要因素[7]。

齿轮的振动和噪声问题这个问题引起了世界范围内的广泛关注。

而对齿轮箱的振动模型的建立及其仿真系统已经在德、美这些发达国家中指导并应用在风力的发电当中了,对于齿轮箱的固有频率和啮合频率的研究已经处于世界前沿,使用了如有限元法、使用计算机软件等有效的手段,对影响齿轮箱振动的因素分析比较透彻,并能有效地减小这些影响因素,从而为风电机组齿轮箱的故障分析和判断提供了非常好的平台。

1.2.2 国内研究现状国内由于风力发电机行业本身起步较晚,很多风电技术还不成熟,处于探索阶段。

对于齿轮箱振动特性的分析还处于起步状态,在国内风力发电机上的运用还比较少。

目前我国还没有相关的振动标准,对整个齿轮箱系统模型进行了模态分析和动态响应分析,得出了齿轮箱的固有特性和箱体表面的振动响应曲线,而对成果的检验和应用还没有完善的技术。

但是我们国家已经有企业致力于这方面的研究,通过建立各种模型,对轮齿进行受力分析,在变速变载的情况下研究振动特性,分析各种型号的固有频率、啮合频率等等已经有了很大的进步了.我国很多企业引进国外成熟技术,吸收消化,以提高国产化机组的制造技术。

采用与国外公司合作生产的方式引进技术,并允许国外风电机组制造厂商在我国投资设厂。

国内有关的风电机组制造、生产企业,已研制出、1.5Mw机组的关键部件,如齿轮箱和叶片等,并且750Kw的机组其本地化率已达到90%,还有如江苏千鹏公司,建立了该齿轮箱的直齿圆柱齿轮三维接触有限元模型和整个齿轮箱系统有限元模型,对直齿圆柱齿轮进行了接触分析,得到了直齿圆柱齿轮的综合啮合刚度激励,同时对整个齿轮箱系统模型进行了模态分析和动态响应分析,得出了齿轮箱的固有特性和箱体表面的振动响应曲线。

通过齿轮箱声压和声强实验,预测了该齿轮箱噪声值,且验证了有限元分析的有效性和准确性。

而在应用这方面国家也正在不遗余力地研究,相信在十年之内,我国的风电技术会引领世界[8]。

1.3 本文工作齿轮箱是风电机组主传动系统最主要的振动部位,本文对风电机组齿轮箱的振动特性进行深入研究,分析齿轮箱各级齿轮的固有频率与啮合频率之间的关系,主要研究内容如下:(1)分析风电机组齿轮箱的机械结构振动问题作了一些介绍,然后对齿轮箱的重要性,产生故障的原因,故障的类型等等作了一些详尽的阐述。

(2)在变速变载的情况下,,对机械振动系统特别是固有动态产生比较大的影响.选取了一组风电机组齿轮箱的数据作为参考,作了一些计算,计算了各级轮系的传动比,然后在风轮转速为15,22.34,85,128,306,457六种速度下分别计算了主轴,太阳轮,中间轮,高速轴的转速同步频率;行星级、中间级、高速级的啮合频率及10%的浮动范围。

(3)系统学习Romax软件, 并基于该软件建立齿轮箱振动模型。

分析变速、变载情况下齿轮箱的各阶振型和固有频率。

(4)对齿轮箱的固有频率和啮合频率进行比较分析,得到了共振区,指出在实际应用中应该尽量避开这些共振区。

1.4本章小结本章对风电机组振动特性的选题背景和意义作了一些阐述,并介绍了一些国内外研究现状,然后介绍了本文所要进行的工作,并介绍了主要研究内容。

第2章风电机组齿轮箱力学特点2.1 前言风电齿轮箱是一个复杂的弹性机械系统。

齿轮啮合时轮齿的弹性变形、时变啮合刚度、啮入出冲击、齿侧间隙、制造误差等都对轮齿静动力接触特性、系统动态性能、系统传动精度等有很大影响。

齿轮箱同时承受由原动机和负载引入的外部激励和由时变啮合刚度、齿轮传动误差和啮合冲击所引起的内部激励,其振动受轴、齿轮、轴承、等多种振动的影响,具有高度的非线性特点及耦合效应。

要综合考虑上述因素,用解析法难以全面描述其动力模型,其求解过程也极为繁杂,用实验方法可以测量系统的模态和响应,但难以直接测量齿轮接触区动态接触特性,也无法在设计阶段预估其动态特性并修改设计加以改善。

因此,有必要结合试验分析数据,研究齿轮系统动态特性综合数值分析方法,开发齿轮系统振动冲击数值仿真软件,实现它的动态响应分析[9]。

2.2 风电机组齿轮箱机械结构图2-1 风电齿轮箱机械结构图使用齿轮箱,可以将风电机转子上的较低转速、较高转矩,转换为用于发电机上的较高转速、较低转矩。

风电机上的齿轮箱,通常在转子及发电机转速之间具有单一的齿轮比。

对于600千瓦或750千瓦机器,齿轮比大约为1比50。

齿轮箱的结构包括输出轴、齿轮箱盖、大齿轮、小齿轮和齿轮箱,所述的齿轮箱内设有至少二个卡位,挡油罩上设有与卡位相对应的定位,挡油罩通过定位设置在齿轮箱的卡位上,齿轮箱盖上设有与挡油罩接合口相匹配的压圈,挡油罩与齿轮箱盖构成小齿轮和大齿轮的传动腔室.齿轮箱以三点支撑,输入为空心轴,采用锁紧盘,联接在主轴上,其余两点通过对称分布于前箱体扭力臂两端上的支座、弹性套联接在机舱底座上。

相关文档
最新文档