电磁场与电磁波课后习题及答案三章习题解答

合集下载

谢处方《电磁场与电磁波》(第4版)课后习题-第3章 静态电磁场及其边值问题的解【圣才出品】

谢处方《电磁场与电磁波》(第4版)课后习题-第3章 静态电磁场及其边值问题的解【圣才出品】

第3章 静态电磁场及其边值问题的解(一)思考题3.1 电位是如何定义的?中的负号的意义是什么?答:由静电场基本方程▽×E=0和矢量恒等式可知,电场强度E 可表示为标量函数φ的梯度,即式中的标量函数φ称为静电场的电位函数,简称电位;式中负号表示场强方向与该点电位梯度的方向相反。

3.2“如果空间某一点的电位为零,则该点的电场强度也为零”,这种说法正确吗?为什么?答:不正确。

因为电场强度大小是该点电位的变化率。

3.3“如果空间某一点的电场强度为零,则该点的电位为零”,这种说法正确吗?为什么?答:不正确。

此时该点电位可能是任一个不为零的常数。

3.4 求解电位函数的泊松方程或拉普拉斯方程时,边界条件有何意义?答:边界条件起到给方程定解的作用。

3.5 电容是如何定义的?写出计算电容的基本步骤。

答:两导体系统的电容为任一导体上的总电荷与两导体之间的电位差之比,即其基本计算步骤:①根据导体的几何形状,选取合适坐标系;②假定两导体上分别带电荷+q和-q;③根据假定电荷求出E;④由求得电位差;⑤求出比值3.6 多导体系统的部分电容是如何定义的?试以考虑地面影响时的平行双导线为例,说明部分电容与等效电容的含义。

答:多导体系统的部分电容是指多导体系统中一个导体在其余导体的影响下,与另一个导体构成的电容。

计及大地影响的平行双线传输线,如图3-1-1所示,它有三个部分电容C11、C12和C22,导线1、2间的等效电容为;导线1和大地间的等效电容为;导线2和大地间的等效电容为图3-1-13.7 计算静电场能量的公式和之间有何联系?在什么条件下二者是一致的?答:表示连续分布电荷系统的静电能量计算公式,虽然只有ρ≠0的区域才对积分有贡献,但不能认为静电场能量只存在于有电荷区域,它只适用静电场。

表示静电场能量存在于整个电场区域,所有E≠0区域对积分都有贡献,既适用于静电场,也用于时变电磁场,当电荷分布在有限区域内,闭合面S无限扩大时,有限区内的电荷可近似为点电荷时,二者是一致的。

电磁场与电磁波课后习题答案第3章(杨儒贵编着)

电磁场与电磁波课后习题答案第3章(杨儒贵编着)

第三章 静电场3-1 已知在直角坐标系中四个点电荷分布如习题图3-1所示,试求电位为零的平面。

解 已知点电荷q 的电位为rq 4πεϕ=,令)0,1,0(1q q -=,)0,1,3(2q q +=,)0,0,1(3q q -=,)0,0,0(4q q +=,那么,图中4个点电荷共同产生的电位应为∑=414ii r q πεϕ令0=ϕ,得 0 4 4 4 44321=+-+-r qr q r q r q πεπεπεπε 由4个点电荷的分布位置可见,对于x =1.5cm 的平面上任一点,4321 ,r r r r ==,因此合成电位为零。

同理,对于x =0.5cm 的平面上任一点,3241 ,r r r r ==,因此合成电位也为零。

所以,x =1.5cm 及x =0.5cm 两个平面的电位为零。

3-2 试证当点电荷q 位于无限大的导体平面附近时,导体表面上总感应电荷等于)(q -。

证明 建立圆柱坐标,令导体表面位于xy 平面,点电荷距离导体表面的高度为h ,如图3-2所示。

那么,根据镜像法,上半空间的电场强度为32023101 4 4r q r q πεπεr r E -=X 习题图3-1(r , z )习题图3-2电通密度为)(43223110r r q r r E D -==πε 式中 232231])([h z r r -+=; 232232])([h z r r ++=那么,⎥⎥⎥⎦⎤⎪⎪⎪⎭⎫ ⎝⎛+++-++-+⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛++--+=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++--+-+=z z zh z r hz h z r h z h z r r h z r r q h z r h z r h z r h z r q e e e e e e D r r r 232223222322232223222322])([])([ ])([])([4 ])([)(])([)(4ππ 已知导体表面上电荷的面密度n s D =ρ,所以导体表面的感应电荷为2322232223220)(2][][4h r qh h r h h r h q D z zs +-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+-===ππρ 则总的感应电荷为q h r r r qh r r S q s ss -=+-===⎰⎰⎰∞∞2322)(d d 2d 'πρρ3-3 根据镜像法,说明为什么只有当劈形导体的夹角为π的整数分之一时,镜像法才是有效的?当点电荷位于两块无限大平行导体板之间时,是否也可采用镜像法求解。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。

2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。

3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。

4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。

( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。

( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。

( √ )7、梯度的方向是等值面的切线方向。

(× )8、标量场梯度的旋度恒等于0。

( √ ) 9、习题1.12, 1.16。

第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。

2、在国际单位制中,电场强度的单位是V/m(伏特/米)。

3、静电系统在真空中的基本方程的积分形式是:V V sD d S d V Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。

4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。

5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。

7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。

8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。

电磁场与电磁波(第4版)第3章部分习题参考解答

电磁场与电磁波(第4版)第3章部分习题参考解答

ρ ≥ a 时, E = −∇ϕ = −eρ
G
G ∂ ∂ρ
3.4 已知 y > 0 的空间中没有电荷,试判断下列函数中哪些是可能的电位解? (1) e− y cosh x ;(2) e− y cos x ;(3) e− 2 sin x cos x ;(4) sin x sin y sin z 。 解:在电荷体密度 ρ = 0 的空间,电位函数应满足拉普拉斯方程 ∇ 2ϕ = 0 。
∂2 − y ∂2 − y ∂2 − y (e cosh x) + 2 (e cosh x) + 2 (e cosh x) = 2e− y cosh x ≠ 0 (1) ∂x 2 ∂y ∂z −y 所以函数 e cosh x 不是 y > 0 空间中的电位解; ∂2 − y ∂2 − y ∂2 − y (e cos x) + 2 (e cos x) + 2 (e cos x) = −e− y cos x + e− y cos x = 0 (2) ∂x 2 ∂y ∂z −y 所以函数 e cos x 是 y > 0 空间中可能的电位解; ∂ − 2 ∂ ∂ (e sin x cos x) + 2 (e− 2 sin x cos x) + 2 (e − 2 sin x cos x) (3) 2 ∂x ∂y ∂z
G ρ = −eρ l 0 2πε 0 G = eρ
ρl 0 4πε 0 ρ
⎧ ρ 1⎫ ⎪ ⎪ − ⎬ ⎨ 2 2 2 2 ρ⎪ ⎪[ L / 2 + ρ + ( L / 2) ] ρ + ( L / 2) ⎩ ⎭ z'
ρ 2 + ( L / 2) 2
3.2 点电荷 q1 = q 位于 P 1 ( − a, 0, 0) ,另一点电荷 q2 = −2q 位于 P 2 ( a, 0, 0) ,求空间的 零电位面。 解:两个点电荷 + q 和 −2q 在空间产生的电位 ⎤ q 1 ⎡ 2q ϕ ( x, y , z ) = − ⎢ ⎥ 2 2 2 2 2 2 4 πε 0 ⎢ ( ) ( ) ⎥ x a y z x a y z + + + − + + ⎣ ⎦ 1 2 − =0 令 ϕ ( x, y, z ) = 0 ,则有 2 2 2 2 ( x + a) + y + z ( x − a) + y 2 + z 2

《电磁场与电磁波》第4版(谢处方 编)课后习题答案 高等教育出版社三章习题解答

《电磁场与电磁波》第4版(谢处方 编)课后习题答案 高等教育出版社三章习题解答

三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。

解 由点电荷q 和q -共同产生的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量d d zz SSS Φ====⎰⎰D S D e223222320()[]2d 4()()aq a ar r r a r a ππ--=++⎰ 22121)0.293()aqaq q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。

解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZer π=D e 原子内电子云的电荷体密度为333434a a Ze Zer r ρππ=-=- 电子云在原子内产生的电通量密度则为 32234344r ra r Ze rr r ρπππ==-D e e 故原子内总的电通量密度为 122314ra Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。

求空间各部分的电场。

解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。

但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题 3.3图()b 所示。

电磁场与电磁波第三章习题及参考答案

电磁场与电磁波第三章习题及参考答案

第3章习题3-1 半径为的薄圆盘上电荷面密度为s ρ,绕其圆弧轴线以角频率旋转形成电流,求电流面密度。

解:圆盘以角频率旋转,圆盘上半径为r 处的速度为r ω,因此电流面密度为ϕωρρˆr v J s s s ==3-2 在铜中,每立方米体积中大约有28105.8⨯个自由电子。

如果铜线的横截面为210cm ,电流为A 1500。

计算 1) 电流密度;2) 电子的平均漂移速度; 解:1)电流密度m A S I J /105.11010150064⨯=⨯==- 2) 电子的平均漂移速度 v J ρ=,3102819/1036.1105.8106.1m C eN ⨯=⨯⨯⨯==-ρs m J v /101.11036.1105.14106-⨯=⨯⨯==ρ 3-3 一宽度为cm 30传输带上电荷均匀分布,以速度s m /20匀速运动,形成的电流,对应的电流强度为A μ50,计算传输带上的电荷面密度。

解:电流面密度为m A L I J S /7.1663.050μ===因为 v J S S ρ= 所以 2/33.8207.166m C v J S S μρ=== 3-4 如果ρ是运动电荷密度,U是运动电荷的平均运动速度,证明:0=∂∂+∇⋅+⋅∇tU U ρρρ证:如果ρ是运动电荷密度,U是运动电荷的平均运动速度,则电流密度为U J ρ=代入电荷守恒定律tJ ∂∂-=⋅∇ρ得0=∂∂+∇⋅+⋅∇t U U ρρρ3-5 由m S /1012.17⨯=σ的铁制作的圆锥台,高为m 2,两端面的半径分别为cm 10和cm 12。

求两端面之间的电阻。

解:用两种方法(1)如题图3.5所示⎰⎰==2122)(tan zz lz dzS dl R ασπσ)11()(tan 1212z z -=ασπ 01.0202.0tan ==α题3.5图m r z .1001.0/1.0tan /11===α,m r z 1201.0/12.0tan /22===αΩ⨯=-⨯⨯⨯=-=--647212107.4)121101(101012.11)11()(tan 1πασπz z R (2)设流过的电流为I ,电流密度为2rI S I J π==电场强度为 2r IJ E πσσ== 电压为 dz z IEdz V z z z z ⎰⎰==21212)tan (σαπ ⎰==2122)(tan zz zdz I V R απσΩ⨯=-6107.4 3-6 在两种媒质分界面上,媒质1的参数为2,/10011==r m S εσ,电流密度的大小为2/50m A ,方向和界面法向的夹角为030;媒质2的参数为4,/1022==r m S εσ。

电磁场与电磁波课后答案

电磁场与电磁波课后答案

第一章 矢量场1.1 z y x C z y x B z y xA ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+=ρρρ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB C ⨯ ; (e) ()ρρρA B C ⨯⨯ (f)()ρρρA B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+==ρρ( c) 7=⋅B A ρρ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ρρ (e)z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ρρρ (f)19)(-=⋅⨯C B A ρρρ 1.2 ρA z =++2∃∃∃ρπϕ; ρB z =-+-∃∃∃ρϕ32 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) B A ρρ+解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A ρρ (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπρρ (e) z B A ˆˆ)3(ˆ-++=+ϕπρρρ 1.3 ρA r=+-22∃∃∃πθπϕ; ρB r =-∃∃πθ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) ρρA B +解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ρρ ; (d) ϕπθππˆ3ˆ2ˆ22++=⨯rA B ρρ ; (e) ϕπˆ2ˆ3-=+r B A ρρ 1.4 ρA x y z =+-∃∃∃2; ρB x y z =+-α∃∃∃3 当ρρA B ⊥时,求α。

解:当ρρA B ⊥时,ρρA B ⋅=0, 由此得 5-=α1.5 将直角坐标系中的矢量场ρρF x y z xF x y z y 12(,,)∃,(,,)∃==分别用圆柱和圆球坐标系中的坐标分量表示。

电磁场与电磁波课后习题及答案三章习题解答

电磁场与电磁波课后习题及答案三章习题解答

电磁场与电磁波课后习题及答案三章习题解答三章习题解答3.1 真空中半径为a 的⼀个球⾯,球的两极点处分别设置点电荷q 和q -,试计算球⾚道平⾯上电通密度的通量Φ(如题3.1图所⽰)。

解由点电荷q 和q -共同产⽣的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球⾚道平⾯上电通密度的通量d d zz SSS Φ====??D S D e22322232()[]2d 4()()aq a ar r r a r a ππ--=++? 22121)0.293()aqaq q r a =-=-+ 3.2 1911年卢瑟福在实验中使⽤的是半径为a r 的球体原⼦模型,其球体内均匀分布有总电荷量为Ze -的电⼦云,在球⼼有⼀正电荷Ze (Z 是原⼦序数,e 是质⼦电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π??=-D e ,试证明之。

解位于球⼼的正电荷Ze 球体内产⽣的电通量密度为 124rZer π=D e 原⼦内电⼦云的电荷体密度为 333434a a Ze Zer r ρππ=-=- 电⼦云在原⼦内产⽣的电通量密度则为 32234344r ra r Ze rr r ρπππ==-D e e题3.1 图题3. 3图()a故原⼦内总的电通量密度为 122314ra Ze r r r π??=+=-D D D e 3.3 电荷均匀分布于两圆柱⾯间的区域中,体密度为30C m ρ, 两圆柱⾯半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所⽰。

求空间各部分的电场。

解由于两圆柱⾯间的电荷不是轴对称分布,不能直接⽤⾼斯定律求解。

但可把半径为a 的⼩圆柱⾯内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,⽽在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所⽰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。

解 由点电荷q 和q -共同产生的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量d d zz SSS Φ====⎰⎰D S D e22322232()[]2d 4()()aq a ar r r a r a ππ--=++⎰ 22121)0.293()aqaq q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。

解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZer π=D e 原子内电子云的电荷体密度为 333434a a Ze Zer r ρππ=-=- 电子云在原子内产生的电通量密度则为 32234344r ra r Ze rr r ρπππ==-D ee 题3.1 图题3. 3图()a故原子内总的电通量密度为 122314ra Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。

求空间各部分的电场。

解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。

但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。

空间任一点的电场是这两种电荷所产生的电场的叠加。

在b r >区域中,由高斯定律0d Sqε=⎰E S ,可求得大、小圆柱中的正、负电荷在点P 产生的电场分别为 2200120022r b b r r πρρπεε==r E e 2200120022r a a r rπρρπεε'-''==-''r E e 点P 处总的电场为 2211220()2b a r r ρε''=+=-'r r E E E 在b r <且a r >'区域中,同理可求得大、小圆柱中的正、负电荷在点P 产生的电场分别为220022r r r πρρπεε==r E e 22220022r a a r r πρρπεε'-''==-''r E e点P 处总的电场为 202220()2a r ρε''=+=-'r E E E r 在a r <'的空腔区域中,大、小圆柱中的正、负电荷在点P 产生的电场分别为20030022r r r πρρπεε==r E e 20030022r r r πρρπεε''-''==-'r E e 点P 处总的电场为 003300()22ρρεε''=+=-=E E E r r c 3.4 半径为a 的球中充满密度()r ρ的体电荷,已知电位移分布为32542()()r r Ar r a D a Aa r a r ⎧+≤⎪=⎨+≥⎪⎩ 其中A 为常数,试求电荷密度()r ρ。

题3. 3图()b=+解:由ρ∇=D ,有 221d ()()d r r r D r rρ=∇=D 故在r a <区域 2322021d ()[()](54)d r r r Ar r Ar r rρεε=+=+ 在r a >区域 5420221d ()()[]0d a Aa r r r r rρε+== 3.5 一个半径为a 薄导体球壳内表面涂覆了一薄层绝缘膜,球内充满总电荷量为Q 为的体电荷,球壳上又另充有电荷量Q 。

已知球内部的电场为4()r r a =E e ,设球内介质为真空。

计算:(1) 球内的电荷分布;(2)球壳外表面的电荷面密度。

解 (1) 由高斯定律的微分形式可求得球内的电荷体密度为20021d [()]d r E r r ρεε=∇==E 432002441d [()]6d r r r r r a aεε=(2)球体内的总电量Q 为 3220040d 64d 4ar Q r r a a τρτεππε===⎰⎰球内电荷不仅在球壳内表面上感应电荷Q -,而且在球壳外表面上还要感应电荷Q ,所以球壳外表面上的总电荷为2Q ,故球壳外表面上的电荷面密度为 02224Qaσεπ== 3.6 两个无限长的同轴圆柱半径分别为r a =和r b =()b a >,圆柱表面分别带有密度为1σ和2σ的面电荷。

(1)计算各处的电位移0D ;(2)欲使r b >区域内00=D ,则1σ和2σ应具有什么关系?解 (1)由高斯定理d Sq =⎰DS ,当r a <时,有 010=D当a r b <<时,有 02122rD a ππσ= ,则 102ra rσ=D e 当b r <<∞时,有 0312222rD a b ππσπσ=+ ,则 1203r a b rσσ+=D e (2)令 12030ra b rσσ+==D e ,则得到 12b a σσ=- 3.7 计算在电场强度x y y x =+E e e 的电场中把带电量为2C μ-的点电荷从点1(2,1,1)P -移到点2(8,2,1)P -时电场所做的功:(1)沿曲线22x y =;(2)沿连接该两点的直线。

解 (1)d d d d x y CCC W q q E x E y ===+=⎰⎰⎰F l E l2221d d d(2)2d Cq y x x y q y y y y +=+=⎰⎰22616d 142810()q y y q J -==-⨯⎰(2)连接点1(2,1,1)P -到点2(8,2,1)P -直线方程为2812x x y y --=-- 即 640x y -+=故W =21d d d(64)(64)d Cq y x x y q y y y y +=-+-=⎰⎰261(124)d 142810()q y y q J --==-⨯⎰3.8 长度为L 的细导线带有均匀电荷,其电荷线密度为0l ρ。

(1)计算线电荷平分面上任意点的电位ϕ;(2)利用直接积分法计算线电荷平分面上任意点的电场E ,并用ϕ=-∇E 核对。

解 (1)建立如题3.8图所示坐标系。

根据电位的积分表达式,线电荷平分面上任意点P 的电位为22(,0)L L r ϕ-==⎰2ln(4L l L z ρπε-'+=04l ρπε=02l ρπε(2)根据对称性,可得两个对称线电荷元z l 'd 0ρ在点P 的电场为d d r r rE θ'===E e e 022320d 2()l rr z r z ρπε''+e故长为L 的线电荷在点P 的电场为20223200d d 2()L l r r z r z ρπε'==='+⎰⎰E Ee 20002L l r r ρπε'=e re 由ϕ=-∇E 求E ,有002l ρϕπε⎡⎢=-∇=-∇=⎢⎥⎣⎦E(00d ln 2ln 2d l rL r r ρπε⎡⎤--=⎢⎥⎣⎦eL L -r0l ρ题3.8图0012l r r ρπε⎧⎫⎪-=⎬⎪⎭e r e 3.9 已知无限长均匀线电荷l ρ的电场02lr r ρπε=E e ,试用定义式()d Pr rr ϕ=⎰E l 求其电位函数。

其中P r 为电位参考点。

解000()d d ln ln 222PPPr r rl l l P r rrr r r r r rρρρϕπεπεπε====⎰⎰E l 由于是无限长的线电荷,不能将P r 选为无穷远点。

3.10 一点电荷q +位于(,0,0)a -,另一点电荷2q -位于(,0,0)a ,求空间的零电位面。

解 两个点电荷q +和2q -在空间产生的电位1(,,)4x y zϕπε=令(,,)0x y z ϕ=,则有0=即 2222224[()]()x a y z x a y z +++=-++故得 222254()()33x a y z a +++= 由此可见,零电位面是一个以点5(,0,0)3a -为球心、43a 为半径的球面。

3.11 证明习题3.2的电位表达式为 2013()()422a aZe r r r r r ϕπε=+- 解 位于球心的正电荷Ze 在原子外产生的电通量密度为 124rZerπ=D e 电子云在原子外产生的电通量密度则为 32224344a r r r Zer rρπππ==-D e e 所以原子外的电场为零。

故原子内电位为230011()d ()d 4aa r rar r Ze rr D r r r r ϕεπε==-=⎰⎰2013()422a a Ze r r r r πε+- 3.12 电场中有一半径为a 的圆柱体,已知柱内外的电位函数分别为2()0()()cos r r a a r A r r a rϕϕφ=≤⎧⎪⎨=-≥⎪⎩ (1)求圆柱内、外的电场强度;(2)这个圆柱是什么材料制成的?表面有电荷分布吗?试求之。

解 (1)由ϕ=-∇E ,可得到 r a <时, 0ϕ=-∇=Er a >时, ϕ=-∇=E 22[()cos ][()cos ]r a a A r A r r r r rφφφφ∂∂----=∂∂e e2222(1)cos (1)sin r a a A A r rφφφ-++-e e(2)该圆柱体为等位体,所以是由导体制成的,其表面有电荷分布,电荷面密度为0002cos r r a r a A σεεεφ=====-n E e E3.13 验证下列标量函数在它们各自的坐标系中满足20ϕ∇=(1)sin()sin()hzkx ly e- 其中222h k l =+;(2)[cos()sin()]nr n A n φφ+ 圆柱坐标;(3)cos()nrn φ- 圆柱坐标;(4)cos r φ 球坐标;(5)2cos r φ- 球坐标。

相关文档
最新文档