碳纤维生产技术路线及应用领域
碳纤维布生产工艺

碳纤维布生产工艺碳纤维布是一种具有高强度、轻质和耐热性能的纤维材料,广泛应用于航空、航天、汽车和体育器材等领域。
下面将介绍一种常见的碳纤维布生产工艺。
首先,碳纤维布的生产开始于原材料的准备。
碳纤维是由聚丙烯腈纤维经过高温石墨化处理得到的,因此需要准备适量的聚丙烯腈纤维作为原料。
接下来,将纤维在高温下进行石墨化处理,将其转化为纯碳纤维。
然后,经过石墨化处理的纯碳纤维需要进行表面处理。
这一步骤通常分为两个阶段:氧化和酸洗。
在氧化阶段,纯碳纤维与氧气反应,形成表面上的氧化层。
接下来,在酸洗阶段,纯碳纤维被浸泡在酸性溶液中,去除表面的杂质和氧化层。
接下来,进行纤维的拉伸和纺织工艺。
在这一步骤中,纯碳纤维被拉伸成细长的纤维束,然后通过纤维织机进行纺织。
纤维织机将纤维交织成具有一定纬纱和经纱的布料,并通过上下机构将其压实,形成密实的碳纤维布。
最后,进行碳纤维布的固化和表面处理。
碳纤维布需要在高温下进行固化,以保证其强度和稳定性。
在固化过程中,碳纤维布被放入高温炉中,通过热处理使纤维结构更加稳定。
固化完成后,碳纤维布进行表面处理,例如涂覆防水剂或防火剂,以增强其功能和性能。
整个碳纤维布生产过程中,需要注意的是控制温度和时间。
石墨化处理、氧化和酸洗、固化等工艺都需要在特定的温度下进行,并且需要根据具体的产品要求调节时间。
而且,每一步工艺都需要严格的质量控制和检测,以确保最终产品的质量和性能。
总之,碳纤维布的生产工艺包括原料准备、石墨化处理、表面处理、纤维织机纺织、固化和表面处理等步骤。
通过控制温度和时间,并进行质量控制和检测,可以生产出具有高强度、轻质和耐热性能的碳纤维布。
碳纤维材料的制备及应用研究

碳纤维材料的制备及应用研究碳纤维材料是一种高性能、高强度和轻质的材料,在航空、航天、汽车、船舶、体育器材等领域有广泛的应用。
本文将介绍碳纤维材料的制备方法及其应用研究。
一、碳纤维材料的制备方法碳纤维的制备主要包括三个步骤:前驱体制备、纺丝成纤维和碳化。
1.前驱体制备前驱体是指材料转化为碳纤维前的预处理材料。
常用的前驱体有聚丙烯腈(PAN),煤沥青和轮胎树脂等。
其中,PAN是制备碳纤维的主要前驱体。
PAN通过干法纺丝制备成PAN纤维,然后进行预氧化处理,将预氧化的PAN纤维进行拉伸,再进行热解,最终得到碳纤维。
2.纺丝成纤维纺丝是将前驱体制备成精细单体并熔融成纤维的过程。
纺丝方式包括湿式法、干式法和气流旋转纺丝法等。
其中,湿式法是制备PAN基碳纤维最常用的方法。
3.碳化碳化是指在高温下,将前驱体中的非碳元素脱除,形成含碳量达到90%以上的纤维。
碳化条件是热解温度和时间,温度在1300℃左右,时间从几小时到几十小时不等。
碳化过程中,纤维的密度增大,晶体成分变化,力学性质也随之变化。
二、碳纤维材料的应用研究1. 航空领域碳纤维材料在航空领域中的应用主要是替代传统的铝合金和复合材料制造飞机的结构部件,以减少飞机的重量和燃料消耗。
碳纤维材料是制造各种结构部件的理想材料,包括机翼、机身、进气道和发动机等。
2. 船舶领域碳纤维材料在船舶领域的应用主要是制造高速艇、游艇和各种竞赛船只的外壳和桅杆等结构件。
碳纤维材料具有优异的刚性和强度,可以有效减少船只的自重,提高船只的速度和灵活性。
3. 汽车领域碳纤维材料在汽车领域中的应用主要是用于制造车身外壳和底盘结构件等部件。
碳纤维材料具有高强度和轻质化特点,能够大大降低汽车的自重,提高汽车的燃油经济性和性能。
4. 体育器材领域碳纤维材料在体育器材领域中的应用主要是制造高档的高尔夫球杆、足球鞋、网球拍和自行车等体育用品。
碳纤维材料具有优异的刚性和强度,能够提高运动器材的性能表现。
碳纤维的工艺流程

碳纤维的工艺流程碳纤维是一种轻质、高强度的材料,广泛应用于航空航天、汽车、体育器材等领域。
其工艺流程包括原料准备、纺丝、预浸胶、成型、热固化和后处理等环节。
1. 原料准备。
碳纤维的原料主要是聚丙烯和聚丙烯腈。
聚丙烯腈经过聚合反应后形成聚丙烯腈纤维,再经过碱处理、硫化、热处理等工艺步骤,最终得到碳纤维。
在原料准备阶段,需要对原料进行严格的筛选和检测,确保原料的质量和纯度。
2. 纺丝。
纺丝是将聚丙烯腈纤维加工成碳纤维的关键步骤。
在纺丝过程中,需要将聚丙烯腈纤维溶解在有机溶剂中,然后通过旋转的喷丝孔将溶液喷出,使其凝固成纤维。
纺丝过程需要控制温度、湿度和喷丝速度等参数,以确保纤维的质量和形态。
3. 预浸胶。
预浸胶是将碳纤维与树脂预浸料进行浸渍,以增强其机械性能和耐腐蚀性能。
预浸胶通常使用环氧树脂或聚酰亚胺树脂,通过真空浸渍或浸渍压延等工艺,将树脂浸渍到碳纤维中。
预浸胶的质量和浸渍均匀度对最终制品的性能有着重要影响。
4. 成型。
成型是将预浸胶碳纤维进行造型的过程。
常见的成型方法包括手工层叠、自动纺织、注塑成型、压缩成型等。
在成型过程中,需要根据产品的形状和尺寸要求,将预浸胶碳纤维进行层叠或复合,然后放入模具中进行成型。
5. 热固化。
热固化是将成型后的碳纤维制品进行固化的过程。
固化过程中,需要控制温度和压力,使树脂在一定的温度下发生交联反应,从而形成坚固的结构。
热固化过程对产品的性能和外观有着重要影响,需要严格控制固化工艺参数。
6. 后处理。
后处理是对热固化后的碳纤维制品进行表面处理和修整的过程。
常见的后处理工艺包括修边、打磨、喷涂、涂层等。
后处理工艺可以改善产品的表面质量和外观,提高其耐磨损性能和耐腐蚀性能。
通过以上工艺流程,碳纤维制品可以获得优异的力学性能、耐腐蚀性能和轻质化特性,广泛应用于航空航天、汽车、体育器材等领域。
随着工艺技术的不断进步,碳纤维制品的生产效率和质量将得到进一步提升,为各行业提供更多优质的碳纤维产品。
简述碳纤维工艺流程

简述碳纤维工艺流程碳纤维工艺流程是一种将碳纤维与树脂复合材料制作成各种产品的技术过程。
碳纤维具有轻质高强度的特点,因此在航空航天、汽车、体育用品等领域有广泛的应用。
下面将简要介绍碳纤维工艺流程。
首先,在碳纤维制造过程中需要准备原材料,包括碳纤维纺丝和树脂。
碳纤维纺丝是通过将高聚物溶解成单体,然后将单体经过纺丝机纺制而得到的连续纤维。
而树脂可以选择环氧树脂、聚酯树脂等不同种类的树脂,根据具体应用来选择。
接下来是碳纤维的制备过程。
首先,将碳纤维纺丝与树脂进行混合,使其充分融合;然后,通过拉伸和拉直的过程,使碳纤维纺丝变得更加均匀细长;最后,通过热处理使纺丝硬化变得更加坚固。
然后是制造碳纤维制品的工艺。
在这一过程中,首先需要确定具体产品的设计和形状。
然后,在根据设计制定的尺寸和要求下,利用模具将碳纤维纺丝和树脂进行复合,使其形成预定的形状。
在模具中,碳纤维纺丝和树脂进行压制和固化,形成所需产品。
在产品固化后,还需要进行后续加工。
这包括去除模具,修剪、打磨和表面处理等工序。
修剪是将多余的碳纤维纺丝和树脂修剪掉,使其符合设计要求的尺寸。
打磨则是为了使产品表面光滑平整。
而表面处理可以根据需要来选择喷漆、涂覆等方法,以增加产品的外观和性能。
最后,需要进行质量检测和品质控制。
这是为了确保产品符合设计要求和具有高质量。
质量检测可以使用一些常用的测试方法,例如拉伸、弯曲、压缩等物理测试。
品质控制则是在整个生产过程中进行的,包括原材料采购、工艺控制、生产过程监控等,以确保产品质量的稳定和一致性。
总而言之,碳纤维工艺流程是一个复杂而严谨的过程,需要经过多个步骤和环节的处理。
通过这些过程,可以将碳纤维与树脂复合成各种形状的产品,具有轻质高强度的性能特点。
随着技术的发展,碳纤维的应用将越来越广泛,对于提高产品的性能和减轻重量具有重要的意义。
碳纤维在生产生活中的应用

碳纤维在生产生活中的应用1. 应用背景碳纤维是一种轻质、高强度、高刚度的材料,因其独特的物理和化学性质,近年来在生产生活中得到了广泛的应用。
碳纤维的应用领域涉及诸多行业,包括航空航天、汽车制造、体育用品、建筑材料等。
在这些领域中,碳纤维的应用既能提高产品的性能,又能减轻产品的重量,极大地推动了各行业的发展。
本文将从不同行业的角度,详细介绍碳纤维在生产生活中的实际应用情况。
2. 航空航天领域在航空航天领域,碳纤维的应用非常广泛。
由于其具有轻质和高强度的特点,碳纤维可以用于制造飞机的结构件、鸟嘴、发动机罩等。
使用碳纤维材料可以减轻飞机的重量,提高燃油效率,减少碳排放。
此外,碳纤维还可以用于制造航天器的热掩护和结构件,提高航天器的耐热性和结构强度。
碳纤维的应用使得航空航天器的性能得到了极大的提升。
3. 汽车制造领域碳纤维在汽车制造领域的应用也越来越广泛。
汽车是一个重要的运输工具,如何减少汽车的油耗和排放是大家关注的问题。
碳纤维的应用可以使汽车的车身更加轻量化,减轻车身重量,降低汽车的油耗。
同时,碳纤维还可以提高车辆的安全性能,增加车身的刚度和抗冲击能力。
许多高端豪华车型和电动汽车广泛采用碳纤维材料制造车身和零部件,展示了碳纤维在汽车制造领域的巨大潜力。
4. 体育用品领域碳纤维在体育用品领域的应用已经成为一种趋势。
例如,高尔夫球杆、网球拍、自行车等产品都可以采用碳纤维材料制造,这样可以减轻器械的重量并提高其强度和刚度。
碳纤维材料在体育器械中的应用不仅使得产品的性能得到改善,同时还提高了运动员的竞技水平。
此外,碳纤维还可以用于制造滑雪板、冲浪板等运动器材,使得运动表现更为出色。
5. 建筑材料领域在建筑材料领域,碳纤维的应用也逐渐得到拓展。
传统的钢筋混凝土结构具有重量大、破坏性强等缺点,而采用碳纤维加固材料可以增加建筑物的抗震性能和承载力,同时减轻自身重量,降低对地基和结构的负荷。
此外,碳纤维还可以用于制造建筑外墙板、阳光房等产品,具有良好的隔热性能和耐候性能,提高了建筑的能源利用率和耐久性。
碳纤维制备方法

碳纤维制备方法碳纤维是目前世界上最先进的材料之一,具有轻质、高强度、高刚度、耐腐蚀等优秀性能,被广泛应用于航空、航天、汽车、体育器材等领域。
本文将介绍碳纤维的制备方法。
一、传统碳纤维制备方法传统碳纤维制备方法主要是炭化法和热解法。
1.炭化法炭化法是将有机纤维在高温下进行热解和炭化,形成碳纤维。
炭化法需要经过三个步骤:预氧化、炭化和图纸。
预氧化是将有机纤维在空气中加热,使其氧化并形成氧化物层,提高炭化温度和碳化速率。
炭化是将预氧化的有机纤维在高温下进行热解和炭化,使其成为碳纤维。
图纸是对碳纤维进行高温处理,使其晶体结构更加完善。
2.热解法热解法是将有机高分子材料在高温下分解为碳纤维。
热解法需要经过两个步骤:热解和图纸。
热解是将有机高分子材料在高温下分解为碳纤维,其原理和炭化法类似。
图纸是对碳纤维进行高温处理,使其晶体结构更加完善。
传统碳纤维制备方法具有制备工艺简单、成本低等优点,但其制备的碳纤维性能不稳定,质量不高,无法满足高端应用的需求。
二、新型碳纤维制备方法随着科技的发展,新型碳纤维制备方法不断涌现,其中最具有潜力的是气相沉积法和溶胶凝胶法。
1.气相沉积法气相沉积法是将有机气体在高温下分解成碳原子,并在基材表面沉积形成碳纤维。
气相沉积法具有制备工艺简单、成本低、制备速度快等优点,且制备的碳纤维性能稳定、质量高,可满足高端应用的需求。
2.溶胶凝胶法溶胶凝胶法是将有机溶液或胶体在溶剂中形成凝胶,经过干燥、热处理等步骤制备碳纤维。
溶胶凝胶法具有制备工艺简单、成本低、制备过程自动化等优点,且制备的碳纤维性能稳定、质量高,可满足高端应用的需求。
三、碳纤维制备方法的发展趋势碳纤维制备方法的发展趋势是多元化和智能化。
多元化是指碳纤维制备方法将逐步从单一的炭化法和热解法向气相沉积法、溶胶凝胶法等多种方法发展,以满足不同应用领域对碳纤维性能的需求。
智能化是指碳纤维制备方法将逐步实现智能化控制,通过先进的传感器、自动化控制系统等技术实现碳纤维制备过程的自动化、智能化,提高制备效率和质量。
碳纤维的技术及应用

碳纤维的技术及应用碳纤维是由有机母体纤维(例如粘胶丝、PAN聚丙烯腈或沥青)采用高温分解法在1000~3000度高温的惰性气体下制成的。
其结果是除碳以外的所有元素都予以去除。
碳纤维是一种含碳量高于99%的无机高分子纤维,其含碳量随种类不同而异,其中含碳量高于99%的称石墨纤维。
碳纤维呈黑色,坚硬,具有强度高、重量轻等特点,是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500MPa以上,是钢的7~9倍,抗拉弹性模量为23000~43000MPa亦高于钢。
因此CFRP的比强度即材料的强度与其密度之比可达到2000MPa/(g/cm3)以上,而A3钢的比强度仅为59MPa/(g/cm3)左右,其比模量也比钢高。
根据原料不同,碳纤维可分为粘胶基碳纤维、PAN基碳纤维和沥青基碳纤维。
其中,粘胶基碳纤维主要用于耐烧蚀材料,PAN基碳纤维主要用于生产高强度纤维,沥青基碳纤维主要用于生产高模量纤维。
沥青基碳纤维根据沥青的结晶状态,可分类为等方性和中间相2种,等方性耐热性和耐药品性、滑动性优异,中间相具有高强度、高模量等机械特性。
根据碳纤维的机械强度与模量的高低,可分为5级性能,分类如下表:表1 碳纤维分类根据炭化温度不同,分为三种类型。
(1)普通型(A型)碳纤维:在900~1200℃下炭化得到的碳纤维。
强度和弹性模量都较低。
一般强度小于107.7cN/tex,模量小于13462cN/tex。
(2)高强度型(Ⅱ型或C型)碳纤维:在1300~1700℃下炭化得到的碳纤维。
强度很高,可达138.4~166.1cN/tex,模量约为13842~16610cN/tex。
(3)高模量型(Ⅰ型或B型)碳纤维:又称石墨纤维。
在炭化后再经2500℃以上高温石墨化处理得到的碳纤维。
强度较高,约为97.8~122.2cN/tex。
模量很高,一般可达17107cN/tex以上,有的甚至可达31786cN/tex。
碳纤维复合材料的制备工艺及其应用

碳纤维复合材料的制备工艺及其应用一、碳纤维复合材料概述碳纤维复合材料是一种由碳纤维和树脂基体组成的材料,具有轻质、高强、高模量、耐腐蚀、耐高温、耐磨损等优点,是目前运用广泛的一种高性能材料。
碳纤维复合材料被广泛应用于航空航天、汽车、体育器材、建筑结构等领域。
如今,其中最为流行的应用就是在制造高档化、高速度、高精度单体器和新颖双翼飞行器上。
二、碳纤维复合材料的制备工艺碳纤维复合材料的制备过程是由多个工艺环节组成的,下面将针对每个环节逐一介绍。
1.纤维预处理碳纤维预处理是将原始碳纤维进行表面处理的过程,主要是增加碳纤维与树脂基体间的结合力。
预处理方法主要有物理法、化学法和物化结合法等。
2. 纤维束成型纤维束成型过程即是对碳纤维进行方向、密度、弯曲等要求的布放,旨在保障最终制品的力学性能和外观质量。
这个过程是全过程中最主要的工艺点。
3. 预浸胶(浸渍)预浸胶过程即是将干燥的碳纤维通过浸渍机进行一遍遍地浸润预浸膜,以保障纤维与树脂基体的结合质量和防止气泡的存在。
浸前要在浸润池内先提前进行啊溶剂和树脂的混合溶解,提高浸渍的成效。
4.层叠成形层叠成形过程即是替代传统的钣金模具来进行原料成型工艺,具有工艺灵活、生产效益高的特点。
一般有人工贴放和机器封装成型两种方法。
一个部位若是需要多层叠放,需对第一个和最后一个层间进行封闭处理。
5. 热固化热固化是将层叠成型后的半成品传送至热压机进行加压热处理,达成树脂基体固化硬化的工艺过程,这个过程也是碳纤维复合材料制品性能优良的重要原因。
三、碳纤维复合材料的应用碳纤维复合材料的优异性能,使得其在许多工业领域得以广泛应用,下面将对其主要应用领域进行介绍。
1. 航空航天领域碳纤维复合材料在航空航天领域中得到了广泛应用,如飞机翼、机身、尾翼等部位以及航空发动机的结构件等。
其优秀的轻重比使得飞机自身质量大大减轻,節省燃油成本以及大幅减少大气污染。
2. 汽车领域碳纤维复合材料在汽车领域中的应用也越来越广泛,碳纤维车身、内饰、动力传输部件以及刹车片等等都是一个个优秀的代表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水上划艇、弓箭、乒乓球拍、冰球鞋
轻量化、刚性、敏感性,
吸能减震性
应用领域
应用实 例
利用特性
医用器材
X衍射仪的床板、头托、密着板、暗合、CT板
假肢、假手、假眼、人造骨、人造关节、人造假牙
人造韧带、肌腱、医疗电极、医疗热袋
高比强、高比模、X射线透过性好、生物相容性好
二、聚丙烯腈基碳纤维
聚丙烯腈基碳纤维是目前的主流,占据了主要的市场费额:
1、瓦特的技术突破打通了制造高性能碳纤维的通道;
2、PAN原丝质量是制造高性能碳纤维的前提;
3、一条龙生产线得到发展,世界上几条著名的PAN基碳纤维生产线大多是从原丝开始,直到碳纤维以及中、下游产品开发。例如:日本东丽、东邦、三菱人造丝公司,美国的赫克利公司和阿莫科公司,以及中国台湾地区的台塑都是从聚合、纺丝开始,国外原丝主要生产工艺路线见下表:
赛车底盘、气体及制动器
线性发动机牵引机车、超导列车的支撑件、集装箱
高速列车车厢及制动器、转向架构件、自动转动轴
高比强、高比模、减振吸能、耐疲劳、耐腐蚀、耐磨损
电子电气及仪器
电视天线、抛物面天线、非磁性导线、面状发热体
大型电波望远镜、光学仪器、摄象机、半导体支架
计算机和传真机等的电磁屏蔽材料、舰船通讯室设施
粒料
微纤(研磨)
镀、喷金属
各种浸渍物
短切复合纤维
包覆塑料
导线
电缆
五、碳纤维及其复合材料的应用领域
类别
应用领域
利用碳纤维的特性
航天航空
飞机
一次结构材料;主翼、尾翼、机体
二次结构材料;辅翼、方向舵、升降舵
内装饰材料:舵底板、行李架、厕所、座椅
制动刹车盘、刹车片
隐身材料:结构隐身材料
轻量化、耐疲劳、耐热性
拾音臂、扬声器喇叭、滑动班、磁头罩、车器构件
静电消除刷、柔性刷、电刷
高比强、高比模、线膨胀系数小、电池屏蔽性好、减振
机械
纺织机械的框架、箭杆、梭、模具材料
大型造纸机、印刷机的滚筒、导辊(罗拉)
搬运机械的升降机箱、电梯构件、大吊车车壁
空压机轴、离心分离转子
密封填料、压力容器
高比强、高比模、尺寸稳定、耐腐蚀、耐磨损、导热
新能源
分离油用超级离心机转筒、核反映堆第一壁材
发动汽车构件及储能飞轮、风力发动叶片
太阳能发电板、抛物面激光器、太阳能热水器
燃料电池的电极材料、铅电池的栅极、锂电池电极材料
海上油田勘探和开采器材以及平台、油、气储罐及管道
高比强、高比模、线膨胀系数小、耐腐蚀、导电减振
土木建筑
高层建筑的幕墙、绝热板、圆顶建筑的横梁、薄材
研制单位
溶剂
工艺路线
纺丝方法
日本东丽
日本东邦
美国BASF
日本三菱人造丝
二甲基亚砜
氯化锌水溶液
二甲基乙酰胺
二甲基甲酰胺
一步法
一步法
二步法
一步法
湿纺
湿纺
熔纺
湿纺
湿纺
日本爱克纶
英国考特尔兹
日本旭化成
NaSCN
二甲基甲酰胺
NaSCN
二甲基压砜
二步法
二步法
一步法
二步法
湿纺
湿纺
湿纺
干喷湿纺
当前,PAN基碳纤维向两个方面发展:一是提高,二是普及。提高是指小丝束碳纤维(1~24K)的质量提高,普及是指大丝束碳纤维(48~540K)的产量大幅度增加,价格日趋下降。
宇宙飞行器
卫星:抛物面天线、太阳能电池梁、壳体结构材料,航天飞机:机翼、头锥、刹车盘
耐磨损、导热性
导弹、火箭
喷管、发动机罩、防热材料、仪器舱、导弹发射筒
轻量化、耐烧蚀、耐热
其他
宇宙空间站、卫星发电站、太空望远镜
轻量化、尺寸稳定性、耐热
文体器材
钓具
网拍类
高尔夫球
其他
钓竿、滑轮
网球拍、羽毛球拍
高尔夫球杆、棒头
三、沥青基碳纤维
1965年,日本群马大学的大谷衫郎研制沥青基碳纤维获得成功,从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。
四、碳纤维和深加工制品及其应用概况
碳
纤
维
长
丝
预浸料
单项预浸料(无纬布)
双向预浸料(带、布)
束丝预浸料
织物
二维织物
三维织物
多维织物
短切纤维
碳纤维纸
碳纤维生产技术路线及应用领域
2010-07-05复材在线[收藏该文章]
文章简要介绍了按原料体系的不同碳纤维的主要分类以及碳纤维生产技术路线及应用领域。
按原料体系的不同,碳纤维主要分为:பைடு நூலகம்胶基碳纤维、聚丙烯腈基碳纤维和沥青基碳纤维。
一、黏胶基碳纤维
自动门地板、防静电地板、采暖地板
增强混凝土,建筑物的结构补强、修补、维修、加固
增强木材复合材料
超长铁路桥、公路桥和人行桥的桥墩、隧道的加固及超强件,基础设施建设、建筑结构材料,碳纤维绳索
高比强、高比模、耐腐蚀、导电、加工性好
汽车与火车
传动轴、片簧、发动机罩、车轮、底盘、保险杆、制动器
压缩天然气罐(CNG)、消声壁(隔音墙)
其他
雨伞、太阳伞的骨架
各种加热器、取暖器
治理河流、湖泊污染的净化材料
耐蚀性好、耐候性好、导电性好
黏胶基碳纤维主要用于耐烧蚀材料和隔热材料,目前,黏胶基碳纤维仍占据着其他碳纤维不可取代的地位,是重要的战略物资。在民用市场方面,利用其柔软与导电性制作电热产品,利用其孔隙结构发达和容易调控的特性制造活性碳纤维系列制品,是良好的环保材料和医用卫生材料。黏胶基碳纤维的产量不足世界碳纤维总产量的1%,它虽然不会有大的发展,但也不会被彻底淘汰出局。