排列组合练习题及答案
三年级数学排列组合练习题

三年级数学排列组合练习题一、填空题:1. 有几种不同的排列方式可以用1、2、3这3个数字组成一个3位的整数?答案:6种2. 用数字1、2、3、4、5组成不重复的2位数,共有几种可能?答案:20种3. 用数字1、2、3、4、5可以组成多少个互不相同的3位数?答案:60个4. 用数字1、2、3、4组成不重复的2位数,共有几种可能?答案:12种5. 用数字1、2、3、4可以组成多少个不同的3位数?答案:24个二、选择题:1. 从数字1、2、3、4中任选两个数字,将其排列组成2位数,其中有几个数与原数字相同?a) 0个b) 1个d) 3个答案:a) 0个2. 用数字1、2、3、4组成3位数,其中有几个数的十位数字为3?a) 0个b) 1个c) 2个d) 3个答案:a) 0个3. 从数字1、2、3、4中任选三个数字,将其排列组成3位数,其中有几个数与原数字相同?a) 0个b) 1个c) 2个d) 3个答案:a) 0个4. 用数字1、2、3、4组成3位数,其中有几个数的百位数字为4?a) 0个c) 2个d) 3个答案:d) 3个5. 从数字1、2、3、4中任选两个数字,将其排列组成2位数,其中有几个数的十位数字为2?a) 0个b) 1个c) 2个d) 3个答案:c) 2个三、解答题:1. 用数字1、2、3、4、5组成一个5位数,要求千位数字为3,个位数字为1,其他位可以任意排列,共有多少种可能?解答:千位数字为3,个位数字为1已经确定,剩下的3位数字可以从剩下的3个数字中选取,即从2、4、5中任选两个数字。
根据排列组合的原理,共有C(3,2) = 3 种选择。
所以共有3种可能。
2. 用数字1、2、3、4、5组成一个5位数,要求个位数字为3,其他位可以任意排列,共有多少种可能?解答:个位数字已经确定为3,剩下的4位数字可以任意排列。
根据排列组合的原理,共有4! = 24 种可能。
3. 用数字1、2、3、4组成一个4位数,要求千位数字为3,其他位可以任意排列,共有多少种可能?解答:千位数字已经确定为3,剩下的3位数字可以任意排列。
排列组合题目精选(附答案)

排列组合题目精选(附答案)1.A和B必须相邻且B在A的右边,剩下的C、D、E可以随意排列,因此排列方式为4.即24种。
选项D正确。
2.先计算所有可能的排列方式,即7.然后减去甲乙相邻的排列方式,即2×6.因此不同的排列方式为5×6.即3600种。
选项B正确。
3.第一个格子有4种选择,第二个格子有3种选择,第三个格子有2种选择,因此不同的填法有4×3×2=24种。
选项D 错误。
4.由于每封信可以投入5个信箱中的任意一个,因此总的投放方式为5的4次方,即625种。
5.对于每个路口,选择4名同学进行调查的方式有12选4种,因此总的分配方案为(12选4)的3次方,即154,440种。
6.第一排有6种选择,第二排有5种选择,第三排有4种选择,因此不同的排法有6×5×4=120种。
选项B正确。
7.首先从8个元素中选出2个排在前排,有8选2种选择方式。
然后从剩下的6个元素中选出1个排在后排,有6种选择方式。
最后将剩下的5个元素排在后排,有5!种排列方式。
因此不同的排法有8选2×6×5!=28×720=20,160种。
8.首先将甲、乙、丙三人排成一排,有3!种排列方式。
然后将其余4人插入到相邻的位置中,有4!种排列方式。
因此不同的排法有3!×4!=144种。
9.首先将10个名额排成一排,有10!种排列方式。
然后在9个间隔中插入6个分隔符,每个间隔至少插入一个分隔符,因此有8种插入方式。
因此不同的分配方案有10!÷(6×8)=21,000种。
10.首先将除了甲和乙的8个人排成一排,有8!种排列方式。
然后将甲和乙插入到相邻的位置中,有2种插入方式。
因此不同的派遣方案有8!×2=80,640种。
11.个位数字小于十位数字的六位数,可以从1、2、3、4、5中选出两个数字排列,有5选2种选择方式,即10种。
(完整版)排列组合练习题3套(含答案)

(完整版)排列组合练习题3套(含答案)排列练习⼀、选择题1、将3个不同的⼩球放⼊4个盒⼦中,则不同放法种数有()A、81B、64C、12D、142、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于()A、 B、 C、 D、3、⽤1,2,3,4四个数字可以组成数字不重复的⾃然数的个数()A、64B、60C、24D、2564、3张不同的电影票全部分给10个⼈,每⼈⾄多⼀张,则有不同分法的种数是()A、2160B、120C、240D、7205、要排⼀张有5个独唱和3个合唱的节⽬表,如果合唱节⽬不能排在第⼀个,并且合唱节⽬不能相邻,则不同排法的种数是()A、 B、 C、 D、6、5个⼈排成⼀排,其中甲、⼄两⼈⾄少有⼀⼈在两端的排法种数有()A、 B、 C、 D、7、⽤数字1,2,3,4,5组成没有重复数字的五位数,其中⼩于50000的偶数有()A、24B、36C、46D、608、某班委会五⼈分⼯,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,⼄不能担任学习委员,则不同的分⼯⽅案的种数是()A、B、C、D、⼆、填空题1、(1)(4P84+2P85)÷(P86-P95)×0!=___________(2)若P2n3=10Pn3,则n=___________2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为__________________________________________________________________3、4名男⽣,4名⼥⽣排成⼀排,⼥⽣不排两端,则有_________种不同排法4、有⼀⾓的⼈民币3张,5⾓的⼈民币1张,1元的⼈民币4张,⽤这些⼈民币可以组成_________种不同币值。
三、解答题1、⽤0,1,2,3,4,5这六个数字,组成没有重复数字的五位数,(1)在下列情况,各有多少个?①奇数②能被5整除③能被15整除④⽐35142⼩⑤⽐50000⼩且不是5的倍数2、7个⼈排成⼀排,在下列情况下,各有多少种不同排法?(1)甲排头(2)甲不排头,也不排尾(3)甲、⼄、丙三⼈必须在⼀起(4)甲、⼄之间有且只有两⼈(5)甲、⼄、丙三⼈两两不相邻(6)甲在⼄的左边(不⼀定相邻)(7)甲、⼄、丙三⼈按从⾼到矮,⾃左向右的顺序(8)甲不排头,⼄不排当中3、从2,3,4,7,9这五个数字任取3个,组成没有重复数字的三位数(1)这样的三位数⼀共有多少个?(2)所有这些三位数的个位上的数字之和是多少?(3)所有这些三位数的和是多少?排列与组合练习(1)⼀、填空题1、若,则n的值为()A、6B、7C、8D、92、某班有30名男⽣,20名⼥⽣,现要从中选出5⼈组成⼀个宣传⼩组,其中男、⼥学⽣均不少于2⼈的选法为()A、 B、 C、 D、3、空间有10个点,其中5点在同⼀平⾯上,其余没有4点共⾯,则10个点可以确定不同平⾯的个数是()A、206B、205C、111D、1104、6本不同的书分给甲、⼄、丙三⼈,每⼈两本,不同的分法种数是()A、 B、 C、 D、5、由5个1,2个2排成含7项的数列,则构成不同的数列的个数是()A、21B、25C、32D、426、设P1、P2…,P20是⽅程z20=1的20个复根在复平⾯上所对应的点,以这些点为顶点的直⾓三⾓形的个数为()A、360B、180C、90D、457、若,则k的取值范围是()A、[5,11]B、[4,11]C、[4,12]D、4,15]8、⼝袋⾥有4个不同的红球,6个不同的⽩球,每次取出4个球,取出⼀个线球记2分,取出⼀个⽩球记1分,则使总分不⼩于5分的取球⽅法种数是()A、 B、 C、 D、1、计算:(1)=_______(2)=_______2、把7个相同的⼩球放到10个不同的盒⼦中,每个盒⼦中放球不超1个,则有_______种不同放法。
排列组合的数学练习题及答案

排列组合的数学练习题及答案关于排列组合的数学练习题及答案数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
下面是店铺精心整理的关于排列组合的数学练习题及答案,仅供参考,欢迎大家阅读。
1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()A、768种B、32种C、24种D、2的10次方中解:根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种,综合两步,就有24×32=768种。
2 若把英语单词hello的字母写错了,则可能出现的错误共有 ( )A 119种B 36种C 59种D 48种解:5全排列5*4*3*2*1=120,有两个l所以120/2=60,原来有一种正确的所以60-1=593.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?答案为53秒算式是(140+125)÷(22-17)=53秒可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。
4.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?答案为100米300÷(5-4.4)=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行的路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
排列组合经典练习(带答案)

排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为() A.40B.50C.60D.70[解析]先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A.6个B.9个C.18个D.36个[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有() A.2人或3人B.3人或4人C.3人D.4人[解析]设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A.45种B.36种C.28种D.25种[解析]因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种B.36种C.38种D.108种[解析]本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33 B.34 C.35 D.36[解析]①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是() A.72 B.96 C.108 D.144[解析]分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种[解析]先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[解析]先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49·C25·C33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[解析]先将6名志愿者分为4组,共有C26C24A22种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有:C 26·C 24A 22·A 44=1 080种. 13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析] 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 (A )72 (B )96 (C ) 108 (D )144 解析:先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个 答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 A.10 B.11 C.12 D.1518. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
高中排列组合试题及答案

高中排列组合试题及答案一、选择题1. 从5个人中选出3个人参加比赛,不同的选法有()种。
A. 10B. 15C. 20D. 60答案:B2. 有3个不同的球和3个不同的盒子,每个盒子只能放一个球,不同的放法有()种。
A. 3B. 6C. 9D. 27答案:D3. 从6本不同的书中选3本送给3个不同的人,每人一本,不同的送法有()种。
A. 20B. 60C. 120D. 720答案:B二、填空题4. 一个班级有20名学生,需要选出5名学生组成一个小组,那么不同的选法有______种。
答案:15,5045. 从10个人中选出3个人担任班长、副班长和学习委员,不同的选法有______种。
答案:720三、解答题6. 某学校有5个不同学科的竞赛,每个学生可以选择参加1个或多个竞赛,求至少参加一个竞赛的学生的选法总数。
答案:首先,每个学生有6种选择:不参加任何竞赛,只参加一个竞赛,参加两个竞赛,参加三个竞赛,参加四个竞赛,参加所有五个竞赛。
对于每个学科,学生有两种选择:参加或不参加,所以总共有2^5=32种可能的组合。
但是,我们需要排除不参加任何竞赛的情况,所以选法总数为32-1=31种。
7. 一个班级有30名学生,需要选出一个5人的篮球队,其中必须包括1名队长和4名队员。
如果队长和队员可以是同一个人,那么不同的选法有多少种?答案:首先,选择队长有30种可能,然后从剩下的29人中选择4名队员,有C(29,4)种可能。
但是,由于队长和队员可以是同一个人,我们需要减去只选了4名队员的情况,即C(30,4)种。
所以,总的选法为30*C(29,4) - C(30,4) = 30*1911 - 27,405 = 57,330种。
四、计算题8. 一个数字密码由5个不同的数字组成,每位数字可以是0-9中的任意一个,求这个密码的所有可能组合。
答案:每位数字有10种可能,所以总的组合数为10^5 = 100,000种。
9. 一个班级有15名学生,需要选出一个7人的足球队,不同的选法有多少种?答案:从15名学生中选出7人,不同的选法有C(15,7) = 6,435种。
排列组合经典练习(带答案)

排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( ) A.40 B.50 C.60 D.70[解析] 先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( ) A.36种B.48种 C.72种D.96种[解析] 恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )A.6个B.9个 C.18个D.36个[解析] 注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A.2人或3人 B.3人或4人 C.3人 D.4人[解析] 设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n =6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A.45种B.36种 C.28种D.25种[解析] 因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( )A.24种B.36种 C.38种D.108种[解析] 本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33 B.34 C.35 D.36[解析] ①所得空间直角坐标系中的点的坐标中不含1的有C12·A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12·A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A.72 B.96 C.108 D.144[解析] 分两类:若1与3相邻,有A22·C13A22A23=72(个),若1与3不相邻有A33·A33=36(个)故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( )A.50种B.60种 C.120种D.210种[解析] 先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16·A25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)[解析] 先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[解析] 由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49·C25·C33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).[解析] 先将6名志愿者分为4组,共有C26C 24A22种分法,再将4组人员分到4个不同场馆去,共有A44种分法,故所有分配方案有:C26·C24A22·A44=1 080种.13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析] 5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种D. 1108种解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法 甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法 故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是 (A )72 (B )96 (C ) 108 (D )144 *s 5* o*m 解析:先选一个偶数字排个位,有3种选法*s 5* o*m①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个 算上个位偶数字的排法,共计3(24+12)=108个答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为18. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
(完整版)排列组合练习题(含答案)

排列组合练习题1、三个同学必须从四种不同的选修课中选一种自己想学的课程,共有种不同的选法。
2、8名同学争夺3项冠军,获得冠军的可能性有种。
3、乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种。
4、从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有。
5、有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人)得2本,其它每人一本,则共有种不同的奖法。
6、有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有种。
7、有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种。
8、五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有种陈列方法。
9、有6名同学站成一排:甲、乙、丙不相邻有种不同的排法。
10、五个人排成一排,要求甲、乙不相邻,且甲、丙也不相邻的不同排法的种数是11、6名男生6名女生排成一排,要求男女相间的排法有种。
12、4名男生和3名女生排成一排,要求男女相间的排法有种。
13、有4男4女排成一排,要求女的互不相邻有种排法;要求男女相间有种排法。
14、一排有8个座位,3人去坐,要求每人左右两边都有空位的坐法有种。
15、三个人坐在一排7个座位上,若3个人中间没有空位,有种坐法。
若4个空位中恰有3个空位连在一起,有种坐法。
16、由1、2、3、4、5组成一个无重复数字的5位数,其中2、3必须排在一起,4、5不能排在一起,则不同的5位数共有个。
17、有4名学生和3位老师排成一排照相,规定两端不排老师且老师顺序固定不变,那么不同的排法有种。
18、从6名短跑运动员中选4人参加4 100米的接力赛,如果其中甲不能跑第一棒,乙不能跑第四棒,共有种参赛方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《排列组合》一、排列与组合1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有A.12个B.13个C.14个D.15个5.用0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个数字不重复的小于1000的自然数?(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?二、注意附加条件1.6人排成一列(1)甲乙必须站两端,有多少种不同排法?(2)甲乙必须站两端,丙站中间,有多少种不同排法?2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是A.3761B.4175C.5132D.61574. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有A.30种B.31种C.32种D.36种5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是A.230种B.236种C.455种D.2640种6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有A.240种B.180种C.120种D.60种7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是 。
三、间接与直接1.有4名女同学,6名男同学,现选3名同学参加某一比赛,至少有1名女同学,由多少种不同选法?2. 6名男生4名女生排成一行,女生不全相邻的排法有多少种?3.已知集合A 和B 各12个元素,A B 含有4个元素,试求同时满足下列两个条件的集合C 的个数:(1)()C A B ⊂且C 中含有三个元素;(2)C A ≠∅,∅表示空集。
4. 从5门不同的文科学科和4门不同的理科学科中任选4门,组成一个综合高考科目组,若要求这组科目中文理科都有,则不同的选法的种数A.60种B.80种C.120种D.140种5.四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点不同取法有多少种?6. 以正方体的8个顶点为顶点的四棱锥有多少个?7. 对正方体的8个顶点两两连线,其中能成异面直线的有多少对?四、分类与分步1.求下列集合的元素个数.(1){(,)|,,6}M x y x y N x y =∈+≤;(2){(,)|,,14,15}H x y x y N x y =∈≤≤≤≤.2.一个文艺团队有9名成员,有7人会唱歌,5人会跳舞,现派2人参加演出,其中1名会唱歌,1名会跳舞,有多少种不同选派方法?3.已知直线12//l l ,在1l 上取3个点,在2l 上取4个点,每两个点连成直线,那么这些直线在1l 和2l 之间的交点(不包括1l 、2l 上的点)最多有A. 18个B.20个C.24个D.36个4. 9名翻译人员中,6人懂英语,4人懂日语,从中选拔5人参加外事活动,要求其中3人担任英语翻译,2人担任日语翻译,选拔的方法有 种(用数字作答)。
5.某博物馆要在20天内接待8所学校的学生参观,每天只安排一所学校,其中一所人数较多的学校要连续参观3天,其余学校只参观1天,则在这20天内不同的安排方法为A.372017C A 种 B.820A 种 C.171817C A 种 D.1818A 种6. 从10种不同的作物种子选出6种放入6个不同的瓶子展出,如果甲乙两种种子不许放第一号瓶内,那么不同的放法共有A.24108C A 种B.1599C A 种 C.1589C A 种 D.1598C A 种7. 在画廊要展出1幅水彩画、4幅油画、5幅国画,要求排成一排,并且同一种的画摆放在一起,还要求水彩画不能摆两端,那么不同的陈列方式有A.1545A A 种 B.245345A A A 种 C.145445A A A 种 D.245245A A A 种8. 把一个圆周24等分,过其中任意3个分点,可以连成圆的内接三角形,其中直角三角形的个数是A.122B.132C.2649. 有三张纸片,正、反面分别写着数字1、2、3和4、5、6 ,将这三张纸片上的数字排成三位数,共能组不同三位数的个数是A. 24B.36C.48D.6410.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?11. 如下图,共有多少个不同的三角形?解:所有不同的三角形可分为三类:第一类:其中有两条边是原五边形的边,这样的三角形共有5个第二类:其中有且只有一条边是原五边形的边,这样的三角形共有5×4=20个第三类:没有一条边是原五边形的边,即由五条对角线围成的三角形,共有5+5=10个由分类计数原理得,不同的三角形共有5+20+10=35个.12.从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有 种不同的放映方法(用数字作答)。
五、元素与位置——位置分析1.7人争夺5项冠军,结果有多少种情况?2. 75600有多少个正约数?有多少个奇约数?解:75600的约数就是能整除75600的整数,所以本题就是分别求能整除75600的整数和奇约数的个数.由于 75600=24×33×52×7(1) 75600的每个约数都可以写成l k j l 7532⋅⋅⋅的形式,其中40≤≤i ,30≤≤j ,20≤≤k ,10≤≤l于是,要确定75600的一个约数,可分四步完成,即l k j i ,,,分别在各自的范围内任取一个值,这样i 有5种取法,j 有4种取法,k 有3种取法,l 有2种取法,根据分步计数原理得约数的个数为5×4×3×2=120个.(2)奇约数中步不含有2的因数,因此75600的每个奇约数都可以写成l k j 753⋅⋅的形式,同上奇约数的个数为4×3×2=24个.3. 2名医生和4名护士被分配到两所学校为学生体检,每校分配1名医生和2名护士,不同分配方法有多少种?4.有四位同学参加三项不同的比赛,(1)每位同学必须参加一项竞赛,有多少种不同的结果?(2)每项竞赛只许一位学生参加,有多少种不同的结果?解:(1)每位学生有三种选择,四位学生共有参赛方法:333381⨯⨯⨯=种;(2)每项竞赛被选择的方法有四种,三项竞赛共有参赛方法:44464⨯⨯=种.六、染色问题1.如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为() A. 180 B. 160 C. 96 D. 60若变为图二,图三呢?(240种,5×4×4×4=320种)2. 某班宣传小组一期国庆专刊,现有红、黄、白、绿、蓝五种颜色的粉笔供选用,要求在黑板中A 、B 、C 、D (如图)每一 部分只写一种颜色,相邻两块颜色不同,则不同颜色粉笔书写的方法共有 种(用具体数字作答)。
七、消序 1. 有4名男生,3名女生。
现将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法?2. 书架上有6本书,现再放入3本书,要求不改变原来6本书前后的相对顺序,有多少种不同排法?八、分组分配1.某校高中一年级有6个班,分派3名教师任教,每名教师任教二个班,不同的安排方法有多少种?2. 高三级8个班,分派4名数学老师任教,每位教师任教2个班,则不同安排方法有多少种?3. 6本不同的书分给甲、乙、丙三人,每人一本、二本、三本的不同分法有多少种?4.8项工程,甲承包三项,乙承包一项,丙、丁各承包二项,不同的承包方案有 种图一 图二 图三5..六人住A、B、C三间房,每房最多住三人,(1)每间住两人,有种不同的住法,(2)一间住三人,一间住二人,一间住一人,有种不同的住宿方案。
6. 8人住ABC三个房间,每间最多住3人,有多少种不同住宿方案?7.有4个不同小球放入四个不同盒子,其中有且只有一个盒子留空,有多少种不同放法?7. 把标有a,b,c,d,…的8件不同纪念品平均赠给甲、乙两位同学,其中a、b不赠给同一个人,则不同的赠送方法有种(用数字作答)。
九、捆绑1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法?2. 有8本不同的书,其中科技书3本,文艺书2本,其它书3本,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数与这8本书的不同排法之比为A.1:14B.1:28C.1:140D.1:336十、插空1.要排一个有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有()A.2880B.1152C.48D.1443. 要排一个有5个歌唱节目和3个舞蹈节目的演出节目单,如果舞蹈节目不相邻,则有多少种不同排法?4. 5人排成一排,要求甲、乙之间至少有1人,共有多少种不同排法?5..把5本不同的书排列在书架的同一层上,其中某3本书要排在中间位置,有多少种不同排法?6.1到7七个自然数组成一个没有重复数字的七位数,其中偶数不相邻的个数有个.7.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法?8.8张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?9. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?10. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?11. 某城市修建的一条道路上有12只路灯,为了节省用电而又不影响正常的照明,可以熄灭其中三只灯,但不能熄灭两端的灯,也不能熄灭相邻的两只灯,那么熄灯的方法共有种A.38C B.38A C.39C D.39A12. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必需有6只灯是关的,且相邻的灯不能同时被关掉,两端的灯必需点亮的要求进行设计,那么不同的点亮方式是A.28种B.84种C.180种D.360种13. 一排长椅上共有10个座位,现有4人就座,恰有五个连续空位的坐法种数为。