李春喜《生物统计学》第三版课后作业答案
生物统计学课后答案

生物统计学课后答案【篇一:生物统计学经典习题(期末复习)个人整理】class=txt>【例5.1】母猪的怀孕期为114天,今抽测10头母猪的怀孕期分别为116、115、113、112、114、117、115、116、114、113(天),试检验所得样本的平均数与总体平均数114天有无显著差异?根据题意,本例应进行双侧t检验。
1.提出无效假设与备择假设2、计算值经计算得:=114.5,s=1.581:=114,:≠114所以==10-1=9==1.0003、查临界值,作出统计推断由|t|,p0.05,故不能否定=9,查值表(附表3)得:=2.262,因为=114,表明样本平均数与总体平均数差异不显著,可以认为该样本取自母猪怀孕期为114天的总体。
【例5.2】按饲料配方规定,每1000kg某种饲料中维生素c不得少于246g,现从工厂的产品中随机抽测12个样品,测得维生素c含量如下:255、260、262、248、244、245、250、238、246、248、258、270g/1000kg,若样品的维生素c含量服从正态分布,问此产品是否符合规定要求?按题意,此例应采用单侧检验。
1、提出无效假设与备择假设经计算得:=252,s=9.115:=246,:246、计算值所以==12-1=11==2.2813、查临界值,作出统计推断因为单侧(11),p0.05,否定:=246,接受=双侧=1.796,|t|单侧t0.05:246,表明样本平均数与总体平均数差异显著,可以认为该批饲料维生素c含量符合规定要求。
第三节两个样本平均数的差异显著性检验【例5.3】某种猪场分别测定长白后备种猪和蓝塘后备种猪90kg时的背膘厚度,测定结果如表5-3所示。
设两品种后备种猪90kg时的背膘厚度值服从正态分布,且方差相等,问该两品种后备种猪90kg 时的背膘厚度有无显著差异?表5-3长白与蓝塘后备种猪背膘厚度:=,:≠=0.0998、=0.1096,1、提出无效假设与备择假设2、计算值此例=1.817、、=12、=11,经计算得=1.202、=0.1508=0.123、分别为两样本离均差平方和。
生物统计学课后习题解答李春喜

生物统计学课后习题解答李春喜(共15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章概论解释以下概念:总体、个体、样本、样本容量、变量、参数、统计数、效应、互作、随机误差、系统误差、准确性、精确性。
第二章试验资料的整理与特征数的计算习题某地 100 例 30 ~ 40 岁健康男子血清总胆固醇 (mol · L -1 ) 测定结果如下:计算平均数、标准差和变异系数。
【答案】=, s=, CV = %试计算下列两个玉米品种 10 个果穗长度 (cm) 的标准差和变异系数,并解释所得结果。
24 号: 19 , 21 , 20 , 20 , 18 , 19 , 22 , 21 , 21 , 19 ;金皇后: 16 , 21 , 24 , 15 , 26 , 18 , 20 , 19 , 22 , 19 。
【答案】 1 =20, s 1 =, CV 1 =% ; 2 =20, s 2 =, CV 2 =% 。
某海水养殖场进行贻贝单养和贻贝与海带混养的对比试验,收获时各随机抽取 50 绳测其毛重 (kg) ,结果分别如下:单养 50 绳重量数据: 45 , 45 , 33 , 53 , 36 , 45 , 42 , 43 , 29 , 25 , 47 ,50 , 43 , 49 , 36 , 30 , 39 , 44 , 35 , 38 , 46 , 51 , 42 , 38 , 51 , 45 ,41 , 51 , 50 , 47 , 44 , 43 , 46 , 55 , 42 , 27 , 42 , 35 , 46 , 53 , 32 ,41 , 48 , 50 , 51 , 46 , 41 , 34 , 44 , 46 ;混养 50 绳重量数据: 51 , 48 , 58 , 42 , 55 , 48 , 48 , 54 , 39 , 58 , 50 ,54 , 53 , 44 , 45 , 50 , 51 , 57 , 43 , 67 , 48 , 44 , 58 , 57 , 46 , 57 ,50 , 48 , 41 , 62 , 51 , 58 , 48 , 53 , 47 , 57 , 51 , 53 , 48 , 64 , 52 ,59 , 55 , 57 , 48 , 69 , 52 , 54 , 53 , 50 。
生物统计学课后习题作业答案完善版

答:事件A在n次重复试验中发生了m次,则比值m/n称为事件A发生的频率,记为W(A);事件A在n次重复试验中发生了m次,当试验次数n不断增加时,事件A发生的频率W(A)就越来越接近某一确定值p,则p即为事件A发生的概率。二者的关系是:当试验次数n充分大时,频率转化为概率。
习题3.4
答:正态分布是一种连续型随机变量的概率分布,它的分布特征是大多数变量围绕在平均数左右,由平均数到分布的两侧,变量数减小,即中间多,两头少,两侧对称。
U=0,σ²=1的正态分布为标准正态分布。
正态分布具有以下特点:标准正态分布具有以下特点:①、正态分布曲线是以平均数μ为峰值的曲线,当x=μ时,f(x)取最大值 ;②、正态分布是以μ为中心向左右两侧对称的分布③、 的绝对值越大,f(x)值就越小,但f(x)永远不会等于0,所以正态分布以x轴为渐近线,x的取值区间为(-∞,+∞);④、正态分布曲线完全由参数μ和来决定⑤、正态分布曲线在x=μ±处各有一个拐点;⑥、正态分布曲线与x轴所围成的面积必定等于1。
习题3.2
答:事件A和事件B不能同时发生,即A·B=V,那么称事件A和事件B为互斥事件,如人的ABO血型中,某个人血型可能是A型、B型、O型、AB型4中血型之一,但不可能既是A型又是B型。事件A和事件B必有一个发生,但二者不能同时发生即A+B=U,A×B=V,则称事件A与事件B为对立事件,如抛硬币时向上的一面不是正面就是反面。事件A与事件B的发生毫无关系。反之事件B的发生与事件A的发生毫无关系,则称事件A与事件B为独立事件,如第二胎生男生女与第一台生男生女毫无关系。
习题6.1
答:(1)方差分析是对两个或多个样本平均数差异显著性检验的方法。
(2)方差分析的基本思想是将测量数据的总变异按照变异来源分为处理效应和误差效应,并作出数量估计,在一定显著水平下进行比较,从而检验处理效应是否显著。
李春喜《生物统计学》第三版课后作业答案

《生物统计学》第三版课后作业答案(李春喜、姜丽娜、邵云、王文林编着)第一章概论(P7)习题1.1 什么是生物统计学?生物统计学的主要内容和作用是什么?答:(1)生物统计学(biostatistics)是用数理统计的原理和方法来分析和解释生物界各种现象和实验调查资料,是研究生命过程中以样本来推断总体的一门学科。
(2)生物统计学主要包括实验设计和统计推断两大部分的内容。
其基本作用表现在以下四个方面:①提供整理和描述数据资料的科学方法;②确定某些性状和特性的数量特征;③判断实验结果的可靠性;④提供由样本推断总体的方法;⑤提供实验设计的一些重要原则。
习题1.2 解释以下概念:总体、个体、样本、样本容量、变量、参数、统计数、效应、互作、随机误差、系统误差、准确性、精确性。
答:(1)总体(populatian)是具有相同性质的个体所组成的集合,是研究对象的全体。
(2)个体(individual)是组成总体的基本单元。
(3)样本(sample)是从总体中抽出的若干个个体所构成的集合。
(4)样本容量(sample size)是指样本个体的数目。
(5)变量(variable)是相同性质的事物间表现差异性的某种特征。
(6)参数(parameter)是描述总体特征的数量。
(7)统计数(statistic)是由样本计算所得的数值,是描述样本特征的数量。
(8)效应(effection)试验因素相对独立的作用称为该因素的主效应,简称效应。
(9)互作(interaction)是指两个或两个以上处理因素间的相互作用产生的效应。
(10)实验误差(experimental error)是指实验中不可控因素所引起的观测值偏离真值的差异,可以分为随机误差和系统误差。
(11)随机误差(random)也称抽样误差或偶然误差,它是有实验中许多无法控制的偶然因素所造成的实验结果与真实结果之间产生的差异,是不可避免的。
随机误差可以通过增加抽样或试验次数降低随机误差,但不能完全消。
生物统计学课后习题解答李春喜

生物统计学课后习题解答李春喜生物统计学是一门运用统计学原理和方法来处理和分析生物数据的学科,对于生物学、医学、农学等领域的研究和实践具有重要意义。
以下是针对李春喜编写的生物统计学教材课后习题的一些解答。
首先,让我们来看一道关于数据描述性统计的题目。
题目给出了一组生物样本的测量数据,要求计算均值、中位数、众数、方差和标准差。
均值是所有数据的算术平均值,通过将所有数据相加再除以数据的个数即可得到。
计算过程如下:假设这组数据为 X1, X2, X3,, Xn,均值=(X1 + X2 + X3 ++ Xn)/ n 。
中位数是将数据按照从小到大或从大到小的顺序排列后,位于中间位置的数值。
如果数据个数为奇数,中位数就是中间的那个数;如果数据个数为偶数,中位数则是中间两个数的平均值。
众数是数据中出现次数最多的数值。
方差反映了数据的离散程度,计算方法是先计算每个数据与均值的差的平方,再将这些平方差求和并除以数据个数。
标准差则是方差的平方根。
例如,给定一组数据:12, 15, 18, 15, 20, 12, 18。
首先将其从小到大排列:12, 12, 15, 15, 18, 18, 20。
数据个数 n = 7。
均值=(12 + 12 + 15 + 15 + 18 + 18 + 20)/ 7 = 1571 。
中位数是第 4 个数,即 15 。
众数是 12、15 和 18 ,因为它们都出现了两次。
接下来计算方差:先计算每个数据与均值的差:(12 1571) =-371 ,(12 1571) =-371 ,(15 1571) =-071 ,(15 1571) =-071 ,(18 1571) = 229 ,(18 1571) = 229 ,(20 1571) = 429 。
然后求差的平方:(-371)²= 137641 ,(-371)²= 137641 ,(-071)²= 05041 ,(-071)²= 05041 ,(229)²= 52441 ,(229)²= 52441 ,(429)²=184041 。
生物统计第二章 补充习题及答案

第二章习题及答案(来源:《生物统计学学习指导》李春喜等,科学出版社,2008:p14-15)一、填空1.变量的分布有两个明显的基本特征,即和。
二、判断1.计数资料也称为连续性变异资料。
计量资料也称为不连续性变异资料或间断性变异资料。
()三、选择题(《生物统计学题解及练习》杜荣赛高等教育出版社。
2003.p164)1.下面的变量属于非连续性变量的是( )。
A. 身高B. 体重C. 血型D. 血压2.身高、体重、年龄这一类数据属于()。
A. 离散性数据B. 计数数据C. 连续性数据D. 质量性状资料3.身高、体重、年龄这一类数据属于()。
A. 离散性数据B. 计数数据C. 计量资料D. 质量性状资料4.每十人中男性人数,每一万人中得H1N1流感人数,每亩麦田中杂草株数等,这一类数据属于()。
A. 离散性数据B. 连续性数据C. 计量资料D. 质量性状资料5.每十人中男性人数,每一万人中得H1N1流感人数,每亩麦田中杂草株数等,这一类数据属于()。
A. 计数数据B. 连续性数据C. 计量资料D. 质量性状资料6.频数按其组值的次序排列起来,称为()。
A. 频数排列B. 频数分布C. 组值排列D. 二项分布四、计算题1. 现以50枚受精种蛋孵化出雏鸡的天数为例,说明计数资料的整理。
21 20 20 21 23 22 22 22 21 22 20 23 22 23 22 19 22 2324 22 19 22 21 21 21 22 22 24 22 21 21 22 22 23 22 22小鸡出壳天数在19─24天范围内变动,有6个不同的观察值。
用各个不同观察值进行分组,共分为6组,可得表2-3形式的次数分布表。
表2-3 50枚受精种蛋出雏天数的次数分布表孵化天数划线计数次数(f)19 ║ 220 ║│ 321 ╫╫╫╫1022 ╫╫╫╫╫╫╫╫║║2423 ╫╫║║924 ║ 2合计50从表2-3可以看出:种蛋孵化出雏天数大多集中在21−23天,以22 天的最多,孵化天数较短(19−20天)和较长(24天)的都较少。
最新生物统计学课后习题解答-李春喜

第一章概论解释以下概念:总体、个体、样本、样本容量、变量、参数、统计数、效应、互作、随机误差、系统误差、准确性、精确性。
第二章试验资料的整理与特征数的计算习题2.1 某地100 例30 ~40 岁健康男子血清总胆固醇(mol · L -1 ) 测定结果如下:4.77 3.37 6.14 3.95 3.56 4.23 4.31 4.715.69 4.124.56 4.375.396.30 5.217.22 5.54 3.93 5.21 6.515.18 5.77 4.79 5.12 5.20 5.10 4.70 4.74 3.50 4.694.38 4.89 6.255.32 4.50 4.63 3.61 4.44 4.43 4.254.035.85 4.09 3.35 4.08 4.79 5.30 4.97 3.18 3.975.16 5.10 5.85 4.79 5.34 4.24 4.32 4.776.36 6.384.885.55 3.04 4.55 3.35 4.87 4.17 5.85 5.16 5.094.52 4.38 4.31 4.585.726.55 4.76 4.61 4.17 4.034.47 3.40 3.91 2.70 4.60 4.095.96 5.48 4.40 4.555.38 3.89 4.60 4.47 3.64 4.34 5.186.14 3.24 4.90计算平均数、标准差和变异系数。
【答案】=4.7398, s=0.866, CV =18.27 %2.2 试计算下列两个玉米品种10 个果穗长度(cm) 的标准差和变异系数,并解释所得结果。
24 号:19 ,21 ,20 ,20 ,18 ,19 ,22 ,21 ,21 ,19 ;金皇后:16 ,21 ,24 ,15 ,26 ,18 ,20 ,19 ,22 ,19 。
【答案】 1 =20, s 1 =1.247, CV 1 =6.235% ; 2 =20, s 2 =3.400, CV 2 =17.0% 。
《生物统计学》习题集答案

《生物统计学》习题集答案一、填空题:1.统计假设测验中犯第一类错误是正确的假设被否定。
(附统计假设测验中犯第二类错误是错误的假设被肯定。
)2.有共同性质的个体所组成的集团称为总体。
从总体中抽取部分个体进行观测,用以估计总体的一般特性,这部分被观测的个体总称为样本。
3.由总体中包含的全部个体求得的能够反映总体性质的特征数称为参数;由样本的全部观察值求得的用以估计总体参数的特征数叫统计数。
4.试验误差可以分为系统(片面)误差和偶然(随机)误差两种类型。
5.一般而言,在一定范围内,增加试验小区的面积,试验误差将会降低。
6.在试验中重复的主要作用是估计试验误差和降低试验误差。
7.田间试验设计的基本原则是重复、随机排列、局部控制。
8.田间试验可按试验因素的多少分为单因素试验和多因素试验。
9.样本平均数显着性测验接受或者否定假设的根据是“小概率事件实际上不可能发生”原理。
10.从总体中抽取的样本要具有代表性,必须是随机抽取的样本。
11.从一个正态总体中随机抽取的样本平均数,理论上服从正态分布。
12.数据1、3、2、4、5、6、3、3的算术平均数是3.375,众数是3。
13.常用的变异程度(变异)指标有极差、方差、标准差、变异系数。
14.小麦品种A每穗小穗数的平均数和标准差值为18和3(厘米),品种B为30和4.5(厘米),根据CV A_(或A品种的变异系数)_大于_CV B(或B品种的变异系数),品种__A_____的该性状变异大于品种B___。
15.要比较单位不同或者单位相同但平均数大小相差较大的两个样本资料的变异度宜采用变异系数。
16.试验资料按所研究的性状、特性可以分为质量性状资料和数量性状资料。
17.样本根据样本容量的多少可以分为小样本和大样本。
18.二项总体是非此即彼的两项构成的总体,此事件以变量“1”表示,彼事件以变量“0”表示,也可以称为0,1总体。
19.标准正态分布是参数?=0__,_?2_=1_的一个特定正态分布,记作N(0,1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《生物统计学》第三版课后作业答案(李春喜、姜丽娜、邵云、王文林编着)第一章概论(P7)习题什么是生物统计学?生物统计学的主要内容和作用是什么?答:(1)生物统计学(biostatistics)是用数理统计的原理和方法来分析和解释生物界各种现象和实验调查资料,是研究生命过程中以样本来推断总体的一门学科。
(2)生物统计学主要包括实验设计和统计推断两大部分的内容。
其基本作用表现在以下四个方面:①提供整理和描述数据资料的科学方法;②确定某些性状和特性的数量特征;③判断实验结果的可靠性;④提供由样本推断总体的方法;⑤提供实验设计的一些重要原则。
习题解释以下概念:总体、个体、样本、样本容量、变量、参数、统计数、效应、互作、随机误差、系统误差、准确性、精确性。
答:(1)总体(populatian)是具有相同性质的个体所组成的集合,是研究对象的全体。
(2)个体(individual)是组成总体的基本单元。
(3)样本(sample)是从总体中抽出的若干个个体所构成的集合。
(4)样本容量(sample size)是指样本个体的数目。
(5)变量(variable)是相同性质的事物间表现差异性的某种特征。
(6)参数(parameter)是描述总体特征的数量。
(7)统计数(statistic)是由样本计算所得的数值,是描述样本特征的数量。
(8)效应(effection)试验因素相对独立的作用称为该因素的主效应,简称效应。
(9)互作(interaction)是指两个或两个以上处理因素间的相互作用产生的效应。
(10)实验误差(experimental error)是指实验中不可控因素所引起的观测值偏离真值的差异,可以分为随机误差和系统误差。
(11)随机误差(random)也称抽样误差或偶然误差,它是有实验中许多无法控制的偶然因素所造成的实验结果与真实结果之间产生的差异,是不可避免的。
随机误差可以通过增加抽样或试验次数降低随机误差,但不能完全消。
(12) 系统误差(systematic)也称为片面误差,是由于实验处理以外的其他条件明显不一致所产生的倾向性的或定向性的偏差。
系统误差主要由一些相对固定的因素引起,在某种程度上是可控制的,只要试验工作做得精细,在试验过程中是可以避免的。
(13) 准确性(accuracy)也称为准确度,指在调查或实验中某一实验指标或性状的观测值与其真值接近的程度。
(14) 精确性(precision)也称精确度,指调查或实验中同一实验指标或性状的重复观测值彼此接近程度的大小。
(15)准确性是说明测定值堆真值符合程度的大小,用统计数接近参数真值的程度来衡量。
精确性是反映多次测定值的变异程度,用样本间的各个变量间变异程度的大小来衡量。
习题误差与错误有何区别?答:误差是指实验中不可控制因素所引起的观测值偏离真值的差异,其中随机误差只可以设法降低,但不能避免,系统误差在某种程度上可控制、可克服的;而错误是指在实验过程中,人为的作用所引起的差错,是完全可以避免的。
第二章 实验资料的整理与特征数的计算(P22、P23)习题 什么是次数分布表?什么是次数分布图?制表和绘图的基本步骤有哪些?制表和绘图时应注意些什么?答:(1)对于一组大小不同的数据划出等距的分组区间(称为组距),然后将数据按其数值大小列入各个相应的组别内,便可以出现一个有规律的表式,这种统计表称之为次数分布表。
(2)次数分布图是指把次数分布资料画成图状,包括条形图、饼图、直方图、多边形图和散点图。
(3)制表和绘图的基本步骤包括:①求全距;②确定组数和组距;③确定组限和组中值;④分组,编制次数分布表。
(4)制表和绘图时需要注意的是事先确定好全距、组数、组距、各组上下限,再按观测值的大小来归组。
习题 算数平均数与加权数形式上有何不同?为什么说它们的实质是一致的?答:(1)形式不同在于计算公式的不同:算数平均数的计算公式为M =nx x x n +++...21; 加权平均数的计算公式为M =mm m f f f f x f x f x ++++++......212211。
(2)因为它们反映的都是同一组数据的平均水平。
习题平均数与标准差在统计分析中有什么作用?它们各有哪些特性?答:(1)平均数(mean)的用处:①平均数指出了一组数据资料内变量的中心位置,标志着资料所代表性状的数量水平和质量水平;②作为样本或资料的代表数据与其它资料进行比较。
(2)平均数的特性:①离均差之和等于零;②离均差平方和为最小。
(3)标准差(standard deviation)的用处:①标准差的大小,受实验或调查资料中多个观测值的影响,如果观测值与观测值之间差异较大,其离均差也大,因而标准差也大,反之则小;②在计算标准差时,如果对各观测值加上火减去一个常数a,标准差不变;如果给各观测值乘以或除以一个常数a,则所得的标准差扩大或缩小了a倍;③在正态分布中,一个样本变量的分布可以作如下估计:x±s内的观测值个数约占观测值总个数的%,x±2s内的观测值个数约占总个数的%,x±3s内的观测值个数约占观测值总个数的%。
(4)标准差的特性: ①表示变量的离散程度,标准差小,说明变量的分布比较密集在平均数附近,标准差大,则说明变量的分布比较离散,因此,可以用标准差的大小判断平均数代表性的强弱;②标准差的大小可以估计出变量的次数分布及各类观测值在总体中所占的比例;③估计平均数的标准误,在计算平均数的标准误时,可根据样本标准差代替总体标准差进行计算;④进行平均数区间估计和变异系数的计算。
习题总统和样本的平均数、标准差有什么共同点?又有什么联系和区别?答:(1)总体和样本的平均数都等于资料中各个观测值的总和除以观测值的个数所得的商。
二者区别在于,总体平均数用μ表示,μ=N x∑,公式中分母为总体观测值的个数N,样本平均数用x=n x∑,公式中的分分母为样本观测值的个数n。
样本平均数x是总体平均数μ的无偏估计值。
(2)总体和样本的标准差都等于离均差的平方和除以样本容量。
二者的区别在于,总体标准差用σ表示,σ=√∑(x−x̅)2N,分母上总体观测值的个数N;标准差用s表示,s=√∑(x−x̅)2n−1,分母上是样本自由度n-1。
样本标准差s是总体标准差σ的无偏估计值。
习题答:见下图——100例30-40岁健康男子血清总胆固醇(mol/L)的次数分布表习题答:见下图——这100例男子的血清总胆固醇基本呈正态分布,中间的最多,两边少,但 mol/L的没有。
习题答:见下图——由上表可知:平均数μ=,标准差s=,而CV=s /μ* 100% =18%习题答:由习题的表可知:中位数Median=,平均数μ=,两数相差,符合正态分布。
习题答:分析见下图:由上图可知:“24号”玉米的平均数Μ=20,标准差s=,而CV=s /Μ* 100% =%;“金皇后”玉米的平均数Μ=20,标准差s=,而CV=s /Μ* 100% =%,比较二者的变异系数CV,“24号”玉米的的变异系数CV 比“金皇后”玉米的小得多,说明“24号”玉米的整齐度大于“金皇后”玉米。
习题答:分析见下图:由上图可知,贻贝单养的平均数μ1=,极差R1=53-25=,标准差s1=,CV1=s1/μ1* 100%=%;贻贝与海带混养的平均数μ2=,极差R1=69-39=,标准差s2=,CV2=s2 /μ2* 100% =%,虽然单养的极差较小(28),但贻贝与海带混养的平均数更大(),且混养的变异系数更小,即其整齐度更有优势,由此得出,贻贝与海带混养的效果更好。
第三章概率与概率分布(P48)习题试解释必然事件、不可能事件和随机事件。
举出几个随机事件例子。
答:(1)必然事件(certain event)是指在一定条件下必然出现的事件;相反,在一定条件下必然不出现的事件叫不可能事件(impossible);而在某些确定条件下可能出现,也可能不出现的事件,叫随机事件(random event)。
(2)例如,发育正常的鸡蛋,在39℃下21天会孵出小鸡,这是必然事件;太阳从西边出来,这是不可能事件;给病人做血样化验,结果可能为阳性,也可能为阴性,这是随机事件。
习题什么是互斥事件?什么是对立事件?什么是独立事件?试举例说明。
答:(1)事件A和事件B不能同时发生,即A·B=V,那么称事件A和事件B 为互斥事件(mutually exclusion event),如人的ABO血型中,某个人血型可能是A型、B型、O型、AB型4中血型之一,但不可能既是A型又是B型。
(2)事件A和事件B必有一个发生,但二者不能同时发生即A+B=U,A×B=V,则称事件A与事件B为对立事件(contrary event),如抛硬币时向上的一面不是正面就是反面。
事件A与事件B的发生毫无关系。
(3)事件B的发生与事件A的发生毫无关系,则称事件A与事件B为独立事件(independent event),如第二胎生男生女与第一台生男生女毫无关系。
习题什么是频率?什么是概率?频率如何转化为概率?答:(1)事件A在n次重复试验中发生了m次,则比值m/n称为事件A发生的频率(frequency),记为W(A)。
(2)事件A 在n 次重复试验中发生了m 次,当试验次数n 不断增加时,事件A 发生的频率W(A)就越来越接近某一确定值p ,则p 即为事件A 发生的概率(probability)。
(3)二者的关系是:当试验次数n 充分大时,频率转化为概率 。
习题 什么是正态分布?什么是标准正态分布?正态分布曲线有何特点?u和δ 对正态分布曲线有何影响?答:(1)正态分布是一种连续型随机变量的概率分布,它的分布特征是大多数变量围绕在平均数左右,由平均数到分布的两侧,变量数减小,即中间多,两头少,两侧对称。
(2)μ=0,σ2=1的正态分布为标准正态分布,记为N(0,1)。
(3)正态分布具有以下特点:①正态分布曲线是以平均数μ为峰值的曲线,当x=μ时,f(x)取最大值πσ21;②正态分布是以μ为中心向左右两侧对称的分布 ③σux -的绝对值越大,f(x)值就越小,但f(x)永远不会等于0,所以正态分布以x 轴为渐近线,x 的取值区间为(-∞,+∞); ④正态分布曲线完全由参数μ和?来决定 ⑤正态分布曲线在x=μ±?处各有一个拐点;⑥正态分布曲线与x 轴所围成的面积必定等于1。
(4)正态分布具有两个参数μ和?,μ决定正态分布曲线在x 轴上的中心位置,μ减小曲线左移,增大则曲线右移;?决定正态分布曲线的展开程度,?越小曲线展开程度越小,曲线越陡,?越大曲线展开程度越大,曲线越矮宽。
习题答:查附表1可得:(1)P=<μ<=F(μ=-F(μ==(2)P=(-1<μ<1)=F(μ=1)-F(μ=-1)=(3)P=(-2<μ<2)=F(μ=2)-F(μ=-2)=(4)P=<μ<=F(μ=-F(μ==(5)P=<μ<=F(μ=-F(μ==习题解:因为x服从μ=4,σ=4的正太分布N(4,16),故通过标准化转换公式u=σμ-x可转化为:(1) P(-3<x≤4)→→ P<μ≤0)P=<μ≤0)=F(μ=0)-F(μ== P(x<→→ P(μ<P=(μ<= F(μ= =(3) P(x>→→ P(μ>≈P(μ>P=(μ>=1-F(μ= ==(4) P(x≥-1)→→ P(μ>P=(μ≥=1-F(μ= ==习题解:(1) 根据基因分离定律和基因自由组合定律可知:F1代非糯稻Ww与糯稻ww回交,F2代糯稻和非糯稻的概率均为1/2,其中糯稻有200*1/2=100株,非糯稻有200*1/2=100株。