第3章整数线性规划解读
运筹学-第3章整数规划

2018/8/17
9
生产计划问题
某机器制造厂可生产四种产品,对于三种主要资源(钢, 人力,能源)的单位消耗及单位利润见表。问如何安排 生产,可使总利润最大?
消耗 产品1
1
产品2 产品3
10 6 0 7 3 4 2 8
产品4
0 1 5 4
资源量
5000 3000 3000
资源A(钢)
资源B(人力) 2 资源C(能源) 2 单位利润 1
这里取M=5000
2018/8/17
15
(2)批量生产
在前例中的基础上, 增加假设:产品4要求批量生 产,批量为不少于500件。 试建立最佳生产计划模型。
定义0-1变量y4
1 , x 4 500 y 4= 0 , x 4=0
500y4 x4 My4 y4 {0,1}
增加约束
2018/8/17 4
附加条件
项目1和项目3至少采纳一个; y1+y2 ≥1 项目2和项目5不能同时采纳; y2+y5 ≤1 项目1仅在项目2采纳后才可考虑是否采纳; y1≤ y2 项目1仅在项目2和3同时采纳后才可考虑是否采纳; 项目1,2,3不能同时采纳; y1+y2+y3 ≤2 或者选择项目1和2,或者选择项目3; y1= y2, y1+y3 =1; 或者 0.5(y1+y2) +y3 =1.
i 1 j 1 5 4
1, 采用Ai建厂 yi , i 3,4,5 0 ,不采用
s.t. x11 x12 x13 x14 400 x x x x 600 23 24 21 22 x31 x32 x33 x34 200y3 x41 x42 x43 x44 200y4 x x x x 200y 5 51 52 53 54 y3 y 4 y5 1 x11 x21 x31 x41 x51 300 x12 x22 x32 x42 x52 350 x13 x23 x33 x43 x53 400 x x x x x 150 24 34 44 54 14 xij 0, i 1,2,3,4,5, j 1,2,3,4 y3 , y4 , y5 {0,1}
整数线性规划

分枝定界法的理论基础:
1 2 k , i j (1) max cx max (max cx, max cx, , max cx)
x x1 x 2 x k
(2) 若 i j ,则 max cx max cx
xi xi x
分 枝
给定整数规划问题IP max z C T X
若x 的某个分量 xi 不是整数,
0
0
则将 IP分解为两个子问题
max z C X AX b X 0 X为整数向量 xi [ xi0 ]
T max z C X AX b X 0 X为整数向量 xi [ xi0 ] 1
记 z0 z
x1 4, x1 5
将问题B0分解为两个子问题B1和B2(分枝), 分别解B1,B2得 B1: x1=4, x2=2.10, z1=349 B2: x1=5, x2=1.57, z2=341
max z 40 x1 90 x2 max z 40 x1 90 x2 9 x1 7 x2 56 7 x 20 x 70 1 2 x1 4 B1 x1 , x2 0 9 x1 7 x2 56 7 x 20 x 70 1 2 x1 5 B2 x1 , x2 0
4、几点说明 (1)、如果要求目标的最大值
max z cij xij
令
bij M cij
i
j
其中
M max{ cij }
效率矩阵可变为B,将分配问题转换为一个极 小化问题
min z
'
b x
ij i j
ij
(2)、如果分配问题中,人员数 m 不等于工作数 n 时,可以类似于不平衡运输问题建立模型的 方法,增加虚拟人员或虚拟工作。
整数线性规划

解: 引入0-1变量xij ,
xij =1:第i人做第j项工作
xij =0:第i人不做第j项工作
• 一人只能完成一项任务
x11 x12 x13 x14 1 x21 x22 x23 x24 1 x31 x32 x33 x34 1 x41 x42 x43 x44 1
三、分支定界法
不考虑整数限制先求出相应松弛问题的最优解, 若松弛问题无可行解,则ILP无可行解; 若求得的松弛问题最优解符合整数要求,则是 ILP的最优解; 若不满足整数条件,则任选一个不满足整数条件 的变量 xi0 来构造新的约束添加到松弛问题中形 成两个子问题
0 0 xi xi ; xi xi 1
1 xj 0
选中第j个项目投资 不 选中第j个项目投资
max Z 160x1 210x2 60x3 80x4 180x5 210x1 300x2 150x3 130x4 260x5 600 x1 x2 x3 1 x3 x 4 1 x x 1 5 x1 , x2 , x3 , x4 , x5 0或1
x1 ≤ 1
LP1 : 7 10 x1 1, x2 , Z 3 3
41 10 9 3
x2 ≥3
x2≤2
LP3 : x1 33 61 , x2 2, Z 14 14
LP4:无解,查清
x1 ≥3
LP6:
61 10 14 3
x1≤2
LP5:
10 4, 3 x1 3, x2 1, Z 4,查清 x1 2, x2 2, Z 4,查清 LP1被剪枝
假设:yj=1,要租用生产线j yj=0,不租用生产线j
第三章_整数线性规划

b
j 1
j
xj B
• 目标—总收益最大
max
c
j1
n
j
x
j
max
c
j1
n
j
x
j
n b j x j B s .t . j 1 x 1 , 0 ; j 1 , 2 ..., n j
旅游售货员问题
• 背景
• 案例 • 模型
背 景
• 旅游线路安排 预定景点走且只走一次 路上时间最短 • 配送线路—货郎担问题 送货地到达一次 总路程最短
混合整数规划模型
min c x Ax b s .t . x 0 x i 为整数 , i 1, 2 ,..., p
§2.2 整数线性规划算法
• 与线性规划的关系
• 分支定界算法
• 割平面算法 • 近似算法
与线性规划的关系
放松的线性规划 整数规划
min c
min c
x ij 1, 0 ; i 1, 2 ..., 17 , j 1, 2 , 3
• 约束
包裹容量限制
c
i 1
3
17
i
x ij r j ; j 1, 2 , 3
必带物品限制
3
x ij 1; i 1, 2 ..., 7
j 1
选带物品限制
x ij 1; i 8 , 2 ..., 17
3. 对于问题B,任选一个不符合整数条件的变量 xj=bj,对问题B进行分支,增加两个约束条件: xj[bj] 和 xj[bj] +1,形成两个后继问题B1 和 B2 ,求它们的松弛问题,得到目标函数值的上 界。转步骤4 。 4. 考察所有后继问题, (a)如果它的目标函数值的上界不如zb,舍去该支, 转步骤4 。 (b)如果没有后继问题, 则当前最优解就是原问题 的最优解,stop。 (c)寻找目标函数值的界最好的后继问题,转步骤5。
整数线性规划理论

例6M a x z=3xAi -2X2 5X3
X+2X2—X3兰2捲+4x2 +X3兰4
*捲+X2兰3
4X2 +X3兰6X1,X2,XAO或1
求解思路及改进措施:
(I)先试探性求一个可行解,易看出(Xi, X2, X3(1,0,0)满足约束条件,故为一个可 行解,且Z = 3。
一个 充分大的常数M,而下面这一组ml个约束条件
QlXi amXn •• y.M i=1,2, , m
ym =m -1
就合于上述的要求。这是因为,由于(2) ,口个%中只有一个能取0值, 设y* = 0,代入(1),就只有U卜的约束条件起作用,而别的式子都是多 余的。
3.1.3关于固定费用的问题(Fixed Cost Problem
0,当Aj点没被选中.
于是问题可列写成:
7
Max z八CiXi
i4
十7
ZbXj兰B
i二
*捲+X2 +X3兰2
X4 +X5兰1
X6 X7-1,Xi= 0或1
3.1.2相互排斥的约束条件有两个相互排斥的约束条件
5为4X2_24或7为3X2_45。
为了统一在一个问题中,引入0・1变量y,则上述约束条件可改写为:
规定24三个点中至多选两个;■&
在东区。 两个点中至少选一个;U力两
在西区。 个点中至少选一个。
在南区,由
如选用A点,设备投资估计为b元,每年可获利润估计为G元,但投资总额不能超过B元。问应选择哪几个点可使年利润为最大?
解题时先引入0・1变量xAi=1,2,…,7)
令
《管理运筹学》03- 整数规划

ppt课件整数规划整数规划
3
3.1 整数规划问题及其建模
例3-1背包问题
max z= 17x1 +72x +35x
s.t.
10x1 2 +42x 3 +20x ≤50
x1, 2 x2,
3 x3
≥0
x1,
x2,
x3为整数
线性规划最优解为: x1=0,x2=0,x3=2.5
而整数规划的最优解是 x1=1,x2=0,x3=2
T
5
ppt课件整数规划整数规划
22
-2x2+3x1+5x3≥5 ◎
点
条件
◎
①
②
③
④
满足条件? 是(T)否(F)
Z
(0 1 0) 3
F
(0 1 1) 8
0
2
1
5
T
8
-2x2+3x1+5x3≥8 ◎
点
条件
◎
①
②
③
④
满足条件? 是(T)否(F)
Z
(1 0 0) -2
F
(1 0 1) 3
F
(1 1 0) 1
工件
A
B
C
D
工人
效
甲
14
9
4
15
率
乙
11
7
9
10
矩
丙
13
2
10
5
阵
丁
17
9
15
13
ppt课件整数规划整数规划
24
设xij=1表示第 i人送j货,否则xij=0
上述问题的模型为:
44
数学中的线性规划与整数规划

数学中的线性规划与整数规划线性规划和整数规划是数学中两个重要的优化问题。
它们在实际生活和工业生产中有着广泛的应用。
本文将简要介绍线性规划和整数规划的概念、应用以及解决方法。
一、线性规划线性规划是一种优化问题,其目标是在给定的约束条件下,找到一个线性函数的最大值或最小值。
线性规划可以用来解决诸如资源优化分配、生产计划、物流运输等问题。
首先,我们来定义线性规划的标准形式:```最大化: c^Tx约束条件:Ax ≤ bx ≥ 0```其中,`c`是一个n维列向量,`x`是一个n维列向量表示决策变量,`A`是一个m×n维矩阵,`b`是一个m维列向量。
上述的不等式约束可以包括等式约束。
通过线性规划,我们希望找到一个满足所有约束的向量`x`,使得目标函数`c^Tx`达到最大或最小值。
解决线性规划问题的方法有多种,例如单纯形法、内点法等。
其中,单纯形法是应用广泛的一种方法。
它通过不断地移动顶点来搜索可行解的集合,直到找到最优解为止。
二、整数规划整数规划是线性规划的一种扩展形式,它要求决策变量`x`必须取整数值。
整数规划可以更准确地描述实际问题,并且在某些情况下具有更好的可解性。
例如,在生产计划问题中,决策变量可以表示生产的数量,由于生产数量必须为整数,因此整数规划更适用于此类问题。
整数规划的求解相对于线性规划更加困难。
由于整数规划问题是NP困难问题,没有多项式时间内的高效算法可以解决一般情况下的整数规划问题。
因此,为了获得近似最优解,通常需要使用一些启发式算法,如分支定界法、割平面法等。
三、线性规划与整数规划的应用线性规划和整数规划在实际生活和工业生产中有着广泛的应用。
以下列举几个常见的应用领域:1. 生产计划:通过线性规划和整数规划,可以确定产品的生产量、原材料的采购量以及生产时间表,以实现最佳的生产效益。
2. 物流运输:线性规划和整数规划可以用来优化货物的配送路线和运输方案,减少物流成本,提高配送效率。
第三章整数线性规划

割平面法
IP LP xl*
Yes xI* = xl*
判别是否整数解
No 加入割平面条件 用对偶单纯型方法继续求解
§3.3 分枝定界方法
分枝定界方法的基本思想 分枝定界方法的实现——例题
1 分枝定界方法的基本思想
如果松弛问题(P0)无解,则(P)无解;
如果(P0)的解为整数向量,则也是(P)的解;
min -(x1 x2 ) s.t.-4x1 2 x2 1 (P1 ) 4x1 2 x2 11 x1 1 x1 , x2 0, Integer
P2
约束 x1 1, x1 2 (它们将x1=3/2排除在外),得到两个子问题:
min -(x1 x2 ) s.t.-4x1 2 x2 1 (P2 ) 4x1 2 x2 11 x1 2 x1 , x2 0, Integer
运筹 帷幄之中
决胜 千里之外
运 筹 学
主讲教师
赵玉英
62338357(O) yuyingzhao@
北京林业大学理学院
第3章 整数线性规划
整数线性规划问题 Gomory割平面方法(1958) 分枝定界方法(Land doig and Dakin 1960’s) 0-1规划
3
(3/2,10/3)
3
x1
3 整数线性规划问题的求解
思路2:由于纯整数线性规划的可行集合就是一些离散 的格点,可否用穷举的方法寻找最优解? 当格点个数较少时,这种方法可以; 对一般的ILP问题,穷举方法无能为力。
3 整数线性规划问题的求解
目前,常用的求解整数规划的方法有: 割平面法和分枝定界法; 对于特别的0-1规划问题采用隐枚举法和匈牙利法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
背景
• 证券投资:把一定的资金投入到合适的 有价证券上以规避风险并获得最大的利 润。
• 项目投资:财团或银行把资金投入到若 干项目中以获得中长期的收益最大。
案例
• 某财团有 B万元的资金,经出其考察选中 n
个投资项目,每个项目只能投资一个。其
中 年第 后获j个利项c目(j 需j 投1资,2金...,额n)为万b元j万,元问,应预如计何5
割平面法和分枝定界法; 对于特别的0-1规划问题采用隐枚举法和匈牙利法。
§3.2 Gomory割平面方法
xij 1,0; i 1,2...,17, j 1,2,3
• 约束
包裹容量限制
必带物品限制 选带物品限制
17
ci xij rj ; j 1,2,3
i 1
3
xij 1;i 1,2...,7
j 1
3
xij 1;i 8,2...,17
j 1
• 目标函数—未带物品购买费用最小
3
1 xij ;i 8,2...,17 j 1
选择项目使得5年后总收益最大?
模型
• 变量—每个项目是否投资
x j 1,0 j 1,2...,n
• 约束—总金额不超过限制
n
bjxj B
j 1
• 目标—总收益最大
n
max c j x j j 1
n
max c j x j j 1
n
s.t. j1 b j x j B
x
j
1,0;
j
1,2...,n
旅游售货员问题
• 背景 • 案例 • 模型
背景
• 旅游线路安排 预定景点走且只走一次 路上时间最短
• 配送线路—货郎担问题 送货地到达一次 总路程最短
案例
• 有一旅行团从 v0 出发要遍游城市
v1, v2 ,..., v,n 已知从 vi到 v的j 旅费
为 cij,问应如何安排行程使总费 用最小?
整数线性规划模型 min cT x s.t. Ax b
x0
xi I , i J 1,2, n
其中xRn,cRn,bRm ,ARmn,I {0,1,2,...} 简称:ILP问题(integer linear programming) 依照决策变量取整要求的不同,整数规划可分为纯整 数规划、混合整数规划、0-1整数规划。
第3章 整数线性规划
➢整数线性规划问题 ➢Gomory割平面方法 ➢分枝定界方法 ➢0-1规划
§3.1 整数线性规划问题
✓引例——建立整数线性规划模型 ✓整数线性规划的数学模型 ✓整数线性规划问题的求解
应用案例
• 投资组合问题 • 旅游售货员问题 • 背包问题
投资组合问题
• 背景 • 实例 • 模型
例 某公司拟建设A、B两种类型的生产基地若干个,两
种类型的生产基地每个占地面积,所需经费,建成后生
产能力及现有资源情况如下表所示。问A、B类型基地各
建设多少个,可使总生产能力最大?
A
B
资源限制
占地(m2) 2000 费用(万元) 5
5000 4
13000 24
生产能力
2000 1000
2 整数线性规划的数学模型
nn
min
cij xij
i0 j0
n
xij 1; i 1,2,..., n j0
s.t. n xij 1; j 1,2,..., n i0 ui u j nxij n 1;1 i j n xij 1,0, i 1,2,..., n, j 1,2,..., n
3 整数线性规划问题的求解
思路1:可否解决相应的线性规划问题,最后舍入到最 近的整数解?
例:设整数规划问题 min z x1 x2 s.t. 14x1 9x2 51 6x1 3x2 1 x1, x2 0且为整数
x2
⑴
min z x1 x2 s.t. 14x1 9x2 51 3
物品 1 2 3 4 5 6 7 8 9 10
体积 200 350 500 430 320 120 700 420 250 100
价格 15 45 100 70 50 75 200 90 20 30
问题分析
• 变量—对每个物品要确定是否带同时要确定
放在哪个包裹里,如果增加一个虚拟的包裹把 不带的物品放在里面,则问题就转化为确定每 个物品放在哪个包裹里。如果直接设变量为每 个物品放在包裹的编号,则每个包裹所含物品 的总容量就很难写成变量的函数。为此我们设 变量为第i个物品是否放在第j个包裹中
模型
• 变量—是否从i第个城市到第j个城市
• 约束
xij 1,0;
每个城市只能到达一次、离开一次
n
xij 1; i 1,2,...n
j0
n
xij 1; j 1,2,...n
i0
• 避免出现断裂
每个点给个位势 点比后点大
除了初始点外要求前
• 目标—总费用最小
nn
cij xij
i0 j0
背包问题
• 背景 • 案例 • 模型
背景
• 邮递包裹 把形状可变的包裹用尽量少的车辆运走
• 旅行背包 容量一定的背包里装尽可能的多的物品
实例
• 某人出国留学打点行李,现有三个旅行包,容 积大小分别为1000毫升、1500毫升和2000毫 升,根据需要列出需带物品清单,其中一些物 品是必带物品共有7件,其体积大小分别为400、 300、150、250、450、760、190、(单位毫 升)。尚有10件可带可不带物品,如果不带将 在目的地购买,通过网络查询可以得知其在目 的地的价格(单位美元)。这些物品的容量及 价格分别见下表,试给出一个合理的安排方案 把物品放在三个旅行包里。
6x1 3x2 1 x1, x2 0
⑵
(3/2,10/3)Байду номын сангаас
3
x1
3 整数线性规划问题的求解
思路2:由于纯整数线性规划的可行集合就是一些离散 的格点,可否用穷举的方法寻找最优解? ☺当格点个数较少时,这种方法可以; 对一般的ILP问题,穷举方法无能为力。
3 整数线性规划问题的求解
目前,常用的求解整数规划的方法有:
17
3
pi (1 xij )
i 8
j 1
模型
17
3
min pi (1 xij )
i8
j 1
17
ci xij rj ; j 1,2,3
i 1
3
xij 1;i 1,2...,7
j 1
3
xij 1;i 8,2...,17
j 1
xij 1,0; i 1,2...,17, j 1,2,3