十堰市中考数学试题及答案
(中考精品卷)湖北省十堰市中考数学真题(解析版)

2022年十堰市初中毕业生学业水平考试数学试题注意事项:1.本卷共4页,25小题,满分120分,考试时限120分钟.2.答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡指定的位置,并认真核对条形码上的准考证号和姓名,在答题卡规定的位置贴好条形码.3.选择题必须用2B铅笔在指定位置填涂;非选择题必须使用0.5毫米黑色签字笔,按照题目在答题卡对应的答题区域内作答,超出答题区域和在试卷、草稿纸上答题无效.要求字体工整,笔迹清晰.4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并上交.一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1. 2的相反数是()A. 2B. -2C. 12D.12【答案】B【解析】【详解】2的相反数是-2.故选:B.2. 下列四个几何体中,主视图与俯视图不同的几何体是()A. B.C. D.【答案】C【解析】【分析】正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同.【详解】解:A 、正方体的主视图与俯视图都是正方形,选项不符合题意;B 、圆柱横着放置时,主视图与俯视图都是长方形,选项不符合题意;C 、圆锥的主视图与俯视图分别为圆形、三角形,故符合题意;D 、球体的主视图与俯视图都是圆形,故不符合题意.故选:C .【点睛】本题考查了简单的几何体的三视图,从不同方向看物体的形状所得到的图形可能不同.3. 下列计算正确的是( )A. 632a a a ÷=B. 22223a a a +=C. 33(2)6a a =D. 22(1)1a a +=+【答案】B【解析】【分析】根据同底数幂相除,合并同类项,积的乘方,完全平方公式,逐项判断即可求解.【详解】解:A 、633a a a ÷=,故本选项错误,不符合题意;B 、22223a a a +=,故本选项正确,符合题意;C 、33(2)8a a =,故本选项错误,不符合题意;D 、22(11)2a a a +=++,故本选项错误,不符合题意;故选:B【点睛】本题主要考查了同底数幂相除,合并同类项,积的乘方,完全平方公式,熟练掌握相关运算法则是解题的关键.4. 如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是( )A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 三角形两边之和大于第三边【答案】B【解析】【分析】由直线公理可直接得出答案.【详解】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故选:B .【点睛】此题主要考查了直线的性质,要想确定一条直线,至少要知道两点.5. 甲、乙两人在相同的条件下,各射击10次,经计算:甲射击成绩的平均数是8环,方差是1.1;乙射击成绩的平均数是8环,方差是1.5.下列说法中不一定正确的是( )A. 甲、乙的总环数相同B. 甲的成绩比乙的成绩稳定C. 乙的成绩比甲的成绩波动大D. 甲、乙成绩的众数相同 【答案】D【解析】【分析】根据方差、平均数的意义进行判断,平均数相同则总环数相同,方差越大,波动越大即可求出答案.【详解】解:∵甲射击成绩的方差是 1.1,乙射击成绩的方差是 1.5,且平均数都是8环, ∴S 甲2<S 乙2,∴甲射击成绩比乙稳定,∴乙射击成绩的波动比甲较大,∵甲、乙射靶 10 次,∴甲、乙射中的总环数相同,故A 、B 、C 选项都正确,但甲、乙射击成绩的众数不一定相同,故D 错误;故选:D .【点睛】本题考查了平均数、方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 6. 我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗, 醐洒一斗直粟三斗,今持粟三斛,得酒五斗,问清跴酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗䣾酒价值3斗谷子, 现在拿30斗谷子,共换了5斗酒,问清洒, 酳酒各几斗? 如果设清酒x 斗,那么可列方程为( )A. ()103530x x +-=B. ()310530x x +-=C. x 3+30−x 10=5D. 305103x x -+= 【答案】A【解析】【分析】根据题意直接列方程即可.【详解】解:根据题意,得:10x+3(5-x)=30,故选:A.【点睛】本题考查一元一次方程的应用,理解题意,正确列出方程是解答的关键.7. 如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为()A. 0.3cmB. 0.5cmC. 0.7cmD. 1cm 【答案】B【解析】【分析】求出△AOB和△COD相似,利用相似三角形对应边成比例列式计算求出AB,再根据外径的长度解答.【详解】解:∵OA:OC=OB:OD=3,∠AOB=∠COD,∴△AOB∽△COD,∴AB:CD=3,∴AB:3=3,∴AB=9(cm),∵外径为10cm,∴19+2x=10,∴x=0.5(cm).故选:B.【点睛】本题考查相似三角形的应用,解题的关键是利用相似三角形的性质求出AB的长.8. 如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下,在斜坡上的树影BC长为m,则大树AB的高为()A. ()cos sin m αα-B. ()sin cos m αα-C. ()cos tan m αα-D. sin cos m m αα- 【答案】A【解析】【分析】应充分利用所给的α和45°在树的位置构造直角三角形,进而利用三角函数求解.【详解】解:如图,过点C 作水平线与AB 的延长线交于点D ,则AD ⊥CD ,∴∠BCD =α,∠ACD =45°.在Rt △CDB 中,CD =m cos α,BD =m sin α,在Rt △CDA 中,AD =CD ×tan45°=m ×cos α×tan45°=m cos α,∴AB =AD -BD=(m cos α-m sin α)=m (cosα-sin α).故选:A .【点睛】本题考查锐角三角函数的应用.需注意构造直角三角形是常用的辅助线方法,另外,利用三角函数时要注意各边相对.9. 如图,O 是等边ABC 的外接圆,点D 是弧AC 上一动点(不与A ,C 重合),下列结论:①ADB BDC ∠=∠;②DA DC =;③当DB 最长时,2DB DC =;④DA DC DB +=,其中一定正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】 【分析】根据等边三角形的性质可得AB BC = ,从而得到∠ADB =∠BDC ,故①正确;根据点D 是AC 上一动点,可得AD 不一定等于CD,故②错误;当DB 最长时,DB 为圆O 的直径,可得∠BCD =90°,再由O 是等边ABC 的外接圆,可得∠ABD =∠CBD =30°,可得2DB DC =,故③正确;延长DA 至点E ,使AE =AD ,证明△ABE ≌△CBD ,可得BD =AE ,∠ABE =∠DBC ,从而得到△BDE 是等边三角形,可得到DE =BD ,故④正确;即可求解.【详解】解:∵△ABC 是等边三角形,∴AB =BC ,∠ABC =60°,∴AB BC = ,∴∠ADB =∠BDC ,故①正确;∵点D 是AC 上一动点,∴AD 不一定等于CD ,∴DA =DC 不一定成立,故②错误;当DB 最长时,DB 为圆O 直径,∴∠BCD =90°,∵O 是等边ABC 的外接圆,∠ABC =60°,∴BD ⊥AC ,∴∠ABD =∠CBD =30°,∴2DB DC =,故③正确;如图,延长DA 至点E ,使AE =DC ,的∵四边形ABCD 为圆O 的内接四边形,∴∠BCD +∠BAD =180°,∵∠BAE +∠BAD =180°,∴∠BAE =∠BCD ,∵AB =BC ,AE =CD ,∴△ABE ≌△CBD ,∴BD =AE ,∠ABE =∠DBC ,∴∠ABE +∠ABD =∠DBC +∠ABD =∠ABC =60°,∴△BDE 是等边三角形,∴DE =BD ,∵DE =AD +AE =AD +CD ,∴DA DC DB +=,故④正确;∴正确的有3个.故选:C .【点睛】本题主要考查了圆周角定理,三角形的外接圆,圆内接四边形的性质,垂径定理,等边三角形的判定和性质等知识,熟练掌握圆周角定理,三角形的外接圆,圆内接四边形的性质,垂径定理,等边三角形的判定和性质等知识是解题的关键.10. 如图,正方形ABCD 的顶点分别在反比例函数()110k y k x=>和()220k y k x =>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A. 36B. 18C. 12D. 9【答案】B【解析】 【分析】设PA =PB =PC =PD =t (t ≠0),先确定出D (3,23k ),C (3-t ,23k +t ),由点C 在反比例函数y =2k x 的图象上,推出t =3-23k ,进而求出点B 的坐标(3,6-23k ),再点C 在反比例函数y =1k x 的图象上,整理后,即可得出结论. 【详解】解:连接AC ,与BD 相交于点P ,设PA =PB =PC =PD =t (t ≠0).∴点D 的坐标为(3,23k ), ∴点C 的坐标为(3-t ,23k +t ). ∵点C 在反比例函数y =2k x 的图象上,∴(3-t )(23k +t )=k 2,化简得:t =3-23k , ∴点B 的纵坐标为23k +2t =23k +2(3-23k )=6-23k , ∴点B 坐标为(3,6-23k ), ∴3×(6-23k )=1k ,整理,得:1k +2k =18. 故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征、正方形的性质,解题的关键是利用反比例函数图象上点的坐标特征,找出1k ,2k 之间的关系.二、填空题(本题有6个小题,每小题3分,共18分)11. 袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为2.5亿亩.将250000000用科学记数法表示为2.510n ⨯,则n =_________.【答案】8【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中11|0|a ≤<,n 为整数.【详解】解: 8250000000 2.510=⨯ 2.510n =⨯.∴8n =故答案为:8.【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.12. 关于x 的不等式组中的两个不等式的解集如图所示,则该不等式组的解集为_________.【答案】01x ≤<【解析】【分析】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来的(>≥,向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【详解】解:该不等式组的解集为01x ≤<故答案为:01x ≤<【点睛】本题考查了不等式组解集在数轴上的表示方法,数形结合是解题的关键. 13. “美丽乡村”建设使我市农村住宅旧貌变新颜,如图所示为一农村民居侧面截图,屋坡AF ,AG 分别架在墙体的点B ,C 处,且AB AC =,侧面四边形BDEC 为矩形,若测得55FBD ∠=︒,则A ∠=_________︒.【答案】110【解析】【分析】根据矩形的性质可得90DBC ∠=︒,求出35ABC ∠=︒,根据等边对等角可得35ACB ABC ∠=∠=︒,然后根据三角形内角和定理即可求解.【详解】 四边形BDEC 为矩形90DBC ∴∠=︒55FBD ∠=︒, 905535ABC ∴∠=︒-︒=︒AB AC = 35ACB ABC ∴∠=∠=︒180110A ABC ACB ∴∠=︒-∠-=︒故答案为:110.【点睛】本题考查了矩形的性质,等边对等角,三角形内角和定理,掌握以上知识是解题的关键.14. 如图,某链条每节长为2.8cm ,每两节链条相连接部分重叠的圆的直径为1cm ,按这种连接方式,50节链条总长度为_________cm .【答案】91 【解析】【分析】通过观察图形可知,1节链条的长度是2.8cm ,2节链条的长度是(2.8×2-1)cm ,3节链条的长度是(2.8×3-1×2)cm ,n 节链条的长度是2.8n -1×(n -1)cm ,据此解答即可求解.【详解】解:2节链条的长度是(2.8×2-1)cm , 3节链条的长度是(2.8×3-1×2)cm , n 节链条的长度是2.8n -1×(n -1)cm , 所以50节链条的长度是:2.8×50-1×(50-1) =140-1×49 =91(cm) 故答案为:91【点睛】此题考查的图形类规律,关键是找出规律,得出n 节链条长度为2.5×n -0.8×(n -1).15. 如图,扇形AOB 中,90AOB ∠=︒,2OA =,点C 为OB 上一点,将扇形AOB 沿AC 折叠,使点B 的对应点'B 落在射线AO 上,则图中阴影部分的面积为_________.【答案】2π 【解析】【分析】连接AB ,在Rt △AOB 中,由勾股定理,求得AB =,由折叠可得:AB AB '==CB CB '=,则2OB '=-,设OC =x ,则CB CB '==2-x ,在Rt △CO B '中,由勾股定理,得()2222(2)x x -+=-,解得:x =2-,最后由S 阴影=S 扇形-2S △AOC 求解即可. 【详解】解:连接AB ,在Rt △AOB 中,由勾股定理,得 AB==,由折叠可得:AB AB '==CB CB '=,∴2OB '=-,设OC =x ,则CB CB '==2-x , 在Rt △CO B '中,由勾股定理,得()2222(2)x x -+=-,解得:x=2, S 阴影=S 扇形-2S △AOC=2902121802OA OC π⨯-⨯⋅=()290212221802π⨯-⨯⨯⨯-=2π,故答案为:2π.【点睛】本题考查折叠的性质,勾股定理,扇形的面积,利用折叠的性质和勾股定理求出OC 长是解题的关键.16. 【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别在BC ,CD 上,若2BAD EAF ∠∠=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =-,若在M ,N 之间修一条直路,则路线M N →的长比路线M A N →→的长少_________m (结果取整数,参考数1.7≈).【答案】370 【解析】【分析】延长,AB DC 交于点E ,根据已知条件求得90E ∠=︒,进而根据含30度角的直角三角形的性质,求得,EC EB ,,AE AD ,从而求得AN AM +的长,根据材料可得MN DM BN =+,即可求解.【详解】解:如图,延长,AB DC 交于点E ,连接,CM CN ,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,30A ∴∠=︒,90E ∠=︒, 100DC DM ==DCM ∴ 等边三角形, 60DCM ∴∠=︒, 90BCM ∴∠=︒,在Rt BCE 中,100BC =,18030ECB BCD ∠=︒-∠=︒,1502EB BC ==,EC ==100DE DC EC ∴=+=+,Rt ADE △中,2200AD DE ==+,150AE ==+,∴200100100AM AD DM =-=+-=+()AN AB BN AE EB BN =-=--())15050501=+---150=,100150250AM AN ∴+=++=+Rt CMB △中,BM ==)50501EN EB BN EC =+=+==ECN ∴ 是等腰直角三角形()1752NCM BCM NCB BCM NCE BCE DCB ∴∠=∠-∠=∠-∠-∠=︒=∠由阅读材料可得))100501501MN DM BN =+=+-=+,∴路线M N →的长比路线M A N →→的长少)250501200370+-+=+≈m .故答案为:370.【点睛】本题考查了含30度角的直角三角形的性质,勾股定理,理解题意是解题的关键.三、解答题(本题有9个小题,共72分)17.计算:12022121)3-⎛⎫+-- ⎪⎝⎭.【解析】是【分析】根据负整数指数幂、乘方、绝对值的性质化简后计算即可.【详解】解:12022121)3-⎛⎫+-- ⎪⎝⎭321=+--【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、绝对值的性质化简.18. 计算:2222a b b ab a a a ⎛⎫--÷+ ⎪⎝⎭. 【答案】a b a b+- 【解析】【分析】先根据分式的加减计算括号内的,同时利用除法法则变形,约分即可得到结果. 【详解】解:原式=()()222a b a b a b ab aa+-⎛⎫+-÷ ⎪⎝⎭()()()2a b a b aa ab +-=⨯-a ba b+=-. 【点睛】本题考查了分式的混合运算,正确的计算是解题的关键. 19. 已知关于x 的一元二次方程22230x x m --=. (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且25αβ+=,求m 的值. 【答案】(1)见解析 (2)1m =±【解析】【分析】(1)根据根的判别式24b ac ∆=-,即可判断;(2)利用根与系数关系求出2αβ+=,由25αβ+=即可解出α,β,再根据23m αβ⋅=-,即可得到m 的值.【小问1详解】()22224241(3)412b ac m m ∆=-=--⨯⋅-=+,∵2120m ≥, ∴241240m +≥>,∴该方程总有两个不相等的实数根;【小问2详解】方程的两个实数根α,β,由根与系数关系可知,2αβ+=,23m αβ⋅=-,∵25αβ+=, ∴52αβ=-, ∴522ββ-+=, 解得:3β=,1α=-,∴23133m -=-⨯=-,即1m =±.【点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是掌握根的判别式以及根与系数的关系.20. 某兴趣小组针对视力情况随机抽取本校部分学生进行调查,将调查结果进行统计分析,绘制成如下不完整的统计图表.抽取的学生视力情况统计表类别 调查结果 人数 A 正常 48 B 轻度近视 76 C 中度近视 60 D重度近视m请根据图表信息解答下列问题:(1)填空:m = _________,n = _________;(2)该校共有学生1600人,请估算该校学生中“中度近视”的人数;(3)某班有四名重度近视的学生甲、乙、丙、丁,从中随机选择两名学生参加学校组织的“爱眼护眼”座谈会,请用列表或画树状图的方法求同时选中甲和乙的概率.【答案】(1)200,108(2)估计该校学生中“中度近视”的人数约为480人;(3)甲和乙两名学生同时被选中的概率为16.【解析】【分析】(1)从所取样本中根据“正常”的人数和所占比例求出所抽取的学生总人数;根据“中度近视”的人数求出所占比例,乘以360°即可求解;(2)由全校共有学生人数乘以“中度近视”人数所占的比例即可;(3)画树状图列出所有等可能结果,再利用概率公式计算可得.【小问1详解】解:所抽取的学生总数为m=48÷24%=200(人),n= 360×60200=108,故答案为:200,108;【小问2详解】解:1600×60200=480(人),即估计该校学生中“中度近视”的人数约为480人;【小问3详解】解:画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为212=16.【点睛】本题考查扇形统计图、统计表以及用样本估计总体以及列表法与树状图法等知识;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21. 如图,ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.(1)求证:BE DF =; (2)设ACk BD=,当k 为何值时,四边形DEBF 是矩形?请说明理由. 【答案】(1)证明见解析(2)当2k =时,四边形DEBF 是矩形,理由见解析 【解析】【分析】(1)连接,DE BF ,先根据平行四边形的性质可得,OA OC OB OD ==,再根据线段中点的定义可得1122OE OA OC OF ===,然后根据平行四边形的判定可得四边形DEBF 是平行四边形,最后根据平行四边形的性质即可得证;(2)先根据矩形的判定可得当BD EF =时,四边形DEBF 是矩形,再根据线段中点的定义、平行四边形的性质可得2AC EF =,由此即可得出k 的值. 【小问1详解】证明:如图,连接,DE BF ,四边形ABCD 是平行四边形,,OA OC OB OD ∴==,,E F 分别是OA ,OC 的中点,1122OE OA OC OF ∴===,∴四边形DEBF 是平行四边形,BE DF ∴=.【小问2详解】解:由(1)已证:四边形DEBF 平行四边形, 要使平行四边形DEBF 是矩形,则BD EF =,1122OE OA OC OF === ,111222EF OE OF OA OC OA AC ∴=+=+==,即2AC EF =,22AC EFk BD EF∴===, 故当2k =时,四边形DEBF 是矩形.【点睛】本题考查了平行四边形的判定与性质、矩形的判定等知识点,熟练掌握平行四边形的判定与性质是解题关键.22. 如图,ABC 中,AB AC =,D 为AC 上一点,以CD 为直径的O 与AB 相切于点E ,交BC 于点F ,FG AB ⊥,垂足为G .(1)求证:FG 是O 的切线;(2)若1BG =,3BF =,求CF 的长. 【答案】(1)见解析 (2【解析】【分析】(1)连接,DF OF ,设ODF OFD ∠=∠β=,OFC α∠=,根据已知条件以及直径所对的圆周角相等,证明90αβ+=︒,进而求得,DFG DFO αβ∠=∠=,即可证明FG 是O 的切线;(2)根据已知条件结合(1)的结论可得四边形GEOF 是正方形,进而求得DC 的长,根据BFG FDC β∠=∠=,sin GB FCBF DCβ==,即可求解. 【小问1详解】 如图,连接,DF OF ,OF OD = ,是则ODF OFD ∠=∠,设ODF OFD ∠=∠β=,OFC α∠=,OF OC = ,OFC OCF α∴∠=∠=,DC 为O 的直径, 90DFC ∴∠=︒,90DFO OFC DFC ∴∠+=∠=︒,即90αβ+=︒,AB AC = , B ACB α∴∠=∠=,FG AB ⊥ ,9090GFB B αβ∴∠=︒-∠=︒-=,90DFB DFC ∠=∠=︒ ,9090DFG GFB βα∴∠=︒-∠=︒-=, 90GFO GFD DFO αβ∴∠=+=+=︒,OF 为O 的半径, FG ∴是O 的切线;【小问2详解】 如图,连接OE ,AB Q 是O 的切线,则OE AB ⊥,又,OF FG FG AB ⊥⊥, ∴四边形GEOF 是矩形,OE OF = ,∴四边形GEOF 是正方形,12GF OF DC ∴==, 在Rt GFB △中,1BG =,3BF =,FG ∴==DC ∴=,由(1)可得BFG FDC β∠=∠=,,FG AB DF FC ⊥⊥ ,sin GB FC BF DC β∴==,∴13=,解得FC =. 【点睛】本题考查了切线的性质与判定,正方形的性质与判定,等腰三角形的性质,正弦的定义,掌握切线的性质与判定是解题的关键.23. 某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y (件)与销售时间x (天)之间的关系式是203062403040x x y x x <≤⎧=⎨-+<≤⎩,,,销售单价p (元/件)与销售时间x (天)之间的函数关系如图所示.(1)第15天的日销售量为_________件;(2)当030x <≤时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?【答案】(1)30(2)2100元 (3)9天【解析】【分析】(1)将15x =直接代入表达式即可求出销售量;(2)设销售额为w 元,分类讨论,当020x ≤≤时,由图可知,销售单价40p =;当20x 30<≤时,有图可知,p 是x 的一次函数,用待定系数法求出p 的表达式;分别列出函数表达式,在自变量取值范围内求取最大值即可;(3)分类讨论,当20x 30<≤和030x <≤时列出不等式,解不等式,即可得出结果.【小问1详解】解:当15x =时,销售量230y x ==;故答案为30;【小问2详解】设销售额为w 元,①当020x ≤≤时,由图可知,销售单价40p =,此时销售额4040280w y x x =⨯=⨯=∵800>,∴w 随x 的增大而增大当20x =时,w 取最大值此时80201600w =⨯=②当20x 30<≤时,有图可知,p 是x 的一次函数,且过点(20,40)、(40,30) 设销售单价()0p kx b k =+≠,将(20,40)、(40,30)代入得:20404030k b k b +=⎧⎨+=⎩ 解得1250k b ⎧=-⎪⎨⎪=⎩ ∴1502p x =-+ ∴()2215021005025002w py x x x x x ⎛⎫==-+⋅=-+=--+ ⎪⎝⎭ ∵10-<,∴当20x 30<≤时,w 随x 的增大而增大当30x =时,w 取最大值此时()2305025002100w =--+=∵16002100<∴w 的最大值为2100,∴当030x <≤时,日销售额的最大值为2100元;【小问3详解】当030x ≤≤时,248x ≥解得24≥x∴2430x ≤≤当3040x <≤,624048x -+≥解得32x ≤∴3032x <≤∴2432x ≤≤,共9天∴日销售量不低于48件的时间段有9天.【点睛】本题考查一元一次方程、一次函数、一元一次不等式、二次函数,是初中数学应用题的综合题型,解题的关键在于利用题目中的等量关系、不等关系列出方程、不等式,求出函数表达式,其中自变量取值范围是易错点、难点.24. 已知90ABN ∠=︒,在ABN ∠内部作等腰ABC ,AB AC =,()090BAC αα∠=︒<≤︒.点D 为射线BN 上任意一点(与点B 不重合),连接AD ,将线段AD 绕点A 逆时针旋转α得到线段AE ,连接EC 并延长交射线BN 于点F .(1)如图1,当90α=︒时,线段BF 与CF 的数量关系是_________;(2)如图2,当090α︒<<︒时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)若60α=︒,AB =BD m =,过点E 作EP BN ⊥,垂足为P ,请直接写出PD 的长(用含有m 的式子表示). 【答案】(1)BF =CF(2)成立;理由见解析(3)62m PD =-或PD =0或62m PD =- 【解析】 【分析】(1)连接AF ,先根据“SAS ”证明ACE ABD ∆∆≌,得出90ACE ABD ∠=∠=︒,再证明Rt Rt ABF ACF ≌,即可得出结论;(2)连接AF ,先说明EAC BAD ∠=∠,然后根据“SAS ”证明ACE ABD ∆∆≌,得出90ACE ABD ∠=∠=︒,再证明Rt Rt ABF ACF ≌,即可得出结论;(3)先根据60α=︒,AB =AC ,得出△ABC 为等边三角形,再按照60BAD ∠︒<,60BAD ∠=︒,60BAD ∠︒>三种情况进行讨论,得出结果即可.【小问1详解】解:BF =CF ;理由如下:连接AF ,如图所示:根据旋转可知,90DAE α∠==︒,AE =AD ,∵∠BAC =90°,∴90EAC CAD ∠+∠=︒,90BAD CAD ∠+∠=︒,∴EAC BAD ∠=∠,∵AC =AB ,∴ACE ABD ∆∆≌(SAS ),∴90ACE ABD ∠=∠=︒,∴1809090∠=︒-︒=︒ACF ,∵在Rt △ABF 与Rt △ACF 中AB AC AF AF =⎧⎨=⎩, ∴Rt Rt ABF ACF ≌(HL ),∴BF =CF .故答案为:BF =CF .【小问2详解】成立;理由如下:连接AF ,如图所示:根据旋转可知,DAE α∠=,AE =AD ,∵BAC α∠=,∴EAC CAD α∠-∠=,BAD CAD α∠-∠=,∴EAC BAD ∠=∠,∵AC =AB ,∴ACE ABD ∆∆≌,∴90ACE ABD ∠=∠=︒,∴1809090∠=︒-︒=︒ACF ,∵在Rt △ABF 与Rt △ACF 中AB AC AF AF =⎧⎨=⎩, ∴Rt Rt ABF ACF ≌(HL ),∴BF =CF .【小问3详解】∵60α=︒,AB =AC ,∴△ABC 等边三角形,∴60ABC ACB BAC ∠=∠=∠=︒,AB AC BC ===,当60BAD ∠︒<时,连接AF ,如图所示:为根据解析(2)可知,Rt Rt ABF ACF ≌, ∴1302BAF CAF BAC ∠=∠=∠=︒,∵AB =tan tan30BF BAF AB∴∠=︒=,即tan304BF AB =⨯︒==, 4CF BF ∴==,根据解析(2)可知,ACE ABD ∆∆≌,∴CE BD m ==,∴4EF CF CE m =+=+,906030FBC FCB ∠=∠=︒-︒=︒,60EFP FBC FCB ∴∠=∠+∠=︒,∵90EPF ∠=︒,∴906030FEP ∠=︒-︒=︒, ∴()1142222m PF EF m ==+=+, 42622m m BP BF PF ∴=+=++=+, ∴6622m m PD BP BD m =-=+-=-; 当60BAD ∠=︒时,AD 与AC 重合,如图所示:∵60DAE ∠=︒,AE AD =,∴△ADE 为等边三角形,∴∠ADE =60°,∵9030ADB BAC ∠=︒-∠=︒,∴603090ADE ∠=︒+︒=︒,∴此时点P 与点D 重合,0PD =;当60BAD ∠︒>时,连接AF ,如图所示:根据解析(2)可知,Rt Rt ABF ACF ≌, ∴1302BAF CAF BAC ∠=∠=∠=︒,∵AB =tan tan30BF BAF AB∴∠=︒=,即tan304BF AB =⨯︒==,4CF BF ∴==,根据解析(2)可知,ACE ABD ∆∆≌,∴CE BD m ==,∴4EF CF CE m =+=+,∵906030FBC FCB ∠=∠=︒-︒=︒,60EFP FBC FCB ∴∠=∠+∠=︒,∵90EPF ∠=︒,∴906030FEP ∠=︒-︒=︒, ∴()1142222m PF EF m ==+=+, 42622m m BP BF PF ∴=+=++=+, ∴6622m m PD BD BF m ⎛⎫=-=-+=- ⎪⎝⎭; 综上分析可知,62m PD =-或PD =0或62m PD =-. 25. 已知抛物线294y ax x c =++与x 轴交于点()1,0A 和点B 两点,与y 轴交于点()0,3C -.(1)求抛物线的解析式;(2)点P 是抛物线上一动点(不与点A ,B ,C 重合),作PD x ⊥轴,垂足为D ,连接PC .①如图1,若点P 在第三象限,且45CPD ∠=︒,求点P 的坐标;②直线PD 交直线BC 于点E ,当点E 关于直线PC 的对称点E '落在y 轴上时,求四边形PECE '的周长.【答案】(1)239344y x x =+- (2)①514,33P ⎛⎫--⎪⎝⎭;②853或353【解析】 【分析】(1)把点()1,0A ,()0,3C -代入,即可求解;(2)①过点C 作CQ ⊥DP 于点Q ,可得△CPQ 为等腰直角三角形,从而得到PQ =CQ ,设点239,344P m m m ⎛⎫+- ⎪⎝⎭,则OD =-m ,239344PD m m =--+,再由四边形OCQD 为矩形,可得QC =OD =PQ =-m ,DQ =OC =3,从而得到23944m P m Q --=,即可求解;②过点E 作EM ∥x 轴于点M ,先求出直线BC 的解析式为334y x =--,证得四边形PECE '为菱形,可得2334t C P t E E ==+,然后根据△CEM ∽△CBO ,设点239,344P t t t ⎛⎫+- ⎪⎝⎭,则点3,34E t t ⎛⎫-- ⎪⎝⎭,然后分三种情况讨论,即可求解. 【小问1详解】解:把点()1,0A ,()0,3C -代入得:9043a c c ⎧++=⎪⎨⎪=-⎩,解得:343a c ⎧=⎪⎨⎪=-⎩, ∴抛物线解析式为239344y x x =+-; 【小问2详解】解:①如图,过点C 作CQ ⊥DP 于点Q ,∵点C (0,-3),∴OC =3,∵45CPD ∠=︒,∴△CPQ 为等腰直角三角形,∴CQ =PQ , 设点239,344P m m m ⎛⎫+- ⎪⎝⎭,则OD =-m ,239344PD m m =--+, ∵PD x ⊥轴,∴∠COD =∠ODQ =∠CQD =90°,∴四边形OCQD 为矩形,∴QC =OD =PQ =-m ,DQ =OC =3, ∴223939334444PQ DP D m m m m Q ---=-=--=+, ∴23944m m m -=--, 解得:53m =-或0(舍去), ∴点514,33P ⎛⎫-- ⎪⎝⎭; ②如图,过点E 作EM ∥x 轴于点M ,令y =0,2393044x x +-=, 解得:124,1x x =-=(舍去), ∴点B (-4,0),∴OB =4,∴5BC ==,设直线BC 的解析式为()0y kx n k =+≠, 把点B (-4,0),C (0,-3)代入得:403k n n -+=⎧⎨=-⎩,解得:343k n ⎧=-⎪⎨⎪=-⎩, ∴直线BC 的解析式为334y x =--, ∵点E 关于直线PC 的对称点E '落在y 轴上时,∴CE CE '=,PE PE '=,PCE PCE '∠=∠,∵DP ⊥x 轴,∴PD ∥CE ′,∴CPE PCE '∠=∠,∴CPE PCE ∠=∠,∴CE =PE ,∴PE PE CE CE ''===,∴四边形PECE '为菱形,∵EM ∥x 轴,∴△CEM ∽△CBO , ∴EM CE OB BC=, 设点239,344P t t t ⎛⎫+- ⎪⎝⎭, 则点3,34E t t ⎛⎫-- ⎪⎝⎭, 当点P 在y 轴左侧时,EM =-t , 当-4<t <0时,2233394333444t t t P t t E ⎛⎫⎛⎫-+-=-- ⎪ ⎪⎝⎭⎝-⎭=-, ∴2334t CE PE t ==--, ∴233445t t t -=--, 解得:73t =-或0(舍去), ∴23353412PE t t =--=, ∴四边形PECE '的周长为353512443PE ⨯==; 当点P 在y 轴右侧时,EM =-t ,当t ≤-4时,2239333443344t t t t PE t =-⎛⎫⎛⎫+--=+ ⎪ ⎪⎝⎭⎝⎭-, ∴245334t t t -+=,解得:173t =-或0(舍去), 此时23853412t PE t +==, ∴四边形PECE '的周长为858512443PE ⨯==; 当点P 在y 轴右侧,即t >0时,EM =t ,2239333443344t t t t PE t =-⎛⎫⎛⎫+--=+⎪ ⎪⎝⎭⎝⎭-, ∴245334t t t +=,解得:73t =-或0, 不符合题意,舍去;综上所述,四边形PECE '的周长为853或353. 【点睛】本题主要考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、对称的性质和菱形的判定方法;会利用待定系数法求函数解析式;理解坐标与图形性质;会利用相似比计算线段的长和解一元二次方程是解题的关键。
2022年湖北省十堰市中考数学试卷和答案解析

2022年湖北省十堰市中考数学试卷和答案解析一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.(3分)2的相反数是()A.﹣2B.2C.﹣D.2.(3分)下列几何体中,主视图与俯视图的形状不一样的几何体是()A.B.C.D.3.(3分)下列计算正确的是()A.a6÷a3=a2B.a2+2a2=3a2C.(2a)3=6a3D.(a+1)2=a2+14.(3分)如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形两边之和大于第三边5.(3分)甲、乙两人在相同的条件下,各射击10次,经计算:甲射击成绩的平均数是8环,方差是1.1;乙射击成绩的平均数是8环,方差是1.5.下列说法中不一定正确的是()A.甲、乙的总环数相同B.甲的成绩比乙的成绩稳定C.乙的成绩比甲的成绩波动大D.甲、乙成绩的众数相同6.(3分)我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x斗,那么可列方程为()A.10x+3(5﹣x)=30B.3x+10(5﹣x)=30C.+=5D.+=57.(3分)如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果OA:OC =OB:OD=3,且量得CD=3cm,则零件的厚度x为()A.0.3cm B.0.5cm C.0.7cm D.1cm 8.(3分)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为m,则大树AB的高为()A.m(cosα﹣sinα)B.m(sinα﹣cosα)C.m(cosα﹣tanα)D.﹣9.(3分)如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C重合),下列结论:①∠ADB=∠BDC;②DA =DC;③当DB最长时,DB=2DC;④DA+DC=DB,其中一定正确的结论有()A.1个B.2个C.3个D.4个10.(3分)如图,正方形ABCD的顶点分别在反比例函数y=(k1>0)和y=(k2>0)的图象上.若BD∥y轴,点D的横坐标为3,则k1+k2=()A.36B.18C.12D.9二、填空题(本题有6个小题,每小题3分,共18分)11.(3分)袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为2.5亿亩.将250000000用科学记数法表示为2.5×10n,则n=.12.(3分)关于x的不等式组中的两个不等式的解集如图所示,则该不等式组的解集为.13.(3分)“美丽乡村”建设使我市农村住宅旧貌变新颜,如图所示为一农村民居侧面截图,屋坡AF,AG分别架在墙体的点B,C 处,且AB=AC,侧面四边形BDEC为矩形.若测得∠FBD=55°,则∠A=°.14.(3分)如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,50节链条总长度为cm.15.(3分)如图,扇形AOB中,∠AOB=90°,OA=2,点C为OB上一点,将扇形AOB沿AC折叠,使点B的对应点B'落在射线AO上,则图中阴影部分的面积为.16.(3分)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F分别在BC,CD上,若∠BAD=2∠EAF,则EF=BE+DF.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN=50(﹣1)m,若在M,N之间修一条直路,则路线M→N 的长比路线M→A→N的长少m(结果取整数,参考数据:≈1.7).三、参考答案题(本题有9个小题,共72分)17.(5分)计算:()﹣1+|2﹣|﹣(﹣1)2022.18.(5分)计算:÷(a+).19.(6分)已知关于x的一元二次方程x2﹣2x﹣3m2=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且α+2β=5,求m的值.20.(9分)某兴趣小组针对视力情况随机抽取本校部分学生进行调查,将调查结果进行统计分析,绘制成如下不完整的统计图表.抽取的学生视力情况统计表类别调查结人数果A正常4876B轻度近视C中度近60视mD重度近视请根据图表信息参考答案下列问题:(1)填空:m=,n=;(2)该校共有学生1600人,请估算该校学生中“中度近视”的人数;(3)某班有四名重度近视的学生甲、乙、丙、丁,从中随机选择两名学生参加学校组织的“爱眼护眼”座谈会,请用列表或画树状图的方法求同时选中甲和乙的概率.21.(7分)如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.(1)求证:BE=DF;(2)设=k,当k为何值时,四边形DEBF是矩形?请说明理由.22.(8分)如图,△ABC中,AB=AC,D为AC上一点,以CD 为直径的⊙O与AB相切于点E,交BC于点F,FG⊥AB,垂足为G.(1)求证:FG是⊙O的切线;(2)若BG=1,BF=3,求CF的长.23.(10分)某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y(件)与销售时间x(天)之间的关系式是y =,销售单价p(元/件)与销售时间x(天)之间的函数关系如图所示.(1)第15天的日销售量为件;(2)0<x≤30时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?24.(10分)已知∠ABN=90°,在∠ABN内部作等腰△ABC,AB =AC,∠BAC=α(0°<α≤90°).点D为射线BN上任意一点(与点B不重合),连接AD,将线段AD绕点A逆时针旋转α得到线段AE,连接EC并延长交射线BN于点F.(1)如图1,当α=90°时,线段BF与CF的数量关系是;(2)如图2,当0°<α<90°时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)若α=60°,AB=4,BD=m,过点E作EP⊥BN,垂足为P,请直接写出PD的长(用含有m的式子表示).25.(12分)已知抛物线y=ax2+x+c与x轴交于点A(1,0)和点B两点,与y轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)点P是抛物线上一动点(不与点A,B,C重合),作PD⊥x 轴,垂足为D,连接PC.①如图1,若点P在第三象限,且∠CPD=45°,求点P的坐标;②直线PD交直线BC于点E,当点E关于直线PC的对称点E′落在y轴上时,求四边形PECE′的周长.参考答案与解析一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.【参考答案】解:2的相反数等于﹣2.故选:A.【解析】本题考查了相反数的知识,属于基础题,注意熟练掌握相反数的概念是关键.2.【参考答案】解:A、正方体的主视图与俯视图都是正方形,故A 不符合题意;B、圆柱的主视图与俯视图都是长方形,故B不符合题意;C、圆锥的主视图是等腰三角形,俯视图是一个圆和圆心,故C符合题意;D、球体的主视图与俯视图都是圆形,故D不符合题意;故选:C.【解析】本题考查了简单几何体的三视图,熟练掌握每一个几何体的三种视图是解题的关键.3.【参考答案】解:A、a6÷a3=a3,故A不符合题意;B、a2+2a2=3a2,故B符合题意;C、(2a)3=8a3,故C不符合题意;D、(a+1)2=a2+2a+1,故D不符合题意;故选:B.【解析】本题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,完全平方公式,熟练掌握它们的运算法则是解题的关键.4.【参考答案】解:这样做应用的数学知识是两点确定一条直线,故选:B.【解析】本题考查的是三角形的三边关系、两点之间,线段最短、两点确定一条直线、垂线段最短,正确理解它们在实际生活中的应用是解题的关键.5.【参考答案】解:∵各射击10次,甲射击成绩的平均数是8环,乙射击成绩的平均数是8环,∴甲、乙的总环数相同,故A正确,不符合题意;∵甲射击成绩的方差是1.1;乙射击成绩的方差是1.5,∴甲的成绩比乙的成绩稳定,乙的成绩比甲的成绩波动大,故B,C都正确,不符合题意;由已知不能得到甲、乙成绩的众数相同,故D不一定正确,符合题意;故选:D.【解析】本题考查了平均数、方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.【参考答案】解:设清酒x斗,则醑酒(5﹣x)斗,由题意可得:10x+3(5﹣x)=30,故选:A.【解析】本题考查由实际问题抽象出一元一次方程,参考答案本题的关键是明确题意,列出相应的方程.7.【参考答案】解:∵OA:OC=OB:OD=3,∠COD=∠AOB,∴△COD∽△AOB,∴AB:CD=3,∵CD=3cm,∴AB=9cm,∵某零件的外径为10cm,∴零件的厚度x为:(10﹣9)÷2=1÷2=0.5(cm),故选:B.【解析】本题考查相似三角形的应用,参考答案本题的关键是求出AB的值.8.【参考答案】解:过点C作水平地面的平行线,交AB的延长线于D,则∠BCD=α,在Rt△BCD中,BC=m,∠BCD=α,则BD=BC•sin∠BCD=msinα,CD=BC•cos∠BCD=mcosα,在Rt△ACD中,∠ACD=45°,则AD=CD=mcosα,∴AB=AD﹣BD=mcosα﹣msinα=m(cosα﹣sinα),故选:A.【解析】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.9.【参考答案】解:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∵=,=,∴∠ADB=∠ACB=60°,∠BDC=∠BAC=60°,∴∠ADB=∠BDC,故①正确;∵点D是弧AC上一动点,∴与不一定相等,∴DA与DC不一定相等,故②错误;当DB最长时,DB为⊙O直径,∴∠BCD=90°,∵∠BDC=60°,∴∠DBC=30°,∴DB=2DC,故③正确;在DB上取一点E,使DE=AD,如图:∵∠ADB=60°,∴△ADE是等边三角形,∴AD=AE,∠DAE=60°,∵∠BAC=60°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴BD=BE+DE=CD+AD,故④正确;∴正确的有①③④,共3个,故选:C.【解析】本题考查等边三角形及外接圆,涉及三角形全等的判定与性质,解题的关键是作辅助线,构造三角形全等解决问题.10.【参考答案】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图象上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图象上,D(3,a)在y=(k2>0)的图象上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B.【解析】本题考查反比例函数及应用,涉及正方形性质,解题的关键是用含字母的代数式表示相关点坐标.二、填空题(本题有6个小题,每小题3分,共18分)11.【参考答案】解:∵250000000=2.5×108.∴n=8,故答案为:8.【解析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【参考答案】解:该不等式组的解集为:0≤x<1.故答案为:0≤x<1.【解析】考查在数轴上表示不等式的解集,关键是读懂数轴上的信息,能正确选用不等号.13.【参考答案】解:∵四边形BDEC为矩形,∴∠DBC=90°,∵∠FBD=55°,∴∠ABC=180°﹣∠DBC﹣∠FBD=35°,∵AB=AC,∴∠ABC=∠ACB=35°,∴∠A=180°﹣∠ABC﹣∠ACB=110°,故答案为:110.【解析】本题考查了矩形的性质,等腰三角形的性质,熟练掌握矩形的性质,以及等腰三角形的性质是解题的关键.14.【参考答案】解:由题意得:1节链条的长度=2.8cm,2节链条的总长度=[2.8+(2.8﹣1)]cm,3节链条的总长度=[2.8+(2.8﹣1)×2]cm,...∴50节链条总长度=[2.8+(2.8﹣1)×49]=91(cm),故答案为:91.【解析】本题考查了规律型:图形的变化类,从数字找规律是解题的关键.15.【参考答案】解:连接AB,∵∠AOB=90°,OA=2,∴OB=OA=2,∴AB==2,设OC=x,则BC=B′C=2﹣x,OB′=2﹣2,则x2+(2﹣2)2=(2﹣x)2,解得x=2﹣2,∴阴影部分的面积是:=π+4﹣4,故答案为:π+4﹣4.【解析】本题考查翻折变换、扇形面积的计算,参考答案本题的关键是求出OC的值,利用数形结合的思想参考答案.16.【参考答案】解:解法一:如图,延长DC,AB交于点G,过点N作NH⊥AD于H,∵∠D=60°,∠ABC=120°,∠BCD=150°,∴∠A=360°﹣60°﹣120°﹣150°=30°,∴∠G=90°,∴AD=2DG,Rt△CGB中,∠BCG=180°﹣150°=30°,∴BG=BC=50,CG=50,∴DG=CD+CG=100+50,∴AD=2DG=200+100,AG=DG=150+100,∵DM=100,∴AM=AD﹣DM=200+100﹣100=100+100,∵BG=50,BN=50(﹣1),∴AN=AG﹣BG﹣BN=150+100﹣50﹣50(﹣1)=150+50,Rt△ANH中,∵∠A=30°,∴NH=AN=75+25,AH=NH=75+75,由勾股定理得:MN===50(+1),∴AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.解法二:如图,延长DC,AB交于点G,连接CN,CM,则∠G =90°,∵CD=DM,∠D=60°,∴△BCM是等边三角形,∴∠DCM=60°,由解法一可知:CG=50,GN=BG+BN=50+50(﹣1)=50,∴△CGN是等腰直角三角形,∴∠GCN=45°,∴∠BCN=45°﹣30°=15°,∴∠MCN=150°﹣60°﹣15°=75°=∠BCD,由【阅读材料】的结论得:MN=DM+BN=100+50(﹣1)=50+50,∵AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.故答案为:370.【解析】此题重点考查了含30°的直角三角形的性质,勾股定理,二次根式的混合运算等知识与方法,解题的关键是作出所需要的辅助线,构造含30°的直角三角形,再利用线段的和与差进行计算即可.三、参考答案题(本题有9个小题,共72分)17.【参考答案】解:()﹣1+|2﹣|﹣(﹣1)2022=3+﹣2﹣1=.【解析】本题考查了负整数指数幂,有理数的乘方,实数的运算,估算无理数的大小,绝对值,准确熟练地化简各式是解题的关键.18.【参考答案】解:÷(a+)=÷(+)=÷=•=.【解析】本题考查分式的混合运算,明确分式混合运算的步骤是解决问题的关键.19.【参考答案】(1)证明:∵a=1,b=﹣2,c=﹣3m2,∴Δ=(﹣2)2﹣4×1•(﹣3m2)=4+12m2>0,∴方程总有两个不相等的实数根;(2)解:由题意得:,解得:,∵αβ=﹣3m2,∴﹣3m2=﹣3,∴m=±1,∴m的值为±1.【解析】本题考查了根与系数的关系,根的判别式,熟练掌握根的判别式,以及根与系数的关系是解题的关键.20.【参考答案】解:(1)由题意得:48÷24%=200,∴m=200﹣48﹣76﹣60=16,n°=×360°=108°,故答案为:16,108;(2)由题意得:1600×=480(人),∴该校学生中“中度近视”的人数为480人;(3)如图:总共有12种等可能结果,其中同时选中甲和乙的结果有2种,∴P(同时选中甲和乙)==.【解析】本题考查了列表法与树状图,用样本估计总体,扇形统计图,准确熟练地进行计算是解题的关键.21.【参考答案】(1)证明:如图,连接DE,BF,∵四边形ABCD是平行四边形,∴BO=OD,AO=OC,∵E,F分别为AO,OC的中点,∴EO=OA,OF=OC,∴EO=FO,∵BO=OD,EO=FO,∴四边形BFDE是平行四边形,∴BE=DF;(2)解:当k=2时,四边形DEBF是矩形;理由如下:当BD=EF时,四边形DEBF是矩形,∴当OD=OE时,四边形DEBF是矩形,∵AE=OE,∴AC=2BD,∴当k=2时,四边形DEBF是矩形.【解析】本题主要考查了平行四边形的判定与性质,矩形的判定,注意对角线互相平分的四边形是平行四边形.22.【参考答案】(1)证明:如图,连接OF,∵AB=AC,∴∠B=∠C,∵OF=OC,∴∠C=∠OFC,∴∠OFC=∠B,∴OF∥AB,∵FG⊥AB,∴FG⊥OF,又∵OF是半径,∴GF是⊙O的切线;(2)解:如图,连接OE,过点O作OH⊥CF于H,∵BG=1,BF=3,∠BGF=90°,∴FG===2,∵⊙O与AB相切于点E,∴OE⊥AB,又∵AB⊥GF,OF⊥GF,∴四边形GFOE是矩形,∴OE=GF=2,∴OF=OC=2,又∵OH⊥CF,∴CH=FH,∵cosC=cosB=,∴,∴CH=,∴CF=.【解析】本题考查切线的性质和判定,勾股定理,等腰三角形的性质,矩形的判定和性质,锐角三角函数等知识,灵活运用这些性质解决问题是解题的关键.23.【参考答案】解:(1)∵日销售量y(件)与销售时间x(天)之间的关系式是y=,∴第15天的销售量为2×15=30件,故答案为:30;(2)由销售单价p(元/件)与销售时间x(天)之间的函数图象得:p=,①当0<x≤20时,日销售额=40×2x=80x,∵80>0,∴日销售额随x的增大而增大,∴当x=20时,日销售额最大,最大值为80×20=1600(元);②当20<x≤30时,日销售额=(50﹣x)×2x=﹣x2+100x=﹣(x﹣50)2+2500,∵﹣1<0,∴当x<50时,日销售额随x的增大而增大,∴当x=30时,日销售额最大,最大值为2100(元),综上,当0<x≤30时,日销售额的最大值2100元;(3)由题意得:当0<x≤30时,2x≥48,解得:24≤x≤30,当30<x≤40时,﹣6x+240≥48,解得:30<x≤32,∴当24≤x≤32时,日销售量不低于48件,∵x为整数,∴x的整数值有9个,∴“火热销售期”共有9天.【解析】本题主要考查了一次函数的应用,一次函数的性质,二次函数的性质,配方法求函数的极值,正确利用自变量的取值范围确定函数的关系式是解题的关键.24.【参考答案】解:(1)BF=CF;理由如下:连接AF,如图所示:根据旋转可知,∠DAE=α=90°,AE=AD,∵∠BAC=90°,∴∠EAC+∠CAD=90°,∠BAD+∠CAD=90°,∴∠EAC=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠ACE=∠ABD=90°,∴∠ACF=90°,在Rt△ABF与Rt△ACF中,,∴Rt△ABF≌Rt△ACF(HL),∴BF=CF,故答案为:BF=CF;(2)成立,理由如下:如图2,连接AF,根据旋转可知,∠DAE=α,AE=AD,∵∠BAC=α,∴∠EAC﹣∠CAD=α,∠BAD﹣∠CAD=α,∴∠EAC=∠BAD,在△ACE和△ABD中,∴△ACE≌△ABD(SAS),∴∠ACE=∠ABD=90°,∴∠ACF=90°,在Rt△ABF与Rt△ACF中,,∴Rt△ABF≌Rt△ACF(HL),∴BF=CF;(3)∵α=60°,AB=AC,∴△ABC为等边三角形,∴∠ABC=∠ACB=∠BAC=60°,AB=AC=BC=4,①当∠BAD<60°时,连接AF,如图所示:∵Rt△ABF≌Rt△ACF,∴∠BAF=∠CAF=∠BAC=30°,在Rt△ABF中,=tan30°,,即CF=BF=4;根据(2)可知,△ACE≌△ABD,∴CE=BD=m,∴EF=CF+CE=4+m,∠FBC=∠FCB=90°﹣60°=30°,∴∠EFP=∠FBC+∠FCB=60°,又∵∠EPF=90°,∴∠FEP=90°﹣60°=30°,∴PF=EF=2+m,∴BP=BF+PF=6+m,∴PD=BP﹣BD=6﹣m;②当∠BAD=60°时,AD与AC重合,如图所示:∵∠DAE=60°,AE=AD,∴△ADE为等边三角形,∴∠ADE=60°,∵∠ADB=90°﹣∠BAC=30°,∴∠ADE=90°,∴此时点P与点D重合,PD=0;③当∠BAD>60°时,连接AF,如图所示:∵Rt△ABF≌Rt△ACF,∴∠BAF=∠CAF=∠BAC=30°,在Rt△ABF中,=tan30°,,即CF=BF=4;根据(2)可知,△ACE≌△ABD,∴CE=BD=m,∴EF=CF+CE=4+m,∠FBC=∠FCB=90°﹣60°=30°,∴∠EFP=∠FBC+∠FCB=60°,又∵∠EPF=90°,∴∠FEP=90°﹣60°=30°,∴PF=EF=2+m,∴BP=BF+PF=6+m,∴PD=BD﹣BP=m﹣6,综上,PD的值为6﹣m或0或m﹣6.【解析】本题考查图形的旋转,等边三角形的性质,全等三角形的判定和性质,理解旋转的性质,注意分类讨论思想解题是关键.25.【参考答案】解:(1)由题意得,,∴,∴y=x2+x﹣3;(2)①如图1,设直线PC交x轴于E,∵PD∥OC,∴∠OCE=∠CPD=45°,∵∠COE=90°,∴∠CEO=90°﹣∠ECO=45°,∴∠CEO=∠OCE,∴OE=OC=3,∴点E(3,0),∴直线PC的解析式为:y=x﹣3,由x2+x﹣3=x﹣3得,∴x1=﹣,x2=0(舍去),当x=﹣时,y=﹣﹣3=﹣,∴P(﹣,﹣);②如图2,设点P(m,m2+m﹣3),四边形PECE′的周长记作l,点P在第三象限时,作EF⊥y轴于F,∵点E与E′关于PC对称,∴∠ECP=∠E′PC,CE=CE′,∵PE∥y轴,∴∠EPC=∠PCE′,∴∠ECP=∠EPC,∴PE=CE,∴PE=CE′,∴四边形PECE′为平行四边形,∴▱PECE′为菱形,∴CE=PE,∵EF∥OA,∴,∴,∴CE=﹣m,∵PE=﹣(﹣)﹣(+﹣3)=﹣﹣3m,∴﹣=﹣m2﹣3m,∴m1=0(舍去),m2=﹣,∴CE=,∴l=4CE=4×=,当点P在第二象限时,同理可得:﹣m=+3m,∴m3=0(舍去),m4=﹣,∴l=4×=,综上所述:四边形PECE′的周长为:或.【解析】本题考查了求一次函数和二次函数的解析式,等腰三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,轴对称性质等知识,解决问题的关键是正确分类,作辅助线,表示出线段的数量.。
湖北省十堰市中考数学试卷(附答案解析)

第 1 页 共 27 页
2020年湖北省十堰市中考数学试卷
一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内. 1.1
4的倒数是( )
A .4
B .﹣4
C .1
4
D .−1
4
2.某几何体的三视图如图所示,则此几何体是( )
A .圆锥
B .圆柱
C .长方体
D .四棱柱
3.如图,将一副三角板重叠放在一起,使直角顶点重合于点O .若∠AOC =130°,则∠BOD =( )
A .30°
B .40°
C .50°
D .60°
4.下列计算正确的是( ) A .a +a 2=a 3 B .a 6÷a 3=a 2
C .(﹣a 2b )3=a 6b 3
D .(a ﹣2)(a +2)=a 2﹣4
5.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示:
鞋的尺码/cm 22 22.5 23 23.5 24 24.5 25 销售量双
1
2
5
11
7
3
1
若每双鞋的销售利润相同,则该店主最应关注的销售数据是下列统计量中的( ) A .平均数
B .方差
C .众数
D .中位数
6.已知平行四边形ABCD 中,下列条件:①AB =BC ;②AC =BD ;③AC ⊥BD ;④AC 平分∠BAD ,其中能说明平行四边形ABCD 是矩形的是( )。
湖北省十堰市中考数学试卷及答案解析

湖北省十堰市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1..函数y=中,自变量x的取值范围是()A.x>1 B.x≥1C.x<1 D.x≤12..如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°3..如图所示的几何体的俯视图是()A.B.C.D.4..下列计算中,不正确的是()A.﹣2x+3x=x B.6xy2÷2xy=3yC.(﹣2x2y)3=﹣6x6y3D.2xy2•(﹣x)=﹣2x2y25..某校篮球队13名同学的身高如下表:身高(cm)175 180 182 185 188人数(个) 1 5 4 2 1则该校篮球队13名同学身高的众数和中位数分别是()A.182,180 B.180,180 C.180,182 D.188,1826..在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)7..当x=1时,ax+b+1的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为()A.﹣16 B.﹣8 C.8D.168..如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图象大致是()A.B.C.D.9..如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.29210..如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为()A.2B.3C.D.二、填空题(本题有6小题,每小题3分,共18分)11..光的速度大约是300000千米/秒,将300000用科学记数法表示为.12..计算;3﹣1+(π﹣3)0﹣|﹣|=.13..不等式组的整数解是.14..如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当=时,四边形ADFE是平行四边形.15..如图,小华站在河岸上的G点,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船C的俯角是∠FDC=30°,若小华的眼睛与地面的距离是1.6米,BG=0.7米,BG平行于AC所在的直线,迎水坡i=4:3,坡长AB=8米,点A、B、C、D、F、G在同一平面内,则此时小船C到岸边的距离CA的长为米.(结果保留根号)16..抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)三、解答题(本题有9小题,共72分)17..化简:(a﹣)÷(1+)18..如图,CA=CD,∠B=∠E,∠BCE=∠ACD.求证:AB=DE.19..在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?20.端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为度;条形统计图中,喜欢“糖馅”粽子的人数为人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小、小丽每人各选一只.请用树状图或列表法求小、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.21.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.22.如图,点A(1﹣,1+)在双曲线y=(x<0)上.(1)求k的值;(2)在y轴上取点B(0,1),为双曲线上是否存在点D,使得以AB,AD为邻边的平行四边形ABCD的顶点C在x轴的负半轴上?若存在,求出点D的坐标;若不存在,请说明理由.23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).x(亩)20 25 30 35z(元)1700 1600 1500 1400(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.24.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积;(3)若=,DF+BF=8,如图2,求BF的长.25.已知抛物线C1:y=ax2+bx+(a≠0)经过点A(﹣1,0)和B(3,0).(1)求抛物线C1的解析式,并写出其顶点C的坐标;(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C 分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标;(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:①tan∠ENM的值如何变化?请说明理由;②点M到达点C时,直接写出点P经过的路线长.湖北省十堰市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1..函数y=中,自变量x的取值范围是()A.x>1 B.x≥1C.x<1 D.x≤1考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x﹣1≥0,解得x≥1.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2..如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°考点:平行线的性质.分析:先根据平行线的性质求出∠C的度数,再由三角形外角的性质即可得出结论.解答:解:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.3..如图所示的几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的视图是俯视图,可得答案.解答:解:从上面看是一个大正方形,大正方形内部的左下角是一个小正方形,故选:D.点评:本题考查了简单组合体的三视图,从上面看的到的视图是俯视图.4..下列计算中,不正确的是()A.﹣2x+3x=x B.6xy2÷2xy=3yC.(﹣2x2y)3=﹣6x6y3D.2xy2•(﹣x)=﹣2x2y2考点:整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据同类项、同底数幂的除法、积的乘方以及整式的乘法计算即可.解答:解:A、﹣2x+3x=x,正确;B、6xy2÷2xy=3y,正确;C、(﹣2x2y)3=﹣8x6y3,错误;D、2xy2•(﹣x)=﹣2x2y2,正确;故选C.点评:此题考查同类项、同底数幂的除法、积的乘方以及整式的乘法,关键是根据法则进行计算.5..某校篮球队13名同学的身高如下表:身高(cm)175 180 182 185 188人数(个) 1 5 4 2 1则该校篮球队13名同学身高的众数和中位数分别是()A.182,180 B.180,180 C.180,182 D.188,182考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.解答:解:由图表可得,众数是:182cm,中位数是:180cm.故选:A.点评:本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6..在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)考点:位似变换;坐标与图形性质.分析:根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得答案.解答:解:∵点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是:(﹣2,1)或(2,﹣1).故选:D.点评:此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.7..当x=1时,ax+b+1的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为()A.﹣16 B.﹣8 C.8D.16考点:整式的混合运算—化简求值.分析:由x=1时,代数式ax+b+1的值是﹣2,求出a+b的值,将所得的值代入所求的代数式中进行计算即可得解.解答:解:∵当x=1时,ax+b+1的值为﹣2,∴a+b+1=﹣2,∴a+b=﹣3,∴(a+b﹣1)(1﹣a﹣b)=(﹣3﹣1)×(1+3)=﹣16.故选:A.点评:此题考查整式的化简求值,运用整体代入法是解决问题的关键.8..如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:根据蚂蚁在上运动时,随着时间的变化,距离不发生变化,得出图象是与x轴平行的线段,即可得出结论.解答:解:一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行,在开始时经过半径OA这一段,蚂蚁到O点的距离随运动时间t的增大而增大;到弧AB这一段,蚂蚁到O点的距离S不变,图象是与x轴平行的线段;走另一条半径OB时,S随t的增大而减小;故选:B.点评:本题主要考查动点问题的函数图象;根据随着时间的变化,到弧AB这一段,蚂蚁到O点的距离S不变,得到图象的特点是解决本题的关键.9..如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.292考点:规律型:图形的变化类.分析:设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了根火柴棍,并且三角形的个数比正六边形的个数多6个,列方程组求解解答:解:设连续搭建三角形x个,连续搭建正六边形y个.由题意得,,解得:.故选D.点评:本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.10..如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为()A.2B.3C.D.考点:全等三角形的判定与性质;勾股定理;正方形的性质.分析:首先延长FD到G,使DG=BE,利用正方形的性质得∠B=∠CDF=∠CDG=90°,CB=CD;利用SAS定理得△BCE≌△DCG,利用全等三角形的性质易得△GCF≌△ECF,利用勾股定理可得AE=3,设AF=x,利用GF=EF,解得x,利用勾股定理可得CF.解答:解:如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3,CB=6,∴BE===3,∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x,∴EF==,∴(9﹣x)2=9+x2,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF===2,故选A.点评:本题主要考查了全等三角形的判定及性质,勾股定理等,构建全等三角形,利用方程思想是解答此题的关键.二、填空题(本题有6小题,每小题3分,共18分)11..光的速度大约是300000千米/秒,将300000用科学记数法表示为 3.0×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将300000用科学记数法表示为3.0×105.故答案为:3.0×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12..计算;3﹣1+(π﹣3)0﹣|﹣|=1.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=+1﹣=1,故答案为:1点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.13..不等式组的整数解是﹣1,0.考点:一元一次不等式组的整数解.分析:首先解不等式组求得不等式的解集,然后确定解集中的整数解即可.解答:解:,解①得:x≥﹣1,解②得:x<1,则不等式组的解集是:﹣1≤x<1,则整数解是:﹣1,0.故答案是:﹣1,0.点评:本题考查了不等式组的整数解,正确解不等式组是解题的关键.14..如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当=时,四边形ADFE是平行四边形.考点:平行四边形的判定;等边三角形的性质.分析:由三角形ABE为等边三角形,EF垂直于AB,利用三线合一得到EF为角平分线,得到∠AEF=30°,进而确定∠BAC=∠AEF,再由一对直角相等,及AE=AB,利用AAS即可得证△ABC≌△EAF;由∠BAC与∠DAC度数之和为90°,得到DA垂直于AB,而EF垂直于AB,得到EF与AD平行,再由全等得到EF=AC,而AC=AD,可得出一组对边平行且相等,即可得证.解答:解:当=时,四边形ADFE是平行四边形.理由:∵=,∴∠CAB=30°,∵△ABE为等边三角形,EF⊥AB,∴EF为∠BEA的平分线,∠AEB=60°,AE=AB,∴∠FEA=30°,又∠BAC=30°,∴∠FEA=∠BAC,在△ABC和△EAF中,,∴△ABC≌△EAF(AAS);∵∠BAC=30°,∠DAC=60°,∴∠DAB=90°,即DA⊥AB,∵EF⊥AB,∴AD∥EF,∵△ABC≌△EAF,∴EF=AC=AD,∴四边形ADFE是平行四边形.故答案为:.点评:此题考查了平行四边形的判定、平行线的判定与性质、全等三角形的判定与性质以及等边三角形的性质,熟练掌握判定与性质是解本题的关键.15..如图,小华站在河岸上的G点,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船C的俯角是∠FDC=30°,若小华的眼睛与地面的距离是1.6米,BG=0.7米,BG平行于AC所在的直线,迎水坡i=4:3,坡长AB=8米,点A、B、C、D、F、G在同一平面内,则此时小船C到岸边的距离CA的长为8﹣5.5米.(结果保留根号)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:把AB和CD都整理为直角三角形的斜边,利用坡度和勾股定理易得点B和点D到水面的距离,进而利用俯角的正切值可求得CH长度.CH﹣AE=EH即为AC长度.解答:解:过点B作BE⊥AC于点E,延长DG交CA于点H,得Rt△ABE和矩形BEHG.∵i==,AB=8米,∴BE=,AE=.∵DG=1.6,BG=0.7,∴DH=DG+GH=1.6+=8,AH=AE+EH=+0.7=5.5.在Rt△CDH中,∵∠C=∠FDC=30°,DH=8,tan30°==,∴CH=8.又∵CH=CA+5.5,即8=CA+5.5,∴CA=8﹣5.5(米).答:CA的长约是(8﹣5.5)米.点评:此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.16..抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是③⑤.(只填写序号)考点:二次函数图象与系数的关系.专题:数形结合.分析:根据题意画出抛物线的大致图象,利用函数图象,由抛物线开口方向得a>0,由抛物线的对称轴位置得b<0,由抛物线与y轴的交点位置得c<0,于是可对①进行判断;由于抛物线过点(﹣1,0)和(m,0),且1<m<2,根据抛物线的对称性和对称轴方程得到0<﹣<,变形可得a+b>0,则可对②进行判断;利用点A(﹣3,y1)和点B(3,y2)到对称轴的距离的大小可对③进行判断;根据抛物线上点的坐标特征得a﹣b+c=0,am2+bm+c=0,两式相减得am2﹣a+bm+b=0,然后把等式左边分解后即可得到a (m﹣1)+b=0,则可对④进行判断;根据顶点的纵坐标公式和抛物线对称轴的位置得到<c≤﹣1,变形得到b2﹣4ac>4a,则可对⑤进行判断.解答:解:如图,∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c<0,∴abc>0,所以①的结论正确;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<﹣<,∴a+b>0,所以②的结论正确;∵点A(﹣3,y1)到对称轴的距离比点B(3,y2)到对称轴的距离远,∴y1>y2,所以③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,所以④的结论正确;∵<c,而c≤﹣1,∴<﹣1,∴b2﹣4ac>4a,所以⑤的结论错误.故答案为③⑤.点评:本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.三、解答题(本题有9小题,共72分)17..化简:(a﹣)÷(1+)考点:分式的混合运算.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加减法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式=÷=•=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18..如图,CA=CD,∠B=∠E,∠BCE=∠ACD.求证:AB=DE.考点:全等三角形的判定与性质.专题:证明题.分析:如图,首先证明∠ACB=∠DCE,这是解决问题的关键性结论;然后运用AAS公理证明△ABC≌△DEC,即可解决问题.解答:解:如图,∵∠BCE=∠ACD,∴∠ACB=∠DCE;在△ABC与△DEC中,,∴△ABC≌△DEC(AAS),∴AB=DE.点评:该题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是牢固掌握全等三角形的判定方法,这是灵活运用、解题的基础和关键.19..在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?考点:分式方程的应用.分析:首先设原来每天改造管道x米,则引进新设备前工程队每天改造管道(1+20%)x 米,由题意得等量关系:原来改造360米管道所用时间+引进了新设备改造540米所用时间=27天,根据等量关系列出方程,再解即可.解答:解:设原来每天改造管道x米,由题意得:+=27,解得:x=30,经检验:x=30是原分式方程的解,(1+20%)x=1.2×30=36.答:引进新设备前工程队每天改造管道36米.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程不要忘记检验.20.端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为144度;条形统计图中,喜欢“糖馅”粽子的人数为3人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小、小丽每人各选一只.请用树状图或列表法求小、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.分析:(1)用周角乘以很喜欢所占的百分比即可求得其圆心角,直接从条形统计图中得到喜欢糖馅的人数即可;(2)利用总人数800乘以所对应的百分比即可;(3)利用列举法表示,然后利用概率公式即可求解解答:解:(1)扇形统计图中,“很喜欢”所对应的圆心角为360°×40%=144度;条形统计图中,喜欢“糖馅”粽子的人数为 3人;(2)学生有800人,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和为800×(1﹣25%)=600(人);(3)肉馅、糖馅、枣馅、海鲜馅四种粽子分别用A、B、C、D表示,画图如下:∵共12种等可能的结果,其中小、小丽两人中有且只有一人选中自己最爱吃的粽子有4种,∴P(小、小丽两人中有且只有一人选中自己最爱吃的粽子)==.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.考点:根的判别式;根与系数的关系.分析:(1)根据根的判别式的意义得到△≥0,即(2m+3)2﹣4(m2+2)≥0,解不等式即可;(2)根据根与系数的关系得到x1+x2=2m+3,x1x2=m2+2,再变形已知条件得到(x1+x2)2﹣4x1x2=31+|x1x2|,代入即可得到结果.解答:解:(1)∵关于x的一元二次方程x2﹣(2m+3)x+m2+2=0有实数根,∴△≥0,即(2m+3)2﹣4(m2+2)≥0,∴m≥﹣;(2)根据题意得x1+x2=2m+3,x1x2=m2+2,∵x12+x22=31+|x1x2|,∴(x1+x2)2﹣2x1x2=31+|x1x2|,即(2m+3)2﹣2(m2+2)=31+m2+2,解得m=2,m=﹣14(舍去),∴m=2.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程根与系数的关系.22.如图,点A(1﹣,1+)在双曲线y=(x<0)上.(1)求k的值;(2)在y轴上取点B(0,1),为双曲线上是否存在点D,使得以AB,AD为邻边的平行四边形ABCD的顶点C在x轴的负半轴上?若存在,求出点D的坐标;若不存在,请说明理由.考点:反比例函数综合题.分析:(1)直接利用反比例函数图象上点的坐标性质代入求出即可;(2)根据平行四边形的性质得出D点纵坐标,进而代入函数解析式得出D点横坐标即可.解答:解:(1)∵点A(1﹣,1+)在双曲线y=(x<0)上,∴k=(1﹣)(1+)=1﹣5=﹣4;(2)过点A作AE⊥y轴于点E,过点D作DF⊥x轴于点F,∵四边形ABCD是以AB,AD为邻边的平行四边形ABCD,∴DC AB,∵A(1﹣,1+),B(0,1),∴BE=,由题意可得:DF=BE=,则=,解得:x=,∴点D的坐标为:(﹣,).点评:此题主要考查了反比例函数综合以及平行四边形的性质,得出D点纵坐标是解题关键.23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).x(亩)20 25 30 35z(元)1700 1600 1500 1400(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.考点:一次函数的应用.分析:(1)根据图表的性质,可以得出P关于x的函数关系式和出x的取值范围.(2)根据利润=亩数×每亩利润,可得①当0<x≤15时②当15<x<20时,利润的函数式,即可解题;解答:解:(1)观察图表的数量关系,可以得出P关于x的函数关系式为:P=(2)∵利润=亩数×每亩利润,∴①当0<x≤15时,W=1800x+1380(40﹣x)+2400=420x+55200;当x=15时,W有最大值,W最大=6300+55200=61500;②当15<x<20,W=﹣20x+2100+1380(40﹣x)+2400=﹣1400x+59700;∵﹣1400x+59700<61500;∴x=15时有最大值为:61500元.点评:本题主要考查了一次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是一次函数的性质.24.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积;(3)若=,DF+BF=8,如图2,求BF的长.考点:圆的综合题.专题:综合题.分析:(1)连结O D,如图1,由角平分线定义得∠BAD=∠CAD,则根据圆周角定理得到=,再根据垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是根据切线的判定定理即可判断DF为⊙O的切线;(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=2,易得∠BDF=∠DBP=30°,根据含30度的直角三角形三边的关系,在Rt△DBP中得到PD=BD=,PB=PD=3,接着在Rt△DEP中利用勾股定理计算出PE=2,由于OP⊥BC,则BP=CP=3,所以CE=1,然后利用△BDE∽△ACE,通过相似比可得到AE=,再证明△ABE∽△AFD,利用相似比可得DF=12,最后根据扇形面积公式,利用S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)进行计算;(3)连结CD,如图2,由=可设AB=4x,AC=3x,设BF=y,由=得到CD=BD=2,先证明△BFD∽△CDA,利用相似比得到xy=4,再证明△FDB∽△FAD,利用相似比得到16﹣4y=xy,则16﹣4y=4,然后解方程易得BF=3.解答:证明:(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=2,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,。
今年中考十堰数学试题及答案

今年中考十堰数学试题及答案本文为您提供今年十堰市中考数学科目的试题及答案。
希望通过这些试题及答案的介绍,能够为同学们复习和备考提供一定的帮助。
以下是试题及答案的具体内容:一、选择题(每小题2分,共40分)1. 设集合A={2, 4, 6},集合B={4, 6, 8},则A∪B=()。
A. {2, 4, 6, 8}B. {4, 6}C. {2, 4, 6}D. {4}答案:A2. 已知a:b=3:4,b:c=5:6,则a:c=()。
A. 6:7B. 9:5C. 15:20D. 20:15答案:C3. 若x+y=3,2x-y=7,则x=()。
A. 5B. 4C. 3D. 2答案:D4. 已知AB∥CD,且AB=8cm,CD=12cm,则AD:BC=()。
A. 2:3B. 3:2C. 2:1D. 3:4答案:A5. 下列等式不成立的是()。
A. 2x+3y=4B. 5x-2y=1C. 3x+6y=9D. x+y=0答案:C二、填空题(每小题2分,共20分)1. 2018年的下一个闰年是________年。
答案:20202. 一个数加上它的1/7的结果是40,这个数是________。
答案:353. 小明拥有14支笔,其中红色笔占总数的1/7,蓝色笔占总数的3/7,那么蓝色笔有________支。
答案:64. 若x-2y=7,则y的值为________。
答案:-35. 三角形的内角和为________度。
答案:180三、解答题1. 求下列方程的解:2x-5=7。
解:将方程两边同时加上5,得到2x=12,再除以2,即可得到x的值:x=6。
2. 已知三角形ABC中,AB=BC=5cm,角A和角C之间的夹角为60°,求三角形的面积。
解:首先,根据已知条件可知,三角形ABC是一个等边三角形,因为AB=BC=5cm,角A和角C之间的夹角为60°。
所以,三角形ABC可以看作由边长为5cm的等边三角形和高为√3 cm的等边三角形组成。
2023年湖北省十堰市中考数学真题试卷(解析版)

2023年湖北省十堰市中考数学真题试卷及答案满分120分,考试时限120分钟.一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1. 的倒数是()A. B. C. D.【答案】C【解析】由互为倒数的两数之积为1,即可求解.解:∵,∴的倒数是.故选C2. 下列几何体中,三视图的三个视图完全相同的几何体是()A. B. C. D.【答案】D【解析】找到从物体正面、左面和上面看得到的图形完全相同的几何体即可.解:A.四棱柱的俯视图与主视图和左视图都不同,故此选项错误;B.圆锥的俯视图与主视图和左视图不同,故此选项错误;C.圆柱的俯视图与主视图和左视图不同,故此选项错误;D.球的三视图完全相同,都是圆,故此选项正确.故选:D.【点拨】本题主要考查了三视图的有关知识,掌握三视图都相同的常见的几何体有球和正方体是解答本题的关键.3. 下列计算正确的是()A. B. C. D.【答案】B【解析】根据二次根式运算法则,幂的运算法则,完全平方公式处理.A. ,不符合运算法则,本选项错误,不符合题意;B. ,根据积的乘方运算法则处理,运算正确,符合题意;C. ,故选项错误,不符合题意;D. ,故选项错误,不符合题意;故选:B.【点拨】本题考查二次根式的运算、幂的运算法则、完全平方公式;熟练掌握相关法则是解题的关键.4. 任意掷一枚均匀的小正方体色子,朝上点数是偶数的概率为( )A. B. C. D.【答案】C【解析】由题意可知掷一枚均匀的小正方体色子有6种等可能的结果,再找出符合题意的结果数,最后利用概率公式计算即可.∵任意掷一枚均匀的小正方体色子,共有6种等可能的结果,其中朝上点数是偶数的结果有3种,∴朝上点数是偶数概率为.故选C.【点拨】本题考查简单的概率计算.掌握概率公式是解题关键.5. 如图,将四根木条用钉子钉成一个矩形框架,然后向左扭动框架,观察所得四边形的变化.下面判断错误的是()A. 四边形由矩形变为平行四边形B. 对角线的长度减小C. 四边形的面积不变D. 四边形的周长不变【答案】C【解析】根据四边形的不稳定性、矩形的性质和平行四边形的性质,结合图形前后变化逐项判断即可.解:A.因为矩形框架向左扭动,,,但不再为直角,所以四边形变成平行四边形,故A 正确,不符合题意;B.向左扭动框架,的长度减小,故B 正确,不符合题意;C.因为拉成平行四边形后,高变小了,但底边没变,所以面积变小了,故C 错误,符合题意;D.因为四边形的每条边的长度没变,所以周长没变,故D 正确,不符合题意,故选:C .【点拨】本题主要考查了矩形的性质和平行四边形的性质、四边形的不稳定性,弄清图形变化前后的变量和不变量是解答此题的关键.6. 为了落实“双减”政策,进一步丰富文体活动,学校准备购进一批篮球和足球,已知每个篮球的价格比每个足球的价格多20元,用1500元购进篮球的数量比用800元购进足球的数量多5个,如果设每个足球的价格为x 元,那么可列方程为( )A. B.C.D.【答案】A 【解析】设每个足球的价格为x 元,则篮球的价格为元,根据“用1500元购进篮球的数量比用800元购进足球的数量多5个”列方程即可.解:设每个足球的价格为x 元,则篮球的价格为元,由题意可得:,故选:A .【点拨】本题考查分式方程的应用,正确理解题意是关键.7. 如图所示,有一天桥高为5米,是通向天桥的斜坡,,市政部门启动“陡改缓”工程,决定将斜坡的底端C 延伸到D 处,使,则的长度约为(参考数据:)( )A. 米B. 米C. 米D. 米【答案】D【解析】在中,求得米,在中,求得米,即可得到的长度.解:在中,,,∴米,在中,,,∴,∴(米),∴(米)故选:D.【点拨】此题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.8. 如图,已知点C为圆锥母线的中点,为底面圆的直径,,,一只蚂蚁沿着圆锥的侧面从A点爬到C点,则蚂蚁爬行的最短路程为()A. 5B.C.D.【答案】B【解析】连接,先根据直径求出底面周长,根据底面周长等于展开后扇形的弧长可求出圆锥的侧面展开后的圆心角,可得是等边三角形,即可求解.解:连接,如图所示,∵为底面圆的直径,,设半径为r,∴底面周长,设圆锥的侧面展开后的圆心角为,∵圆锥母线,根据底面周长等于展开后扇形的弧长可得:,解得:,∴,∵半径,∴等边三角形,在中,,∴蚂蚁爬行的最短路程为,故选:B.【点拨】本题考查平面展开—最短路径问题,圆锥的侧面展开图是一个扇形。
最新整理湖北省十堰市中考数试卷及答案.doc

湖北省十堰市 初中毕业生学业考试数 学 试 题友情提示:Hi ,展示自己的时候到啦,你可要冷静思考、沉着答卷啊!即使遇到困难也不要放弃,要相信自己,能行!祝你取得好成绩!⒈本试卷共8页,25个小题,满分120分,考试时间120分钟.⒉在密封区内写明县(市、区)名、校名、姓名和考号,不要在密封区内答题. ⒊答题时允许使用规定的科学计算器.一、选择题(本题共10个小题,每小题3分,共30分)下面每题给出的四个选项中,只有一个是正确的,请 把你认为正确选项的代号填在下表内题号 1 2 3 4 5 6 7 8 9 10 答案1.5的倒数是A .51B .51- C .-5 D .52.下列长度的三条线段,能组成三角形的是A .1cm ,2 cm ,3cmB .2cm ,3 cm ,6 cmC .4cm ,6 cm ,8cmD .5cm ,6 cm ,12cm3.如图,C 、D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于A .3cmB .6cmC .11cmD .14cm4.如图,在ΔABC 中,AC =DC =DB ,∠ACD =100°,则∠B 等于 A .50° B .40° C .25° D .20°5.把方程2133123+-=-+x x x 去分母正确的是 A.)1(318)12(218+-=-+x x x B .)1(3)12(3+-=-+x x xC .)1(18)12(18+-=-+x x xD .)1(33)12(23+-=-+x x x6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是题 号 一 二 三 四 五 六 总分 得 分 评卷人得分 评卷人C B 第4题图DA 第3题图D C BAA .91B .61C .31D .217.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是8.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是 A .∠3=∠4 B .∠A +∠ADC =180° C .∠1=∠2 D .∠A =∠59.如图,将ΔPQR 向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是A . (-2,-4)B . (-2,4)C .(2,-3)D .(-1,-3)10.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0x < 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(本题共6小题,每小题3分,共18分.请将答案直接填写在该题目中的横线上)11. 5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1514000000元人民币,这个数字用科学记数法可表示为 元人民币.12.已知,|x |=5,y =3,则=-y x . 13.计算:=---31922a a a .14.如图,直线AB 、CD 相交于点O ,AB OE ⊥,垂足为O , 如果︒=∠42EOD ,则=∠AOC .得分 评卷人第9题图AC 第8题图E E 54321D B 第14题图┌OE A BCD第15题图PRFEA BCDBCA15.如图,已知矩形ABCD ,P 、R 分别是BC 和DC 上的点,E 、F 分别是P A 、PR 的中点.如果DR =3,AD =4,则EF 的长为 . 16.观察下面两行数:根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果) .三、解答题(本题共3小题,每小题7分,共21分)17.(7分)计算:022)21(45sin 2)1(--︒+-- 解:022)21(45sin 2)1(--︒+--= =18.(7分)解方程组: ⎩⎨⎧=-=+. ②y x , ① y x 54219.(7分)在同一条件下,对同一型号的汽车进行耗油1升所行驶路程的实验,将收集到的数据作为一个样本进行分析,绘制出部分频数分布直方图和部分扇形统计图.如下图所示(路程单位:km)得分 评卷人2, 4, 8, 16, 32, 64, … ①5, 7, 11, 19, 35, 67, … ②12.5≤x <1312≤x <12.513.5≤x <1413≤x <13.530%30%14≤x <14.513.3%6.7%结合统计图完成下列问题:⑴扇形统计图中,表示135.12x <≤部分的百分数是 ;⑵请把频数分布直方图补充完整,这个样本数据的中位数落在第 组; ⑶哪一个图能更好地说明一半以上的汽车行驶的路程在1413x <≤之间?哪一个图能更好地说明行驶路程在135.12x <≤的汽车多于在5.1414x <≤的汽车?四、应用题(本大题2小题,共15分)20.(7分)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.21.(8分)如图,利用一面墙(墙的长度不超过45m ),用80m 长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m 2?⑵能否使所围矩形场地的面积为810m 2,为什么?得分 评卷人西 东第20题图第21题图五、推理与计算(本大题2小题,共15分)22.(7分)如图,把一张矩形的纸ABCD 沿对角线BD 折叠,使点C 落在点E 处,BE 与AD 交于点F .⑴求证:ΔABF ≌ΔEDF ;⑵若将折叠的图形恢复原状,点F 与BC 边上的点M 正好重合,连接DM ,试判断四边形BMDF 的形状,并说明理由.23.(8分)如图,AB 、BC 、CD 分别与⊙O 切于E 、F 、G ,且AB ∥CD .连接OB 、OC ,延长CO 交⊙O 于点M ,过点M 作MN ∥OB 交CD 于N . ⑴求证:MN 是⊙O 的切线;⑵当0B =6cm ,OC =8cm 时,求⊙O 的半径及MN 的长.第23题图O GCABDN MFE得分 评卷人得分 评卷人C D B A M第22题图F E六、综合应用与探究(本大题2小题,共21分)24.(9分)5月12日,我国四川省汶川县等地发生强烈地震,在抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要25台,乙地需要23台;A、B两省获知情况后慷慨相助,分别捐赠该型号挖掘机26台和22台并将其全部调往灾区.如果从A省调运一台挖掘机到甲地要耗资0.4万元,到乙地要耗资0.3万元;从B省调运一台挖掘机到甲地要耗资0.5万元,到乙地要耗资0.2万元.设从A省调往甲地x台挖掘机,A、B两省将捐赠的挖掘机全部调往灾区共耗资y万元.⑴请直接写出y与x之间的函数关系式及自变量x的取值范围;⑵若要使总耗资不超过15万元,有哪几种调运方案?⑶怎样设计调运方案能使总耗资最少?最少耗资是多少万元?2与x轴的一个交点为A(-1,0),与y轴的25.(12分)已知抛物线b=2-ax+y+ax正半轴交于点C.⑴直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;⑵当点C在以AB为直径的⊙P上时,求抛物线的解析式;⑶坐标平面内是否存在点M,使得以点M和⑵中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.湖北省十堰市 初中毕业生学业考试数学试题参考答案及评分说明一、选择题(每题3分,共30分)第1~10题:A C B D A A D C A C二、填空题(每空3分,共18分)11.910514.1⨯ 12.2或-8(错一个扣1分,错两个不得分)13.31+a 14.48° 15.2.5 16.2051 三、解答题(第17~19题,每题7分,共21分)17.解:原式=12121-⨯+ ……………………………6分=1 …………………………………7分说明:第一步三项中,每对一项给2分. 18.解:①+②,得,x 93= ∴.x 3= ………………3分把3=x 代入②,得,y 53=- ∴.y 2-= …6分∴原方程组的解是 ⎩⎨⎧-==.y ,x 23 ………………………7分 说明:其它解法请参照给分.19.解:⑴20%; …………………………………………2分⑵补图略;3; …………………5分说明:频数为6,补对直方图给2分;组数填对给1分.⑶扇形统计图能很好地说明一半以上的汽车行驶的路程在1413x <≤之间; 条形统计图(或直方统计图)能更好地说明行驶路程在135.12x <≤的汽 车多于在5.1414x <≤的汽车. ……………7分说明:只回答“扇形统计图”;“条形统计图(或直方统计图)”也给满分.四、应用题(第20题7分,第21题8分,共15分)20.解:有触礁危险.………………………………1分理由: 过点P 作PD ⊥AC 于D .…………………2分设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°. ∴BD =PD =x . ………………………………3分 在Rt △PAD 中,∵∠PAD =90°-60°=30°,∴x .xAD 330tan =︒=………………………………4分 ∵BD ,AB AD +=∴x .x +=123 ∴)13(61312+=-=x .………6分∵,<18)13(6+∴渔船不改变航线继续向东航行,有触礁危险. ………………7分 说明:开头“有触礁危险”没写,但最后解答正确不扣分.21.解:⑴设所围矩形ABCD 的长AB 为x 米,则宽AD 为)80(21x -米. ………1分说明:AD 的表达式不写不扣分依题意,得 ,x x 750)80(21=-∙ …………………2分即,.x x 01500802=+-解此方程,得 ,x 301= .x 502= ………3分∵墙的长度不超过45m ,∴502=x 不合题意,应舍去. …4分当30=x 时,.x 25)3080(21)80(21=-⨯=-所以,当所围矩形的长为30m 、宽为25m 时,能使矩形的面积为750m 2. ……5分⑵不能.因为由,x x 810)80(21=-∙得.x x 01620802=+- ………………………………6分 又∵ac b 42-=(-80)2-4×1×1620=-80<0,∴上述方程没有实数根.…………………………7分因此,不能使所围矩形场地的面积为810m 2……………8分 说明:如果未知数的设法不同,或用二次函数的知识解答,只要过程及结果正确,请参照给分.五、推理与计算(第22题7分,第23题8分,共15分) 22.解:⑴证明:由折叠可知,C .E ED ,CD ∠=∠= ……1分在矩形ABCD 中,C ,A CD ,AB ∠=∠=∴E .A ED AB ∠=∠=, ∵∠AFB =∠EFD ,∴△AFB ≌△EFD . ……………………4分⑵四边形BMDF 是菱形. ………………………5分 理由:由折叠可知:BF =BM ,DF =DM . …………6分 由⑴知△AFB ≌△EFD ,∴BF =DF .∴BM =BF =DF =DM . ∴四边形BMDF 是菱形. …………………7分23.解:⑴证明:∵AB 、BC 、CD 分别与⊙O 切于点E 、F 、G ,∴DCB .OCB ABC ,OBC ∠=∠∠=∠2121 …………………1分 ∵AB ∥CD ,∴∠ABC +∠DCB =180°.∴.DCB ABC OCB OBC ︒=︒⨯=∠+∠=∠+∠9018021)(21∴.OCB OBC -BOC ︒=︒-︒=∠+∠︒=∠9090180)(180 ……2分 ∵MN ∥OB ,∴∠NMC =∠BOC =90°.∴MN 是⊙O 的切线.……4分⑵连接OF ,则OF ⊥BC .…………………………………5分由⑴知,△BOC 是Rt △,∴.OC DB BC 10862222=+=+= ∵OF ,BC OC OB S BOC ∙∙=∙∙=∆2121∴6×8=10×OF .∴0F =4.8.即⊙O 的半径为4.8cm . …………………………………6分 由⑴知,∠NCM =∠BCO ,∠NMC =∠BOC =90°, ∴△NMC ∽△BOC . …………………7分 ∴.MN .CO CM OB MN 88.486+==即 ∴MN =9.6(cm). …………………………………8分 说明:不带单位不扣分.六、综合应用与探究(第24题9分,第25题12分,共21分)24.解:⑴.x x x x y )2623(2.0)25(5.0)26(3.04.0+-+-+-+=或:.x x x x y )2522(2.0)25(5.0)26(3.04.0+-+-+-+=即:.x y 7.192.0+-= (253≤≤x ) ………3分说明:函数式正确给2分,x 的取值范围正确给1分,函数式不化简不扣分. ⑵依题意,得.x 157.192.0≤+- 解之,得.x 247≥又∵253≤≤x ,且x 为整数, ∴.x 2524或=……5分说明:用建立不等式组的方法求解也可,请参照给分.即,要使总耗资不超过15万元,有如下两种调运方案:方案一:从A 省往甲地调运24台,往乙地调运2台;从B 省往甲地调运1台,往乙地调运21台.方案二:从A 省往甲地调运25台,往乙地调运1台;从B 省往甲地调运0台,往乙地调运22台. …………6分⑶由⑴知:.x y 7.192.0+-= (253≤≤x )∵-0.2<0, ∴y 随x 的增大而减小.∴当25=x 时,∴.y 7.147.19252.0=+⨯-=最小值 ……8分答:设计如下调运方案:从A 省往甲地调运25台,往乙地调运1台;从B 省往甲地调运0台,往乙地调运22台,能使总耗资最少, 最少耗资为14.7万元. ……………9分25.解:⑴对称轴是直线:1=x ,点B 的坐标是(3,0). ……2分说明:每写对1个给1分,“直线”两字没写不扣分.⑵如图,连接PC ,∵点A 、B 的坐标分别是A (-1,0)、B (3,0),∴AB =4.∴.AB PC 242121=⨯==在Rt △POC 中,∵O P =PA -OA =2-1=1, ∴.PO PC OC 3122222=-=-=∴b =.3 ………………………………3分 当01=-=,y x 时,,a a 032=+--∴.a 33=………………………………4分 ∴.x x y 3332332++-= ………………5分 ⑶存在.……………………………6分理由:如图,连接AC 、BC .设点M 的坐标为),(y x M .①当以AC 或BC 为对角线时,点M 在x 轴上方,此时CM ∥AB ,且CM =AB . 由⑵知,AB =4,∴|x |=4,3==OC y .∴x =±4.∴点M 的坐标为)3,4()3,4(-或M .…9分说明:少求一个点的坐标扣1分.②当以AB 为对角线时,点M 在x 轴下方.过M 作MN ⊥AB 于N ,则∠MNB =∠AOC =90°.∵四边形AMBC 是平行四边形,∴AC =MB ,且AC ∥MB .∴∠CAO =∠MBN .∴△AOC ≌△BNM .∴BN =AO =1,MN =CO .∵OB =3,∴0N =3-1=2.∴点M 的坐标为(2,M . ……………………………12分说明:求点M 的坐标时,用解直角三角形的方法或用先求直线解析式,然后求交点M 的坐标的方法均可,请参照给分.综上所述,坐标平面内存在点M ,使得以点A 、B 、C 、M 为顶点的四边形是平行四边形.其坐标为123((2,M M M -.说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分。
十堰中招数学试题及答案

十堰中招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.5B. √4C. πD. 0.33333...答案:C2. 一个等腰三角形的底边长为6cm,腰长为8cm,其周长是多少?A. 22cmB. 26cmC. 30cmD. 28cm答案:B3. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个数的相反数是-5,这个数是多少?A. 5C. 0D. 10答案:A5. 下列哪个选项是完全平方数?A. 16B. 17C. 18D. 19答案:A6. 一个圆的半径是5cm,它的面积是多少?A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B7. 一个正方体的体积是27cm³,它的棱长是多少?A. 3cmB. 6cmC. 9cmD. 12cm答案:A8. 一个数的立方根是2,这个数是多少?B. 8C. 2³D. 4答案:C9. 一个二次函数的顶点坐标是(1, -4),且开口向上,它的对称轴是什么?A. x=-1B. x=1C. x=2D. x=0答案:B10. 一个等差数列的首项是3,公差是2,第5项是多少?A. 11B. 13C. 15D. 17答案:A二、填空题(每题3分,共15分)1. 一个直角三角形的两个直角边长分别是3cm和4cm,斜边长是____cm。
答案:52. 一个数的绝对值是5,这个数可以是____或____。
答案:5或-53. 一个二次函数的一般形式是y=ax²+bx+c,其中a、b、c是常数,且a≠0。
如果a>0,那么这个函数的图象开口____。
答案:向上4. 一个数的平方根是2,那么这个数的立方根是____。
答案:2³5. 一个等比数列的首项是2,公比是3,第4项是____。