锂电池与太阳能电池一体化设计
太阳能建筑一体化组件设计与制造方案(五)

太阳能建筑一体化组件设计与制造方案实施背景:随着全球能源需求的不断增长和环境问题的日益严重,太阳能作为一种可再生、清洁的能源形式受到了广泛关注。
太阳能建筑一体化组件是将太阳能利用技术与建筑设计和制造相结合,实现建筑物自身能源的生产和利用。
这种组件的设计与制造方案对于推动产业结构改革,实现可持续发展具有重要意义。
工作原理:太阳能建筑一体化组件是通过将太阳能光伏发电技术与建筑设计相结合,将太阳能电池板等光伏发电设备融入到建筑物的外墙、屋顶、窗户等部位,实现建筑物对太阳能的利用。
太阳能电池板可以将太阳辐射转化为直流电,通过逆变器转化为交流电,供给建筑物的用电设备使用。
实施计划步骤:1.需求分析:根据建筑物的类型、用途和能源需求,确定太阳能建筑一体化组件的设计和制造方案。
2.设计方案制定:根据需求分析的结果,确定太阳能电池板的数量、布局和安装方式,设计逆变器和电池储能系统等相关设备。
3.制造组件:根据设计方案制造太阳能电池板和其他相关设备,并进行质量检验和测试。
4.安装调试:将太阳能电池板等组件安装到建筑物的外墙、屋顶、窗户等部位,进行电气连接和调试。
5.运行监测:监测太阳能建筑一体化组件的运行情况,收集数据并进行分析,优化运行效果。
适用范围:太阳能建筑一体化组件适用于各类建筑物,包括住宅、商业建筑、工业厂房等。
根据建筑物的特点和需求,可以灵活设计和制造适用的组件。
创新要点:1.设计与制造一体化:将太阳能电池板等光伏发电设备与建筑设计和制造相结合,实现一体化的设计和制造过程。
2.灵活布局:根据建筑物的特点和需求,灵活布局太阳能电池板等组件,最大程度地利用太阳能资源。
3.高效转化:通过优化设计和制造工艺,提高太阳能电池板的转化效率,提高建筑物的能源利用效率。
预期效果:1.节能减排:太阳能建筑一体化组件可以将太阳能转化为电能,减少对传统能源的依赖,实现节能减排。
2.经济效益:通过建筑物自身产生的太阳能电力,减少对外部电力供应的需求,降低能源成本,提高经济效益。
太阳能锂电池充放电及外部供电自动切换的电路

太阳能作为清洁能源之一,受到了越来越多的重视。
在太阳能发电系统中,充电和放电是其最基本的工作模式。
然而,由于太阳能发电系统的不稳定性,经常会出现光照不足或者夜晚无法继续发电的情况。
设计一种能够自动切换外部供电并进行充放电控制的电路就显得十分必要。
具体来说,太阳能发电系统通常由太阳能电池板、控制器、锂电池和逆变器等部分组成。
其中,太阳能电池板负责将光能转化为电能,充电器控制器则用于监控光照情况和电池充放电状态,而锂电池和逆变器则分别负责储存电能和将直流电转化为交流电以供使用。
为了实现太阳能锂电池充放电及外部供电自动切换的电路,我们需要考虑以下几个方面:1. 充电控制:- 在充电模式下,需要保证太阳能电池板能够将充足的电能输送给锂电池,同时避免过充的情况发生。
- 一般来说,充电控制可以通过控制器来实现,通过监测光照强度和电池电压来调节充电电流和电压,使其达到最佳状态。
2. 放电控制:- 在放电模式下,需要保证锂电池能够为逆变器提供足够的电能,并且避免电池过放造成损坏。
- 放电控制同样可以通过控制器来实现,通过监测负载情况和电池电压来调节放电电流和电压,使其处于安全合适的状态。
3. 外部供电切换:- 当太阳能电池板不能为电池充电时,需要自动切换到外部电源进行充电。
而当太阳能电池板能够继续发电时,则应自动切换回太阳能充电模式。
- 外部供电切换可以通过继电器或者智能控制器来实现,通过监测太阳能电池板输出和外部电源情况来进行切换控制。
要设计一个太阳能锂电池充放电及外部供电自动切换的电路,首先需要根据实际场景和需求确定合适的控制器和传感器,其次需要设计电路连接和控制逻辑,最后通过实验验证其性能和稳定性。
在实际工程中,为了提高系统可靠性和安全性,可以考虑使用多级保护措施,并在电路设计和选型上尽量选择稳定可靠的元器件和设备,另外也可以考虑加入远程监控和故障报警功能,以便及时发现和处理异常情况。
太阳能锂电池充放电及外部供电自动切换的电路设计是一个复杂而又有挑战性的工程,需要综合考虑充放电控制、外部供电切换和系统可靠性等方面,希望能够通过不断努力和创新,为太阳能发电系统的稳定运行和普及做出更大的贡献。
新能源光伏1050kW 光储微电网项目方案

新能源光伏1050kW光储微电网 项目方案 某某新能源科技有限公司 20XX年7月25日一.项目方案概述项目利用某某新能源工厂,可建设一座由800kW光伏发电、250kW的500kWh锂电池储能系统和工厂负荷组成的综合能源供电系统,本系统将多种分布式发电系统、储能装置、能量变换装置与负荷组合在一起,作为一种配电子系统,通过公共连接点并入到400V低压侧交流母线,再通过10kV升压变压器接入电网。
微电网自身即为可控的电力系统单元,可以为作为智能负载,满足电力系统控制要求,减少馈线损耗;也可以进行削峰填谷和功率平滑,并对用户的特殊需求进行响应;在电网故障时,也可以进入孤岛运行,从而极大的提高了供电可靠性和稳定性。
光伏发电系统采用高效单晶组件,安装位于厂房屋顶,采用分布式发电,集中并网;储能系统采用高效锂电池储能系统,安放于集装箱内;通过EMS能源管理系统,将整个系统建设成与智能用电发展定位相匹配,具有信息化、自动化、互动化特征的可靠、自愈、灵活、经济、兼容、高效、集成的智能微网系统。
本系统按照4个子系统进行设计,包括:1、光伏发电子系统(光伏组件、光伏逆变器);2、储能子系统(储能单元、储能变流器);3、智能配电子系统(智能配电柜);4、能源管理系统(EMS能源管理、通讯柜)。
图1-1 光储微网综合供电系统结构示意图二.供电指标光伏装机容量:800kW储能系统容量:功率额定输出250kW,最大储能500kWh发电类型:光伏发电+锂电池储能供电电压:10kV/50Hz (0.4kV/50Hz)电能质量:THD<3%系统工作模式:并网+离网三.设计方案3.1整体方案概述本项目主要由光伏发电子系统、储能子系统、智能配电子系统和EMS能源管理系统构成,所发电能主要供纳新工厂使用,采用自发自用,余电上网模式。
本系统与电网采用单公共连接点方式,所有系统组成10kV交流微网的综合能源供电系统,整个供电系统主要有以下2种运行方式:并网运行模式—微网系统与市电网的公共连接点开关闭合,系统内的负载(纳新工厂)可由光伏、储能、电网共同供电,可以实时根据需求调节储能系统的输出功率,也可以控制系统从电网吸纳的电能量。
太阳能充电的锂电池双向主动均衡模块设计

太阳能充电的锂电池双向主动均衡模块设计陈阳;杨文荣;冉峰;朱佳斌;季渊【摘要】为了给家庭提供清洁持续的能源,采用LT3652电池充电管理芯片以及LTC3300-1电池组均衡器设计了一种太阳能充电的锂电池均衡模块.工业级太阳能充电电路复杂,成本高,不适合家庭使用,而传统的电阻耗散式均衡有着高发热和有效储能低的问题,因此设计的最大峰值功率跟踪(MPPT)电路和同步反激式均衡结构实现了光伏电池对锂电池充电效率最大化并可对锂电池组进行双向主动均衡,简化了太阳能充电电路.利用仿真的方法,详细介绍了LT3652和LTC3300-1的功能,对所需元器件的选择以及相关电路的设计进行了详细说明.本设计具有较易的充电电路、高均衡能量转换率以及灵活高效等特点,并可实现大规模集成.【期刊名称】《电源技术》【年(卷),期】2018(042)006【总页数】4页(P895-897,917)【关键词】太阳能充电;MPPT;锂电池;均衡【作者】陈阳;杨文荣;冉峰;朱佳斌;季渊【作者单位】上海大学微电子研究与开发中心,上海200072;上海大学微电子研究与开发中心,上海200072;上海大学微电子研究与开发中心,上海200072;上海大学微电子研究与开发中心,上海200072;上海大学微电子研究与开发中心,上海200072【正文语种】中文【中图分类】TM912现代经济的迅速发展,得益于化石能源广泛应用。
然而,化石能源作为一种不可再生的能源,将在不久的未来迅速枯竭。
目前,包括我国在内的世界各国都在大力发展和推广可再生能源,力求在化石能源枯竭之前使可再生能源全面替代化石能源。
而太阳能作为最广泛存在的免费绿色能源,在越来越多的场所中得到应用,如目前正在实验的太阳能汽车、太阳能飞机等[1-2]。
而在家庭方面太阳能的应用还极少,大部分还停留在太阳能热水器等,这是由于工业级太阳能充电电路复杂,成本高,不适合家庭使用。
目前商用的光伏电池效率一般在13%~18%之间[3-4],并且成本较高。
锂电池太阳能充电电路设计

492017年/第11期/4月(中)锂电池太阳能充电电路设计杨皓钦[1]余醉仙[2]*马春良[3]许志杨[2]([1]华东理工大学信息科学与工程学院上海200237;[2]华东理工大学机械与动力工程学院上海200237;[3]华东理工大学理学院上海200237)摘要本文旨在设计一种新型充电电路,利用太阳能对锂电池进行充电。
通过TD1410芯片实现降压型电路设计,对太阳能电池电压的输出进行稳压,继而对锂电池进行充电,并且对电路板进行了多次测试。
结果表明,电路稳压充电效果良好,为利用太阳能对锂电池进行充电的充电器设计提供了参考。
关键词太阳能TD1410降压电路锂电池充电中图分类号:TK513文献标识码:A DOI:10.16400/ki.kjdkz.2017.04.024Design of Solar Charging Circuit for Lithium BatteryYANG Haoqin [1],YU Zuixian [2],MA Chunliang [3],XU Zhiyang [2]([1]School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237;[2]School of Mechanical and Power Engineering,East China University of Science and Technology,Shanghai 200237;[3]School of Science,East China University of Science and Technology,Shanghai 200237)Abstract The purpose of this paper is to design a new charging circuit,using solar energy to charge the lithium battery.Through the TD1410chip to achieve step-down circuit design,the output voltage of the solar cell voltage,and then charge the lithium battery,and the circuit board has been tested for many times.The results show that the circuit has a good effect,and it can be used as reference for the design of charger for lithium battery.Key words solar;TD1410;step-down circuit;lithium battery charging太阳能作为一种可再生能源,从发展之初就备受关注。
一体化和分体式太阳能路灯的优劣对比

一体化和分体式太阳能路灯的优劣对比随着光伏发电和LED照明的高速发展,太阳能照明产品受到越来越多人的青睐。
利用光伏的发电,LED高光效的二者完美的相结合,让越来越多人感受到阳光发电带来的经济利益与光带来的乐趣。
下面我们来分析一下,第一代分体路灯和第二代的一体化路灯的优劣对比。
首先,我们从内部关建的部件做对比:A电池:电池在太阳能路灯中起来存储电量和供电的一个关建性部件,电池的好坏直接影响到路灯的使用寿命和阴雨天的待机时间。
第一代铅酸电池第二代锂电池1.1:第一代分体式的基本上使用的电池是铅酸电池,第二代一体式的电池是锂电池,锂电池的充分电次数是铅酸电池的3倍,充分电次数的多少直接影响到电池的使用寿命。
1.2:铅酸电池的最低使用温度为-5℃,在温度低于5℃的时候,铅酸电池会出现容量降低,低于零下10℃时,电池容易出现电解液冻结而导致电池暂时失效。
锂电池因为是固态电池,最低的使用温度为-20℃,气温不低于-20℃的时候,电池不会出现降低容量的情况发生,气温低于20℃-30℃的时候,锂电池会降低30%的容量,在我国的东北及新疆和西藏地区,冬天晚上的室外温度都会低于零下10℃-30℃,如果使用的是铅酸电池,将直接导致电池不能放电,导致灯具不亮,第二代则可以在室外低温的情况下正常使用。
电池总结:通过上面电池的充放电次数和低温的使用温度对比,不论是在充放电次数及低温下的使用效果对比,第二代的电池都完胜第一代的电池。
B安装的对比,安装的工艺直接影响到安装速度,安装速度的快慢直接影响到安装的工程费用第一代和第二代太阳能路灯安装对比图:1.1:从第一代的安装图中可以看出,安装第一代的分体式太阳能路灯要挖灯杆的地笼坑,还要挖电池的存放坑,为了让电池不会因为下雨而浸水,要把电池悬空存放,埋好电池后,要安装太阳能板,安装灯具灯头,固定好这些套件后,还要在灯具内部接线让系统工作起来。
1.2:第二代太阳能路灯的安装只要三步,挖地笼,安装好灯具,立起灯标,路灯就装好。
太阳能光伏组件对磷酸铁锂电池充电电路的设计

太阳能光伏组件对磷酸铁锂电池充电电路的设计作者:李正鹏黄冬来源:《硅谷》2011年第21期摘要:介绍磷酸铁锂LiFePO4动力电池的工作特性,根据其充电特性设计一种高效快速的用太阳能光伏组件对磷酸铁锂电池充电电路,用40W的太阳能电池板对容量为10AH的单节磷酸铁锂电池进行实验测试。
实验结果表明电路板能够快速高效的对电池进行充电。
关键词: LiFePO4;太阳能光伏组件;充电中图分类号:TM912 文献标志码: A 文章编号:1671-7597(2011)1110061-010 引言目前,太阳能光伏产品的瓶颈问题是电池问题,产品一般采用铅酸蓄电池和聚合物锂电池,虽然产品成本较低,但是使用寿命不长。
而磷酸铁锂电池能够有效的解决这一瓶颈问题,磷酸铁锂电池相比铅酸蓄电池和聚合物锂电池有如下优点:1)超长使用寿命,长寿命铅酸电池的循环寿命300次左右,最高也就500次,而磷酸铁锂动力电池是同类锂电池中循环寿命最高的,可达到2000次左右。
同质量的铅酸电池使用寿命最多2-3年时间,而磷酸铁锂电池在同样条件下使用可达到7-8年。
2)磷酸铁锂的安全性能是目前所有的材料中最好的,不用担心爆炸问题的存在。
3)稳定性高,高温充电的容量稳定性好,储存性能好。
4)价格相对便宜,磷酸盐采用磷酸源、锂源和铁源为材料,这些材料都很便宜,无战略资源及稀有资源。
目前,磷酸铁锂电池大多应用在电动车上,而作为新能源储能设备应用比较少,主要原因是因为相对于铅酸电池,同容量的磷酸铁锂电池的成本价格比较高;但是考虑到磷酸铁锂电池的充放电能力很强,可以深度放电,容量可以降下来,成本价格也能够得到有效控制。
因此,研究设计一款太阳能光伏组件-磷酸铁锂电池充电器对于磷酸铁锂电池在新能源中的应用具有很好的参考价值。
1 磷酸铁锂电池的充电特性由于磷酸铁锂电池的特殊材料特性,锂电池的充电方式和一般蓄电池的充电方式不同,LiFePO4电池的充电方式通常分为以下三个阶段。
《太阳能光伏系统及磷酸铁锂电池系统检验指南》(2014)

《太阳能光伏系统及磷酸铁锂电池系统检验指南》(2014) 太阳能光伏系统及磷酸铁锂电池系统检验指南1.引言1.1 背景和目的1.2 适用范围1.3 术语和定义2.系统概述2.1 光伏系统概述2.1.1 光伏系统组成2.1.2 光伏系统工作原理2.2 磷酸铁锂电池系统概述2.2.1 电池系统组成2.2.2 电池系统工作原理3.系统设计与安装要求3.1 光伏系统设计要求3.1.1 光伏组件选取3.1.2 支架和固定系统设计3.1.3 电缆布线设计3.1.4 逆变器选取和设计3.2 磷酸铁锂电池系统设计要求3.2.1 电池选取3.2.2 电池串并联设计3.2.3 电池控制器选取和设计4.系统检验方法与要求4.1 光伏系统检验方法与要求4.1.1 光伏组件检验4.1.2 组串和逆变器检验4.1.3 电缆和连接器检验4.2 磷酸铁锂电池系统检验方法与要求 4.2.1 电池性能检验4.2.2 控制器性能检验5.安全与维护5.1 安全操作要求5.2 系统维护与保养要求6.附录附注:1.根据本文档涉及的法律名词,法律名词及注释如下:- 光伏系统:指将太阳能光能转换为电能的系统。
- 磷酸铁锂电池系统:指以锂铁磷酸盐作为正极材料的电池及其相关系统。
- 逆变器:指将直流电转换为交流电的设备。
- 电缆:指将电能传输到光伏系统各个组件的电线。
- 组串:指将多个光伏组件串联以提供更高电压输出的配置。
- 电池控制器:指用于监控和保护磷酸铁锂电池系统的设备。
2.本文档涉及的实际情况可能会有所更改或更新,读者可根据实际情况进行相应调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锂电池与太阳能电池一体化设计
锂离子充电电池及锂聚合物充电电池的固体化趋势不断增强。
其中,已有厂商开始销售产品。
固体化之后由于产品具备前所未有的特点,因此有望开辟新的用途。
全固体锂离子或聚合物充电电池采用固体材料作为电池的电解质。
由于完全不使用电解液,因此不会发生漏液现象,大幅降低了着火及爆炸的可能性。
另外大多数产品还具备膜厚仅数μ~100μm(不包括底板)、重量轻以
及底板可弯曲的特点。
但同时也存在功率密度小以及工作温度范围窄的课题。
这些课题最近得到大幅改善,有多项技术已进入实用化阶段。
比如,韩国GS Caltex 公司制造出了超薄、邮票大小的锂离子充电电池,并已开始在日本等地进行样品供货。
虽然容量本身只有0.5mAh,但体积能量密度超过800Wh/L,比普通锂离子充电电池高2 成以上。
充电率较高,最大达到50C。
关键是经验与诀窍
GS Caltex 的电池制造装置及制造经验都是爱发科(ULVAC)提供的。
爱发科提供的是普通的溅射用制造装置,除了正负电极之外,还可制造电解质层。
而且还有望大幅扩大面积。
不过,这样的电池并不是谁都能制造出来的,高温处理时的温度管理等制造经验与诀窍是性能提高的关键。
吉奥马科技(GEOMATEC)和岩手大学也开发出了利用溅射实现正负
电极以及电解质层层叠的全固体锂离子充电电池。
但特点与GS Caltex 的电池不同。
比如,无需高温处理工序,底板可使用树脂薄膜。
不过,容量只有
0.1mAh 左右。
原因是负极未使用锂,因此端子电压较低。
期望用于大面积器件
上述两项开发案例利用的是半导体制造技术。
而出光兴产及三重县产业。