表面张力实验报告(附数据及处理)

合集下载

表面张力系数的测定实验报告

表面张力系数的测定实验报告

表面张力系数的测定实验报告一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。

2、学习使用力敏传感器测量微小力的原理和方法。

3、加深对液体表面现象的理解。

二、实验原理液体表面层内分子相互作用的结果使得液体表面犹如张紧的弹性薄膜,具有收缩的趋势。

存在于液体表面上的这种张力称为表面张力。

设想在液面上作一长为 L 的线段,线段两边的液面均存在与线段垂直且沿液面切线方向的拉力 f,拉力 f 的大小与线段长度 L 成正比,比例系数即为液体的表面张力系数σ,其表达式为:σ = f / L 。

本实验采用拉脱法测量液体的表面张力系数。

将一金属片框水平浸入液体中,然后缓慢向上提拉,在液膜即将破裂的瞬间,拉力 F 等于金属框所受的重力 mg 与液膜对框向下的拉力 f 之和。

由于液膜对框的拉力 f 等于表面张力系数σ 与所拉出液膜周长的乘积,即 f =2σ(L1 +L2) ,其中 L1 和 L2 分别为金属框的内、外边长。

当拉力 F 等于重力 mg 与液膜拉力 f 之和时,有:F = mg +2σ(L1 + L2) ,则表面张力系数为:σ =(F mg) / 2(L1 + L2) 。

在实验中,力 F 可以通过力敏传感器测量,金属框的质量 m 可以用天平称量,L1 和 L2 可以用游标卡尺测量。

三、实验仪器1、力敏传感器及数字电压表。

2、铁架台。

3、金属框。

4、游标卡尺。

5、待测液体(如水)。

6、托盘天平。

7、烧杯。

四、实验步骤1、用游标卡尺测量金属框的内、外边长 L1 和 L2 ,各测量 5 次,取平均值。

2、调节铁架台,将力敏传感器固定在铁架台上,并使其测量端朝下。

3、将数字电压表与力敏传感器连接,调零。

4、用托盘天平称量金属框的质量 m 。

5、在烧杯中倒入适量的待测液体,将金属框水平浸入液体中,深度约为 3 5mm 。

6、缓慢向上提拉金属框,观察数字电压表的示数变化。

当液膜即将破裂时,记录数字电压表的示数 U 。

表面张力系数 实验报告

表面张力系数 实验报告

表面张力系数实验报告表面张力系数实验报告导言表面张力是液体分子间相互作用力在液面上的表现形式,是液体表面上分子间相互吸引力的结果。

表面张力系数是衡量液体表面张力大小的物理量,通常用符号σ表示,单位是N/m。

本实验旨在通过测量液体的表面张力系数,探究液体分子间相互作用力的特性。

实验原理表面张力系数可以通过测量液体的接触角来间接计算得到。

接触角是指液体与固体表面接触时形成的液滴与固体表面之间的夹角。

根据Young-Laplace方程,液滴的接触角与表面张力系数之间存在以下关系:cosθ = (P - P0) / σ其中,θ为接触角,P为液滴内部的压强,P0为大气压强,σ为表面张力系数。

实验材料和仪器1. 水槽2. 水3. 滴定管4. 滴定管架5. 牛奶6. 玻璃片7. 电子天平8. 温度计实验步骤1. 准备工作:清洁玻璃片,并将其放置在水槽中,使其完全浸没在水中。

2. 测量水的表面张力系数:使用滴定管从水槽中抽取一定量的水,并将其滴在玻璃片上,形成一个液滴。

利用电子天平测量液滴的质量,并记录下来。

同时,使用温度计测量水的温度,并记录下来。

重复此步骤多次,以获得更准确的数据。

3. 测量牛奶的表面张力系数:将牛奶倒入水槽中,使其完全浸没在水中。

重复步骤2,测量牛奶的表面张力系数。

实验数据记录与处理通过实验测量得到的数据如下:水的质量:m1 = 10g水的温度:T1 = 25℃液滴直径:d1 = 5mm牛奶的质量:m2 = 12g牛奶的温度:T2 = 27℃液滴直径:d2 = 6mm根据实验原理中的公式,可以计算出水和牛奶的表面张力系数:水的表面张力系数:σ1 = (m1 * g) / (4 * π * d1 * cosθ1)牛奶的表面张力系数:σ2 = (m2 * g) / (4 * π * d2 * cosθ2)其中,g为重力加速度,θ1和θ2分别为水和牛奶的接触角。

讨论与结论通过实验测量得到的结果如下:水的表面张力系数:σ1 = 0.072 N/m牛奶的表面张力系数:σ2 = 0.067 N/m通过对比水和牛奶的表面张力系数,可以发现牛奶的表面张力系数略小于水的表面张力系数。

表面张力实验报告

表面张力实验报告

表面张力实验报告表面张力是液体分子间的相互作用力,是液体表面上的一种特殊现象。

本实验旨在通过测定液体表面张力的大小,探究不同因素对表面张力的影响。

实验仪器与试剂:1. 表面张力仪。

2. 试验液,蒸馏水、酒精、肥皂水。

3. 毛细管。

4. 电子天平。

实验步骤:1. 调节表面张力仪,使其水平放置并稳定。

2. 用毛细管吸取试验液,使其悬于表面张力仪的槽中。

3. 记录试验液受到的重力,根据重力的大小计算出表面张力的大小。

4. 重复以上步骤,分别用蒸馏水、酒精和肥皂水进行实验。

实验结果与分析:经过实验测定,我们得到了不同液体的表面张力大小。

蒸馏水的表面张力较大,而酒精的表面张力较小,肥皂水的表面张力则介于两者之间。

这与液体分子间的相互作用力有关,分子间相互吸引力越大,表面张力也越大。

实验中还发现,温度对表面张力也有一定影响。

随着温度的升高,液体的表面张力会降低。

这是因为温度升高会使液体分子的热运动增强,分子间的相互作用力减弱,从而导致表面张力的减小。

结论:通过本次实验,我们深入了解了表面张力的特性和影响因素。

表面张力是液体表面特有的一种性质,液体分子间的相互作用力决定了表面张力的大小。

同时,温度对表面张力也有一定影响。

这些知识不仅有助于我们更好地理解液体的性质,也对实际生活和工程应用具有一定的指导意义。

在今后的学习和工作中,我们将进一步探究表面张力的相关知识,不断拓展实验内容,提高实验水平,为科学研究和工程技术的发展做出更大的贡献。

通过本次实验,我们不仅获得了实验数据,更重要的是增加了对表面张力的理解,培养了实验操作能力和科学研究精神。

希望在今后的学习和工作中,能够继续努力,不断提高自己的实验技能和科学素养,为科学事业的发展贡献自己的力量。

溶液表面张力的测定实验报告

溶液表面张力的测定实验报告

溶液表面张力的测定实验报告一、实验目的1、掌握最大气泡压力法测定溶液表面张力的原理和方法。

2、测定不同浓度正丁醇水溶液的表面张力,计算表面吸附量和表面活性剂分子的横截面积。

3、了解表面张力与溶液浓度之间的关系,加深对表面化学基本概念的理解。

二、实验原理1、表面张力在液体内部,每个分子都受到周围分子的吸引力,合力为零。

但在液体表面,分子受到指向液体内部的合力,使得液体表面有自动收缩的趋势。

要增大液体的表面积,就需要克服这种内聚力而做功。

在温度、压力和组成恒定时,增加单位表面积所做的功即为表面张力,用γ表示,单位为 N·m⁻¹或 mN·m⁻¹。

2、最大气泡压力法将毛细管插入待测液体中,缓慢打开滴液漏斗的活塞,让体系缓慢减压。

当压力差在毛细管端产生的作用力稍大于毛细管口液体的表面张力时,气泡就会从毛细管口逸出。

此时,气泡内外的压力差最大,这个最大压力差可以通过 U 型压力计测量得到。

根据拉普拉斯方程:\(\Delta p =\frac{2\gamma}{r}\)其中,\(\Delta p\)为最大压力差,\(r\)为毛细管半径,\(\gamma\)为液体的表面张力。

对于同一根毛细管,\(r\)是定值。

只要测出\(\Delta p\),就可以算出液体的表面张力\(\gamma\)。

3、表面吸附与吉布斯吸附等温式在一定温度下,溶液的表面张力随溶液浓度的变化而变化。

当溶质能降低溶剂的表面张力时,溶质在表面层中的浓度比溶液内部大,称为正吸附;反之,当溶质能升高溶剂的表面张力时,溶质在表面层中的浓度比溶液内部小,称为负吸附。

吉布斯吸附等温式为:\(\Gamma =\frac{1}{RT}\frac{d\gamma}{dC}\)其中,\(\Gamma\)为表面吸附量(单位:mol·m⁻²),\(R\)为气体常数(\(8314 J·mol⁻¹·K⁻¹\)),\(T\)为绝对温度,\(C\)为溶液浓度,\(\frac{d\gamma}{dC}\)为表面张力随浓度的变化率。

表面张力系数的测定(实验报告)

表面张力系数的测定(实验报告)

实验三 表面张力系数的测定[实验目的]1. 学习FD-NST-I 型液体表面张力系数测定仪的使用方法;2. 用拉脱法测定室温下液体的表面张力系数 [实验原理]表面张力f 方向沿液体表面,且恒与分界线垂直,大小与分界线的长度成正比,α为液体的表面张力系数即 L f α= (1) 将内径为D 1,外径为D 2的金属环悬挂在测力计上,然后把它浸入盛水的玻璃器皿中。

当缓慢地向上金属环时,金属环就会拉起一个与液体相连的水柱。

由于表面张力的作用,测力计的拉力逐渐达到最大值F(超过此值,水柱即破裂),则F 应当是金属环重力G 与水柱拉引金属环的表面张力f 之和,即f G F += (2)水柱两液面的直径与金属环的内外径相同,则有)(21D D f +=απ (3) 则表面张力系数为 )(21D D f+=πα (4)本实验用FD-NST-I 型液体表面张力系数测定仪进行测量。

若力敏传感器拉力为F 时,数字式电压表的示数为U ,B 表示力敏传感器的灵敏度,则有BUF =(5) 吊环拉断液柱的前一瞬间,吊环受到的拉力为f G F +=1;拉断时瞬间,吊环受到的拉力为G F =2。

若吊环拉断液柱的前一瞬间数字电压表的读数值为U 1,拉断时瞬间数字电压表的读数值为U 2,则有BU U F F f 2121-=-= (6) 故表面张力系数为 BD D U U D D f)()(212121+-=+=ππα (7)[实验仪器]FD-NST-I 型液体表面张力系数测定仪、片码、铝合金吊环、吊盘、玻璃器皿、镊子 游标卡尺、纯净水、NaOH 溶液、电吹风 [实验内容]1. 开机预热15分钟;2. 清洗玻璃器皿和吊环;3. 调节支架的底脚螺丝,使玻璃器皿保持水平;4. 测定力敏传感器的灵敏度①. 预热15分钟以后,在力敏传感器上吊上吊盘,并对电压表清零;②. 将7个质量均为0.5g 的片码依次放入吊盘中,分别记下电压表的读数U 0~U 7;再依次从吊盘中取走片码,记下读数U 7~U 0。

表面张力实验报告

表面张力实验报告

表面张力是液体内部分子之间的相互吸引力在液体表面上所产生的一种力。

为了深入了解表面张力的特性和影响因素,我们进行了如下实验。

实验目的: 1. 通过实验了解表面张力的概念和性质; 2. 探究影响表面张力的因素; 3. 理解表面张力在日常生活中的应用。

实验原理:当液体表面张力足够大时,液体表面会呈现收缩状态,即呈现一个收缩的问题。

这主要是由于液体内部分子之间存在相互吸引力,而液体与空气之间交界面上分子的相互引力较小所致。

根据受力平衡条件,液体表面张力F可用公式表示:F = γL,其中γ为单位长度的表面张力,L为界面的长度。

实验器材: 1. 平衡挠度法实验装置; 2. 定滴漏管; 3. 温度计; 4. 液态,例如水。

实验步骤: 1. 预热实验装置并保持恒温,以便确保实验过程中的温度不变; 2. 用定滴漏管滴入一滴水到装置中的小槽内,待其在挠度下方形成一个半球形的水滴;3. 记录水滴所形成的半径和形状,并测量挠度下方的长度;4. 加入一滴胶水到槽中,观察水滴形状和长度的变化;5. 重复上述步骤几次,记录数据并计算表面张力的变化。

实验数据与结果:根据所测得的半径和挠度下方的长度数据,可以计算得到表面张力的数值,并可以观察到胶水对水滴形状和长度的影响。

通过比较实验前后的数据,可以明显地观察到胶水对表面张力的影响。

胶水的加入可使水滴变得不规则且长度变短,这是因为胶水与水之间的相互作用力大于水与空气之间的表面张力所致。

讨论与分析:根据实验结果可知,表面张力是液体分子间相互作用力的表现形式,其大小取决于分子间的相互吸引力。

液体的性质、温度和杂质的存在都会对表面张力产生影响。

例如,馏分液的表面张力较低,而蜡液的表面张力较高。

杂质的存在会破坏液体分子间的相互吸引力,导致表面张力的降低。

表面张力在日常生活中有许多应用。

例如,水滴可以在叶片上表现出扁平形状,这是因为叶片表面张力的存在使得液体分子更喜欢占据扁平表面。

另外,肥皂泡的形成与稳定也与表面张力有关。

表面张力实验报告

表面张力实验报告

表面张力实验报告表面张力实验报告一、实验目的:1. 了解表面张力的概念和性质;2. 探究影响表面张力的因素;3. 学习使用测表面张力的方法。

二、实验原理:1. 表面张力指的是液体表面的分子之间存在相互吸引的力,使液体表面呈现出一定的弹性和抗扩散的性质;2. 影响表面张力的因素有液体的种类、温度、纯度以及溶质的存在等;3. 实验中常用的方法有破纹法和测菲涅耳透镜方法。

三、实验仪器和材料:1. 实验仪器:表面张力测量仪、电子天平;2. 实验材料:蒸馏水、医用液体酒精、玻璃坩埚、螺丝扣、草签。

四、实验步骤:1. 实验前准备:清洁仪器,准备所需的实验材料;2. 测量蒸馏水的表面张力:将蒸馏水倒入玻璃坩埚中,再将其缓缓注入表面张力测量仪中的导管,使水面与上方的游标齐平。

记录导管上升时的水面高度差,计算出表面张力的值;3. 测量医用液体酒精的表面张力:同样的方法进行测量,并记录数据;4. 测量温度对表面张力的影响:用温水加热蒸馏水,然后测量新的表面张力值;5. 测量不同溶质对表面张力的影响:向蒸馏水中加入少量食盐溶液,再次测量表面张力。

五、实验结果与分析:1. 蒸馏水的表面张力为XX N/m,医用液体酒精的表面张力为XX N/m;2. 温度升高后,蒸馏水的表面张力降低,表明温度对表面张力有影响;3. 加入少量食盐溶液后,蒸馏水的表面张力下降,表明溶质的存在会降低表面张力。

六、实验总结:1. 表面张力是液体表面分子间相互作用力的体现,对液体的性质和行为有影响;2. 温度的升高会导致表面张力降低,溶质的存在也会使表面张力下降;3. 实验中使用的测表面张力的方法能够较准确地测量表面张力。

七、存在问题与改进意见:1. 实验过程中需保持仪器和材料的清洁,以避免外界因素对实验结果的影响;2. 对实验结果的分析和交流应更加深入,以提高对实验原理的理解。

八、参考文献:1. XX. 表面张力实验及原理. XX大学期刊,XX(1),XX-XX.2. XX. 表面张力的实验教学. 实验教学月刊,XX(2),XX-XX.以上为表面张力实验报告的简要内容,供参考。

我的液体表面张力的测定实验报告

我的液体表面张力的测定实验报告

标尺零点 水膜破裂 读数 S0 196.08 196.04 196.06 196.04 196.08 时读数 Si 198.10 198.12 198.18 198.14 198.14
Si -S0
2.02 2.08 2.12 2.10 2.06
S S
i
2
/(5 1) 0.47mm
B 0.02mm
S 2A 2B
=0.47mm
金属环外、内直径的测量(本实验直接给学生结果) 平均值(mm) d1 d2 33.04 34.94
0.0443 0.001 N/m
相对不确定度为 2.3%
注意事项
1.每次读数前必须保证三线对齐。 2.避免水膜提前破裂。
实验原理:
1、表面张力与表面张力系数:液体表面层分子有从液面挤入液 内的趋势,从而使液体有尽量缩小其表面的趋势,我们把沿着液 体表面使液面收缩的力称为表面张力。 作用于液面单位长度上的 表面张力,称为液体的表面张力系数。即:α=f/L α表面张力系数,单位 N·m-1。
2、表面张力系数的测定: 将一表面洁净的金属圆环竖直浸入水中, 然后慢慢提起一张水膜。 受力分析 当金属圆环将要脱离液面,即拉起的水膜刚好破裂时,则此时受 力: 1) 、F 为圆环所受弹簧将其拉出水面的拉力,方向向上;
k 5mg / L =4.55N/mm AL
L L
i
2
/(5 1) 0.51 mm
B 0.02mm L 2A 2B
=0.51mm
- 5g L 2
L

K

பைடு நூலகம்


2
次数 1 2 3 4 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.5
5.0
x/cm
2.17
2.53
2.98
3.40
3.82
4.24
4.65
5.05
5.50
5.93
2.5
2.5
2.5
2.5
2.11
将10个数据分成5组
由上表数据得:
三、自来水的表面张力系数
1)用金属圈测定
金属圈直径:
周长:
膜破时金属圈上升的距离:
表面张力:
表面张力系数:
膜破时金属圈上升的距离:
表面张力:
表面张力系数:
每次测量得的表面张力系数:
表面张力系数的标准差:
计算表面张力系数的A类不确定度:
2)用金属丝测定
金属丝的长度:
膜破时金属圈上升的距离:
表面张力:
表面张力系数:
每次测量得的表面张力系数:
表面张力系数的标准差:
计算表面张力系数的A类不确定度:
四、思考题
焦利氏秤测定液体的表面张力有什么优点?
用焦利氏秤能够迅速准确测定出液膜即将破裂时的F值,因而可以方便地算出表面张力值。和一般的弹簧秤不同的是,焦利氏秤是保持下方不动,使得测量值更准确,再加上其精度同游标卡尺,所以焦利氏秤的精度非常高。而且其机构简单,便于操作,特别适合广大学生朋友。
每次测量得的表面张力系数:
表面张力系数的标准差:
计算表面张力系数的A类不确定度:
2)用金属丝测定
金属丝的长度:
膜破时金属丝上升的距离:
表面张力:
表面张力系数:
每次测量得的表面张力系数:
表面张力系数的标准差:
计算表面张力系数的A类不确定度:
三、洗洁精溶液的表面张力系数
1)用金属圈测定
金属圈直径:
周长:
实验报告
实验题目:用焦利氏称测量液体表面张力系数
实验目的:学习焦利氏秤独特的设计原理,并用它测量液体的表面张力系数。
实验内容:
一、用作图法求弹簧的劲度系数
根据已测数据,横轴单位为g,纵轴单位为cm,描点,经过拟合后得一条直线
二、逐差法求弹簧的劲度系数
m/g
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
相关文档
最新文档