检测数控设备故障的常用方法总结
检测数控设备故障的常用方法

检测数控设备故障的常用方法(二)另一些故障的报警信息并不能反映故障的根本原因,而是反映故障的结果或者由此引起的其它问题,这时要经过仔细的分析和检查才能确定故障原因,下面的方法对这类故障及没有报警的一些故障的检测是行之有效的。
二、要利用数控系统的PLC状态显示功能许多数控系统都有PLC状态显示功能,如西门子3系统PC菜单下的PC STATUS,西门子810系统DIAGNOSIS菜单下的PLC STATUS功能,以及发那科0T系统DGNOS PARAM 功能的PMC状态显示功能等,利用这些功能可显示PLC的输入、输出、定时器、计数器等的即时状态和内容。
根据机床的工作原理和机床厂家提供的电气原理图,通过监视相应的状态,就可确诊一些故障。
如,一台采用日本FANUC 0TC的数控车床,一次出现故障,开机就出现2041号报警,指示X轴超限位的报警,但观察X轴并没有超限位,并且X轴的限位开关也没有压下,但利用NC系统的PMC状态显示功能,检查X轴限位开关的PMC输入X0.0的状态为“1”,开关触点确实已经接通,说明开关出现了问题,更换新的开关后,机床故障消除。
如,一台采用日本MITSUBINSHI MELDAS L3系统的数控车床,一次出现故障,刀塔不旋转。
根据刀塔的工作原理,刀塔旋转时,首先靠液压缸将刀塔浮起,然后才能旋转。
观察故障现象,当手动按下刀塔旋转的按钮时,刀塔根本没有反应,也就是说,刀塔没有浮起,根据电气原理图,PLC的输出Y4.4控制继电器K44来控制电磁阀,电磁阀控制液压缸使刀塔浮起,首先通过NC 系统的PLC状态显示功能,观察Y4.4的状态,当按下手动刀塔旋转按钮时,其状态变为“1”,没有问题,继续检查发现,是其控制的直流继电器K44的触点损坏,更换新的继电器,刀塔恢复了正常工作。
三、要利用机床厂家提供的PLC梯形图数控设备出现的大部分故障都是通过PLC装置检查出来的,PLC检测故障的机理就是通过运行机床厂家为特定机床编制的PLC梯形图(即程序),根据各种输入、输出状态进行逻辑判断,如果发现问题,产生报警并在显示器上产生报警信息。
数控机床常见的4种检修方法

数控机床常见的4种检修方法数控机床检修技巧:有4种方法,常规检查法、原理分析法、隔离法、交换法:1常规检查法在维修中首先采用的是依靠维修者感觉器官并借助于一些普通的仪器来寻找机床故障的方法。
在出现故障时,先采用看、听、嗅、摸等方法,由外向内对下述元器件开展逐一检查。
1)、检查热继电器是否脱扣,熔断器、线路板是否损坏,从CRT上看油面高度等。
2)、检查机械运动部位的接线及电缆。
这些部位的接线易受力疲劳而断裂。
3)、检查接线端子、单元接插件等部件。
这些部件容易出现虚焊、松动、发热、氧化或电化腐蚀而断线或接触不良。
4)检查恶劣环境下工作的元器件。
这些元器件容易受热、受潮、受振动、粘灰尘或油污而失效或老化。
5)、若操作人员动过线路板,则还得检查开关位置、电位器设定、短路选择以及更改的线路是否与原线路相符等。
并注意检测故障发生时设备的振动、声音、气味以及运行温度等是否正常。
这种检查很简单,但非常必要。
2原理分析法它是根据数控系统的组成及工作原理,分析出各接点的电平和特征参数(如电压值或波形),并利用万用表、示波器或逻辑分析仪等设备对其开展测量、分析和比较,进而对故障开展系统检查的一种方法。
要采用这种方法,必须对整个系统的各部分电路均有清楚、深入地了解才行。
“串联”电路发生故障时,所有的元器件和连接线都可能是故障源。
对较长的“串联”电路,可从中间开始向两个方向追踪,直到找到故障单元为止。
3隔离法它是通过将控制电路断开,从而缩小查找故障区域的一种方法。
在机床维修时为了防止故障扩大,需切断某些部件的电源,也经常采用此法。
数控机床反应复杂,在切断某些控制电路时必须考虑到后果,禁止断开保护电路。
4交换法对于两个一样的线路,可以对它们开展部分地交换试验。
但是对数控机床来说,问题就没有这么简单。
交换一个单元,一定要保证该单元所处大环节(即位置控制环)的完整性。
否则,可能会使闭环受到破坏,保护环节失效,积分调节器输入得不到平衡。
列举数控机床故障诊断与排除的基本方法

列举数控机床故障诊断与排除的基本方法数控机床是现代制造业中常用的一种机床,其具有高精度、高效率、灵活性强等优点。
然而,由于数控机床的复杂性,难免会出现各种故障。
如何进行故障诊断与排除是维护数控机床正常运行的关键。
本文将介绍数控机床故障诊断与排除的基本方法。
一、观察法观察法是最常用的故障诊断方法之一。
通过观察数控机床运行过程中的现象和表现,可以初步判断故障类型。
例如,当机床出现振动或噪音时,可能是轴承损坏或零件松动;当机床加工表面质量下降时,可能是刀具磨损或切削液问题。
观察法需要经验丰富的操作人员进行判断,可以快速定位故障。
二、测量法测量法是故障诊断的重要手段之一。
通过使用各种测量仪器对数控机床进行测量,可以获取各种参数数据,从而判断机床是否正常工作。
例如,使用千分尺、千分表等测量工具对零件尺寸进行测量,判断是否满足要求;使用振动仪、温度计等仪器对机床振动、温度等进行测量,判断是否存在异常。
测量法需要操作人员具备一定的测量技能,并使用合适的测量仪器。
三、试验法试验法是故障诊断的重要手段之一。
通过对机床进行一系列试验,可以验证故障的存在并排除其他可能性。
例如,对机床的各个部件进行拆装试验,观察是否存在松动或磨损;对机床进行负载试验,观察是否能正常工作。
试验法需要操作人员具备一定的机械和电气知识,能够根据试验结果判断机床是否存在故障。
四、故障代码法数控机床通常会配备故障代码显示功能,当机床出现故障时,会显示相应的故障代码。
通过查阅机床的故障代码手册,可以了解故障的类型和排除方法。
例如,故障代码为E01表示伺服电机故障,可以检查伺服电机及其驱动器是否正常工作。
故障代码法需要操作人员熟悉机床的故障代码,能够准确判断故障类型。
五、故障记录法故障记录法是一种比较系统的故障诊断方法。
通过对机床的故障进行记录和分析,可以找出故障发生的规律和原因,并采取相应的措施进行排除。
例如,记录机床故障发生的时间、地点、原因等信息,分析是否存在共性或相关性。
数控机床各种常见故障及分析排除方法

数控机床各种常见故障及分析排除方法数控机床是一种高精度的自动化加工设备,常见的故障涉及机械、电气和控制系统等方面。
下面将介绍数控机床常见的故障及分析排除方法。
一、机械故障1.传动系统故障:可能是齿轮损坏、传动链条松动等。
分析排除时需要检查传动部件的磨损程度,并及时更换磨损严重的零件。
2.导轨磨损:导轨磨损会导致机器精度下降,产生噪音。
排除方法为进行导轨的研磨或更换损坏的导轨。
3.润滑系统故障:润滑系统故障可能导致机械部件摩擦不足,引起过热和损坏。
分析排除时需要检查润滑系统的油液是否充足,是否存在堵塞等问题。
二、电气故障1.电气接触不良:电气接触不良会导致机床无法正常运转、控制信号丢失等问题。
分析排除时需要检查电气接线是否牢固,并清理接触点上的脏污。
2.电机故障:电机故障可能导致机床不能运转或运转不稳定。
排除方法为检查电机是否发热、电机线圈是否短路等问题,并及时更换损坏的电机零件。
3.电源故障:电源故障会导致机床无法正常供电。
分析排除时需要检查电源线路是否接触良好,电源开关是否正常。
三、控制系统故障1.控制卡故障:控制卡故障会导致机床无法正常运转或运行偏差。
排除方法为检查控制卡是否松动、焊点是否断开等,并及时更换故障的控制卡。
2.编程错误:编程错误可能导致机床运行轨迹错误或参数设置错误。
分析排除时需要检查程序的逻辑是否正确,并对参数进行调整。
3.传感器故障:传感器故障会导致机床无法正常感知工件位置或状态。
排除方法为检查传感器的连接是否正常,是否需要更换故障的传感器。
在分析和排除故障时,需要注意进行正确的故障现象描述和故障现场检查,充分了解机床的结构和工作原理,根据故障现象进行合理的排查。
此外,定期进行机床的维护保养工作,检查关键部件的磨损情况,及时更换损坏的零件,可以减少故障的发生。
最后,应注意安全操作,遵守机床操作规程,确保人员的人身安全和设备的安全运行。
数控设备故障常用的诊断七大方法

数控设备故障常用的诊断七大方法数控系统故障的调查、分析与诊断的过程也就是故障的排除过程,一旦查明了原因,故障也就几乎等于排除了。
因此故障分析诊断的方法也就变得十分重要了。
常用诊断方法综如下:(1)直观检查法这是故障分析之初必用的方法,就是利用感官的检查。
①询问向故障现场人员仔细询问故障产生的过程、故障表象及故障后果,并且在整个分析判断过程中可能要多次询问。
②目视总体查看机床各部分工作状态是否处于正常状态(例如各坐标轴位置、主轴状态、刀库、机械手位置等),各电控装置(如数控系统、温控装置、润滑装置等)有无报警指示,局部查看有无保险烧煅,元器件烧焦、开裂、电线电缆脱落,各操作元件位置正确与否等等。
③触摸在整机断电条件下可以通过触摸各主要电路板的安装状况、各插头座的插接状况、各功率及信号导线(如伺服与电机接触器接线)的联接状况等来发现可能出现故障的原因。
④通电这是指为了检查有无冒烟、打火、有无异常声音、气味以及触摸有无过热电动机和元件存在而通电,一旦发现立即断电分析。
(2)仪器检查法使用常规电工仪表,对各组交、直流电源电压,对相关直流及脉冲信号等进行测量,从中找寻可能的故障。
例如用万用表检查各电源情况,及对某些电路板上设置的相关信号状态测量点的测量,用示波器观察相关的脉动信号的幅值、相位甚至有无,用PLC编程器查找PLC程序中的故障部位及原因等。
(3)信号与报警指示分析法①硬件报警指示这是指包括数控系统、伺服系统在内的各电子、电器装置上的各种状态和故障指示灯,结合指示灯状态和相应的功能说明便可获知指示内容及故障原因与排除方法。
②软件报警指示如前所述的系统软件、PLC程序与加工程序中的故障通常都设有报警显示,依据显示的报警号对照相应的诊断说明手册便可获知可能的故障原因及故障排除方法。
(4)接口状态检查法现代机床数控系统多将PLC集成于其中,而CNC与PLC之间则以一系列接口信号形式相互通讯联接。
有些故障是与接口信号错误或丢失相关的,这些接口信号有的可以在相应的接口板和输入/输出板上有指示灯显示,有的可以通过简单操作在CRT屏幕上显示,而所有的接口信号都可以用PLC编程器调出。
数控车床故障诊断与维修技术分享

数控车床故障诊断与维修技术分享大家好,今天我来和大家分享一些关于数控车床故障诊断与维修的技术。
作为一名多年从事幼儿相关工作的职业者,我发现数控车床在我们的生产过程中起着至关重要的作用。
然而,由于长时间的使用和外部环境的影响,数控车床难免会出现故障。
因此,掌握故障诊断与维修技术是非常必要的。
一、数控车床故障诊断技巧1.观察法:通过观察数控车床的工作状态,可以发现一些故障的迹象。
例如,如果车床在运行过程中出现异常声音、震动或者加工出的产品尺寸不稳定,那么很可能存在故障。
2.数据分析法:通过收集和分析数控车床的工作数据,可以找出故障的线索。
例如,如果发现某一道加工工序的加工时间突然增加,或者加工出的产品合格率降低,那么很可能是因为该工序的数控车床出现了故障。
3.功能测试法:通过对数控车床的各项功能进行测试,可以确定故障的具体位置。
例如,如果测试发现数控车床的某一个轴无法正常运动,那么故障很可能出现在该轴的驱动系统上。
二、数控车床常见故障与维修方法1.数控车床无法启动:这种情况很可能是由于电源故障或者控制系统故障引起的。
检查电源是否正常连接,然后检查控制系统中的保险丝是否熔断,检查控制电路板是否出现故障。
2.数控车床加工精度不稳定:这通常是由于导轨磨损或者丝杠螺母间隙过大引起的。
此时,可以考虑对导轨进行磨削或者更换新的丝杠螺母。
3.数控车床加工速度过慢:这可能是由于驱动系统故障或者数控程序设置不当引起的。
检查驱动系统中的电机是否正常工作,然后检查数控程序中的进给速度设置是否合理。
4.数控车床出现异常声音:这很可能是由于机械部件松动或者磨损引起的。
此时,可以考虑对松动的部件进行紧固,或者对磨损严重的部件进行更换。
三、维修注意事项1.在进行数控车床维修时,要确保自身安全,避免触电或者机械伤害。
2.在更换部件时,要确保新部件的质量和性能,以免因质量问题导致故障再次出现。
3.维修过程中,要遵循数控车床的操作规程,避免因操作不当造成设备损坏。
数控机床故障诊断与维修实训总结

数控机床故障诊断与维修实训总结数控机床是现代工业生产中不可或缺的重要设备,其高效、精准的加工能力使得其在各行各业中广泛应用。
然而,数控机床在长时间使用中难免会出现各种各样的故障,如何快速、准确地诊断故障并进行维修,成了数控机床操作人员必须掌握的技能。
在本次数控机床故障诊断与维修实训中,我积累了一些经验和技巧,现在进行总结如下:一、故障诊断1.仔细观察在数控机床出现故障时,第一步是要仔细观察,尽可能地了解故障的情况,包括故障出现的时间、地点、频率、表现形式等。
这些信息能够帮助我们更快地找到故障的根源。
2.排除简单故障有时候,故障可能只是一些简单问题导致的,如电源未接好、线路松动等。
在排除这些问题之后,再进行进一步的检查。
3.使用仪器设备当故障不明显时,可以使用一些仪器设备进行检测,如万用表、示波器等。
这些设备可以帮助我们精准地检测电路、信号等,找到故障的根源。
4.查看故障代码数控机床在出现故障时,通常会显示错误代码,这些代码能够帮助我们快速找到故障的位置和类型。
因此,在进行故障诊断时,需要仔细查看故障代码并进行分析。
5.请教专业人士当自己无法解决故障时,可以请教专业人士,如数控机床厂家、售后服务人员等。
他们通常有更加丰富的经验和专业知识,能够快速准确地解决故障。
二、故障维修1.保护好设备在进行故障维修时,需要注意保护好设备,避免二次损坏。
具体措施包括断电、拆卸设备时注意轻拿轻放、使用绝缘工具等。
2.备件齐全在进行故障维修时,需要备好常用的备件,如电容、电阻、继电器等。
这些备件能够帮助我们更快地进行维修,避免因为没有备件而延误维修时间。
3.维修人员熟练掌握技能在进行故障维修时,维修人员需要熟练掌握相关技能,如电路、机械等知识。
如果维修人员技能不足,可能会导致维修失败或者二次损坏设备。
4.维修记录在进行故障维修时,需要记录维修过程和维修结果。
这些记录可以帮助我们更好地分析故障原因和维修效果,并为以后的故障诊断和维修提供借鉴和参考。
浅谈数控机电设备的故障诊断与维修

浅谈数控机电设备的故障诊断与维修数控机电设备作为现代制造业中的重要装备,一旦出现故障,会严重影响生产进度和产品质量。
进行故障诊断与维修是维护设备正常运行的重要环节。
本文将从故障诊断的方法和维修的流程两个方面,浅谈数控机电设备的故障诊断与维修。
故障诊断是指通过对设备进行分析、排除故障原因、确定故障点的过程。
常见的数控机电设备故障诊断方法有以下几种。
1. 经验法:经验法是根据经验和感觉对设备进行故障诊断。
这种方法简单直观,但准确性较低,容易造成误诊。
2. 观察法:观察法是通过对设备的外观、运行状态、声音等进行观察,判断故障的原因和位置。
观察法可以快速确定故障点,但对于一些隐蔽的故障可能无法准确判断。
3. 试验法:试验法是通过对设备进行一系列试验,如测量电压、电流、温度等参数,判断设备的工作状态和故障原因。
试验法准确性较高,但需要专业的测试设备和技术。
4. 故障树分析法:故障树分析法是将故障点作为起点,按照设备的工作原理,逐级分析故障点的可能原因和影响,最终确定故障的根本原因。
故障树分析法可以系统地分析和解决故障,但需要对设备的工作原理和结构有较深入的了解。
数控机电设备的维修流程通常包括以下几个步骤。
1. 故障诊断:根据设备的故障现象和维修需求,采用适当的故障诊断方法,对设备进行故障诊断。
诊断过程中要仔细分析设备的工作原理和结构,排除一些简单的故障,确定故障点。
2. 维修计划:根据故障诊断的结果,制定详细的维修计划,包括维修方案、维修周期、所需材料和工具等。
维修计划要合理布置各项工作,确保维修过程的顺利进行。
3. 维修操作:按照维修计划,进行设备的维修操作。
维修操作要按照设备的维修手册进行,严格按照操作规程进行操作,确保维修过程的安全和有效。
4. 维修测试:在维修完成后,进行设备的测试和调试,确保设备能够正常运行。
测试过程中要仔细检查设备的各项参数,发现并解决可能存在的问题。
5. 维修记录:在维修完成后,进行维修记录,记录维修的过程、结果和维修所采取的措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
检测数控设备故障的常用方法总结现在数控设备使用越来越广泛,随之而来的是如何保证设备的有效利用率,设备出现故障时,要尽快将设备恢复正常使用。
为了解决这个问题,首先要求维修人员应该有很高的素质,不但要求具有丰富的专业知识,如机电一体化技术、计算机原理、数控技术、PLC技术、自控技术、拖动原理、液压技术等,还要掌握机械加工常识和数控装置的简单编程,另外还要具有一定的英语水平,能够阅读英文技术资料。
要有足够的资料,包括机、电、液图纸,机床参数备份,系统使用维修手册,PLC梯形图等。
还要有一定量的备件。
另外需要维修人员具有一定的经验,掌握一定的维修方法。
笔者从事数控设备维修多年,积累了一定的经验,总结一套维修数控设备的方法,现介绍如下以供参考。
要搞清故障现象当数控设备出现故障时,首先要搞清故障现象,向操作人员了解第一次出现故障时的情况,在可能的情况下观察故障发生的过程,观察故障是在什么情况下发生的,怎么发生的,引起怎样的后果。
只有了解到第一手情况,才有利于故障的排除,把故障过程搞清了,问题就解决一半了。
搞清了故障现象,然后根据机床和数控系统的工作原理,就可以很快地确诊问题所在并将故障排除,使设备恢复正常使用。
如,一台采用美国BRYANT公司TEACHABLEⅢ系统的数控外圆磨床在自动加工时,砂轮将修整器磨掉一块。
为了观察故障现象并防止意外再次发生,将砂轮拆下运行机床,这时再观察故障现象,发现在自动磨削加工时,磨削正常没有问题,工件磨削完之后,修整砂轮时,砂轮正常进给,而砂轮修整器旋转非常快,很快就压上限位开关,如果这时砂轮没拆,肯定砂轮又要撞到修整器上。
根据机床的工作原理,砂轮修整器由E轴伺服电机带动,用旋转编码器作为位置反馈元件。
正常情况下修整器修整砂轮时,Z轴滑台带动E轴修整器移动到修整位置,修整器做30°~120°的摆动来修整砂轮。
我们多次观察故障现象发现,E轴在压上限位开关时,在屏幕上E轴的坐标值只有60°左右,而实际位置大概在180°左右,显然是位置反馈出现问题,但更换了位控板和编码器都没有解决问题。
我们又经过反复的观察和试验,发现:E轴修整器在Z轴的边缘时,回参考点和旋转摆动都没有问题,要利用系统的报警信息现在数控系统的自诊断能力越来越强,设备的大部分故障数控系统都能够诊断出来,并采取相应的措施,如停机等,一般都能产生报警显示。
当数控设备出现故障时,有时在显示器上显示报警信息,有时在数控装置上、PLC装置上和驱动装置上还会有报警指示。
这时要根据手册对这些报警信息进行分析,有些根据报警信息就可直接确认故障原因,只要搞清报警信息的内容,就可排除数控设备出现的故障。
如,一台采用德国SIEMENS 810系统的数控沟道磨床,开机后就产生1号报警显示“BATTERY ALARM POWER SUPPLY”,很明显指示数控系统断电保护电池没电,更换新的电池后(注意:一定要在系统带电的情况下更换电池),将故障复位,机床恢复使用。
另一台采用SIEMENS 3系统的数控磨床,开机后屏幕没有显示,检查数控装置,发现CPU 板上一个发光二极管闪烁,根据说明书,分析其闪烁频率,确认为断电保护电池电压低,更换电池后,重新启动系统故障消失。
如,一台采用日本FANUC 0TC系统的数控车床,出现2043号报警,显示“HYD. PRESSURE DOWN",指示液压系统压力低。
根据报警信息,对液压系统进行检查,发现液压压力确实很低,对液压压力进行调整使机床恢复了正常使用。
另一些故障的报警信息并不能反映故障的根本原因,而是反映故障的结果或者由此引起的其它问题,这时要经过仔细的分析和检查才能确定故障原因,下面的方法对这类故障及没有报警的一些故障的检测是行之有效的。
要利用数控系统的PLC状态显示功能许多数控系统都有PLC状态显示功能,如西门子3系统PC菜单下的PC STATUS,西门子810系统DIAGNOSIS菜单下的PLC STATUS功能,以及发那科0T系统DGNOS PARAM 功能的PMC状态显示功能等,利用这些功能可显示PLC的输入、输出、定时器、计数器等的即时状态和内容。
根据机床的工作原理和机床厂家提供的电气原理图,通过监视相应的状态,就可确诊一些故障。
如,一台采用日本FANUC 0TC的数控车床,一次出现故障,开机就出现2041号报警,指示X轴超限位的报警,但观察X轴并没有超限位,并且X轴的限位开关也没有压下,但利用NC系统的PMC状态显示功能,检查X轴限位开关的PMC输入X0.0的状态为“1”,开关触点确实已经接通,说明开关出现了问题,更换新的开关后,机床故障消除。
如,一台采用日本MITSUBINSHI MELDAS L3系统的数控车床,一次出现故障,刀塔不旋转。
根据刀塔的工作原理,刀塔旋转时,首先靠液压缸将刀塔浮起,然后才能旋转。
观察故障现象,当手动按下刀塔旋转的按钮时,刀塔根本没有反应,也就是说,刀塔没有浮起,根据电气原理图,PLC的输出Y4.4控制继电器K44来控制电磁阀,电磁阀控制液压缸使刀塔浮起,首先通过NC系统的PLC状态显示功能,观察Y4.4的状态,当按下手动刀塔旋转按钮时,其状态变为“1”,没有问题,继续检查发现,是其控制的直流继电器K44的触点损坏,更换新的继电器,刀塔恢复了正常工作。
要利用机床厂家提供的PLC梯形图数控设备出现的大部分故障都是通过PLC装置检查出来的,PLC检测故障的机理就是通过运行机床厂家为特定机床编制的PLC梯形图(即程序),根据各种输入、输出状态进行逻辑判断,如果发现问题,产生报警并在显示器上产生报警信息。
所以对一些PLC产生报警的故障,或一些没有报警的故障,可以通过分析PLC的梯形图对故障进行诊断,利用NC系统的梯图显示功能或者机外编程器在线跟踪梯形图的运行,可提高诊断故障的速度和准确性。
如,一台采用SIEMENS 810系统的数控磨床,一次出现故障,开机后机床不回参考点并且没有故障显示,检查控制面板发现分度装置落下的指示灯没亮,这台机床为了安全起见,只要分度装置没落下,机床的进给轴就不能运动。
但检查分度装置,已经落下没有问题。
根据机床厂家提供PLC梯形图,PLC的输出A7.3控制面板上的分度装置落下指示灯。
用编程器在线观察梯形图的运行,发现F143.4没有闭合,致使A7.3的状态为“0”。
F143.4指示工件分度台在落下位置,继续检查发现由于输入E13.2没有闭合导致F143.4的状态为“0”。
根据电气原理图,PLC输入E13.2接的是检测工件分度装置落下的接近开关36PS13,将分度装置拆开,发现机械装置有问题,不能带动驱动接近开关的机械装置运动,所以E13.2始终不能闭合。
将机械装置维修好后,机床恢复了正常使用。
一台采用SIEMENS 3TT系统的数控铣床,在自动循环加工过程中,工件已加工完毕,工作台正要旋转,主轴还没有退到位,这时第二工位主轴停转,自动循环中断,产生报警F97“SPINDLE1 SPEED NOT OK STATION2”和F98“SPINDLE2 SPEED NOT OK STATION2”,表示第二工位两个主轴速度不正常。
但对主轴系统进行检测并没有发现问题。
为了确定故障原因,用机外编程器动态监视机床PLC梯形图的运行,根据逻辑关系进行检查,最后发现是第二工位的工件卡紧液压压力开关,E21.1在出现故障的瞬间其状态发生变化,由“1”信号瞬间变成“0”信号,紧接着又变成“1”信号,E21.1接的是压力开关P21.1,它的状态变成“0”,信号指示工件没有卡紧,所以主轴停转,自动循环停止。
由于工件的卡紧是由液压来完成的,对液压系统进行检查,发现压力有些不稳,对液压系统进行调整,使之稳定,机床恢复了正常工作。
这个故障的报警信息反映的是由于液压不稳造成的主轴停转的现象,而没有反映液压不稳的故障根源。
以上两种方法对机床侧故障的检测是非常有效的,因为这些故障无非是检测开关、继电器、电磁阀的损坏或者机械执行结构出现问题,这些问题基本都可以根据PLC程序,通过检测其相应的状态来确认故障点。
而遇到一些系统故障时,有时情况比较复杂,采用以下的方法及检测原则可快速确认故障点。
利用交换法准确定位故障点对于一些涉及到控制系统的故障,有时不容易确认哪一部分有问题,在确保没有进一步损坏的情况下,用备用控制板代换被怀疑有问题的控制板,是准确定位故障点的有效办法,有时与其它机床上同类型控制系统的控制板互换会更快速诊断故障(这时要保证不会把好的板子损坏)。
如,一台采用美国BRYANT公司TEACHABLEⅢ系统的数控内圆磨床,一次出现故障,在E轴运动时,出现报警:"E AXIS EXCESS FOLLOWING ERROR",这个报警的含义是E轴位移的跟随误差超出设定范围。
由于E轴一动就产生这个报警,E轴无法回参考点。
手动移动E轴,观察故障现象,当E轴运动时,屏幕上显示E轴位移的变化,当从0走到14时,屏幕上的数值突然跳变到471。
反向运动时也是如此,当达到-14时,也跳变到471。
这时出现上述报警,进给停止。
经分析可能是E轴位置反馈系统的问题,这包括E轴编码器、连接电缆、数控系统的位控板以及数控系统CPU板等,为了尽快发现问题,本着先简单后复杂的原则,首先更换位控板,这时故障消除。
这台机床另一次X轴出现这个报警,首先更换位控板,故障没有排除,因此怀疑编码器的损坏可能性比较大,当拆下编码器时发现,其联轴节已断开,更换新的联轴节,故障消除。
要本着先外围后内部、先机械后电气、先简单后复杂、先静后动、先公用后专用、先查软件后查硬件的原则检查故障对于数控设备出现较复杂的故障,特别是涉及到控制系统时,应用这些原则可简化故障的诊断过程,避免走弯路。
有时这些原则应该结合使用,这样才能使故障尽快排除。
如,一台采用SIEMENS 3系统的数控磨床,在回参考点时,X轴找不到参考点,最后出现X轴超限位报警,本着先外围后内部的原则,首先检查X轴的零点开关,正常没有问题,观察故障现象,X轴压上限位开关后,也能减速;之后根据先简单后复杂的原则,先检查NC系统的位控板,因为反馈硬件采用的是光栅尺,所以在位控板上,X轴、Y轴各加了一块EXE处理板,首先将X轴与Y轴的EXE板互换,这时开机测试,X轴回参考点正常,故障转移到Y轴上,Y轴找不到参考点,故障现象相同,从而确认EXE板有问题,更换EXE板故障消除。
如,一台采用SIEMENS 810系统的数控淬火机床,一次出现故障,开机回参考点,走X轴时,出现报警1680“SERVO ENABLE TRAV. AXIS X”,手动走X轴也出现这个报警,检测伺服装置,发现有过载报警指示。