人教版七年级数学下册《垂线》拔高练习
5.1.2 垂线 人教版七年级数学下册分层作业(含答案)

第五章相交线与平行线5.1.2 垂线分层作业1.如图,图中直角的个数有()A.个B.个C.个D.个【答案】D【分析】根据直角的定义进行求解即可.【详解】解:由题意得,图中的直角有一共五个,故选D.【点睛】本题主要考查了垂线的定义,熟知垂线的定义是解题的关键.2.如图,,,若,则的度数是()A.B.C.D.【答案】C【分析】先求出,即可求出.【详解】解:,,.,.故选:C.【点睛】本题主要考查直角的概念以及角度的计算,比较简单.3.如图,在纸片上有一直线l,点A在直线l上,过点A作直线l的垂线、嘉嘉使用了量角器,过90°刻度线的直线a即为所求;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a即为所求,下列判断正确的是()A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对【答案】C【分析】根据垂直的定义即可解答.【详解】解:嘉嘉利用量角器画90°角,可以画垂线,方法正确;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a垂直直线l,方法正确,故选:C.【点睛】本题主要考查了作图、垂线的定义,掌握垂直的定义是解答本题的关键.4.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】C【分析】根据垂直定义得到∠AOF+∠BOD=,求出∠AOF的度数,利用角平分线的定义求出∠EOF即可.【详解】解:∵∠DOF=,∴∠AOF+∠BOD=,∵∠BOD=,∴∠AOF=,∵OF平分∠AOE,∴∠EOF=∠AOF=,故选:C.【点睛】此题考查了垂直的定义,几何图形中角度的计算,正确理解图形中各角度的关系是解题的关键.5.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为( )A.35°B.45°C.55°D.65°【答案】C【分析】根据角平分线的定义,得出∠MOC=35°,再根据题意,得出∠MON=90°,然后再根据角的关系,计算即可得出∠CON的度数.【详解】解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C【点睛】本题主要考查了角平分线的定义和垂线的定义,解决本题的关键在正确找出角的关系.6.如图,为了解决村民饮水困难,需要在河边建立取水点,下面四个点中哪个最方便作为取水点()A.A点B.B点C.C点D.D点【答案】B【分析】根据“垂线段最短”可得结论.【详解】解:根据“垂线段最短”可知要在河边建立取水点,点B作为取水点最方便,故选:B【点睛】此题主要考查了垂线段最短,正确掌握垂线段的性质是解题关键.7.如图,,垂足是点,,,,点是线段上的一个动点包括端点,连接,那么的长为整数值的线段有()A.条B.条C.条D.条【答案】D【分析】根据垂线段最短解答即可.【详解】解:∵,,,,且点是线段上的一个动点包括端点,∴长的范围是,∴的长为整数值的线段有、、、,,共条,故选:D.【点睛】本题考查垂线段最短.理解和掌握垂线段最短是解题的关键.8.如图,直线AB,CD相交于点O,EO⊥CD,垂足为O,若∠1=50°,则∠2的度数为()A.B.C.D.【答案】B【分析】应用垂线性质可得∠EOD=90°,由∠1+∠BOD=90°,即可算出∠BOD的度数,再根据对顶角的性质即可得出答案.【详解】解:∵EO⊥CD,∴∠EOD=90°,∵∠1+∠BOD=90°,∴∠BOD=∠EOD-∠1=90°-50°=40°,∴∠2=∠BOD=40°.故选:B.【点睛】本题主要考查了垂线及对顶角,熟练掌握垂线及对顶角的性质进行求解是解决本题的关键.9.已知,与的度数之比为,则等于___.【答案】或【分析】根据垂直定义知,由,可求,根据与的位置关系,分类求解.【详解】解:,,,即∠AOB:90°=3:5,.分两种情况:①当OB在内时,如图,∴;②当OB在外时,如图,∴.故答案是:或.【点睛】本题考查垂直定义,角的和差运算,解题的关键是利用分类讨论的思想进行求解.10.如图,点,在直线上,且,的面积为.若是直线上任意一点,连接AP,则线段AP的最小长度为_____cm.【答案】8【分析】根据点到直线的垂线段最短,再由面积求出高,即为AP的最小值,由题知,过点A作BC的垂线,即为所求,此时,该垂线也是三角形的高.【详解】解:过点A作BC的垂线AP,根据点到直线的所有线段中,垂线段最短,∴垂线段即为AP的最小值,∵BC=5cm,ΔABC的面积为20,∴,∴AP=8,故答案为:8.【点睛】本题考查三角形的面积公式,垂线段最短的性质,属于基础题.11.已知的两边与的两边分别垂直,且比的倍少,则______【答案】80°或92°【分析】因为两个角的两边分别垂直,则这两个角相等或互补,又因∠A比∠B的倍少40°,设∠B是x 度,利用方程即可解决问题.【详解】解:设∠B是x度,根据题意,得①两个角相等时,如图1:∠B=∠A=x°,x=x-40,解得,x=80,故∠A=80°,②两个角互补时,如图2:x+x-40=180,所以x=88,×88°-40°=92°综上所述:∠A的度数为:80°或92°.故答案为:80°或92°.【点睛】本题考查垂线,本题需仔细分析题意,利用方程即可解决问题.关键是得到∠A与∠B的关系.12.如图,直线AB,CD相交于点O,若,且,则的度数是______.【答案】54°##54度【分析】设,则,可得,再由,可得,可求出x,即可求解.【详解】解:设,则,∴,∵,∴∠AOE=∠BOE=90°,∴,即,∴.故答案为:54°【点睛】本题主要考查了垂直的性质,对顶角的性质,熟练掌握垂直的性质,对顶角的性质进行求解是解决本题的关键.13.如图,直线与直线相交于点,,垂足为,,则的度数为______.【答案】60°##60度【分析】根据对顶角相等可得,由,可得,由,即可求解.【详解】解:∵,∴,∵,,,解得.故答案为:60°.【点睛】本题考查了垂直的定义,对顶角相等,几何图形角度的计算,数形结合是解题的关键.14.如图,点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,连接,若,则的长可能是___________(写出一个即可).【答案】4【分析】直接利用垂线段最短即可得出答案.【详解】解∶∵点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,∴3≤AP,∴PA可以为4,故答案为4(答案不唯一).【点睛】此题主要考查了垂线段最短,正确得出A P的取值范围是解题的关键.15.如图,直线和相交于点,,,,求的度数.【答案】【分析】根据,得出,根据,可得,根据角的倍分关系,可得∠的度数,根据是邻补角,可得答案.【详解】解:∵,∴,∵,∴,∵,∴,∴,∵,∴.∴.【点睛】本题考查垂直的性质、角的和差、角的倍分关系、邻补角的性质等知识,是基础考点,掌握相关知识是解题关键.16.如图,是直线上一点,,平分(1)求的度数.(2)试猜想与的位置关系,并说明理由.【答案】(1)的度数为(2)OD⊥AB,理由见解析【分析】(1)设=x,根据题意得,再根据平角的定义进而求解即可;(2)根据角平分线的定义即可得到解答.【详解】(1)解:设=x,∵,∴,∵直线,∴x+3x=180°,解得,∴的度数为;(2)解:OD⊥AB,理由如下,∵OC平分∠AOD,∴∠COD=∠AOC=45°.∴∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.【点睛】此题考查了垂线,平角的定义以及角平分线的定义,对定义的熟练掌握是解题的关键.平角:等于180°的角叫做平角;角平分线:从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线.17.如图,两直线、相交于点,平分,如果::.(1)求;(2)若,,求.【答案】(1)145°(2)125°【分析】(1)根据邻补角的性质和已知求出和的度数,根据对顶角相等求出和的度数,根据角平分线的定义求出的度数,可以得到的度数;(2)根据垂直的定义得到,根据互余的性质求出的度数,计算得到答案.(1)解:,::,,,,,平分,,.(2)解:,,平分,,,.【点睛】本题考查的是邻补角的性质、对顶角的性质和角平分线的定义,掌握邻补角互补、对顶角相等和垂直的定义是解题的关键.18.如图,已知直线AB、CD相交于点O,OE⊥AB,点O为垂足,OF平分∠AOC.(1)若∠COE=54°,求∠DOF的度数;(2)若∠COE∶∠EOF=2∶1,求∠DOF的度数.【答案】(1)∠DOF=108°;(2)∠DOF=112.5°.【分析】(1)先由OE⊥AB得出∠AOE=∠BOE=90°,再根据角平分线定义求出∠COF=72°,然后由∠DOF=180°-∠COF即可求解;(2)设∠EOF=x°,则∠COE=2x°,则∠COF=3x°,再根据角平分线定义求出∠AOF=∠COF=3x°,所以∠AOE=4x°,由垂直的定义可知∠AOE=90°,则4x=90,解之,求出x即可.(1)解:∵OE⊥AB,∴∠AOE=90°;∵∠COE=54°,∴∠AOC=∠AOE+∠COE=144°,∵OF平分∠AOC,∴∠COF=∠AOC=72°,∴∠DOF=180°-∠COF=108°;(2)解:设∠EOF=x°,则∠COE=2x°,∴∠COF=3x°,∵OF平分∠AOC,∴∠AOF=∠COF=3x°,∴∠AOE=4x°,∵OE⊥AB,∴∠AOE=90°,∴4x=90,解得x=22.5,∴∠COF=3x°=67.5°,∴∠DOF=180°-∠COF=112.5°.【点睛】本题考查了角的计算,根据垂直的定义、角的和差关系列方程进行求解,即可计算出答案,难度适中.1.如图,直线AB,CD相交于点O,OE⊥CD,OF平分∠BOD,∠AOE=24°,∠COF的度数是()A.146°B.147°C.157°D.136°【答案】B【分析】欲求∠COF,需求∠DOF.由OE⊥CD,得∠EOD=90°,故求得∠BOD=66°.由OF平分∠BOD,故∠DOF==33°.【详解】解:∵OE⊥CD,∴∠EOD=90°.∴∠BOD=180°﹣∠AOE﹣∠DOE=66°.又∵OF平分∠BOD,∴∠DOF==33°.∴∠COF=180°﹣∠DOF=180°﹣33°=147°.故选:B.【点睛】本题主要考查垂直的定义、角平分线的定义以及邻补角的性质,熟练掌握垂直的定义、角平分线的定义以及邻补角的性质是解决本题的关键.2.如图,,,平分,则的度数为()A.45°B.46°C.50°D.60°【答案】A【分析】先根据垂直的定义得,由已知,相当于把四等分,可得的度数,根据角平分线可得,从而得结论.【详解】解:,,,,,平分,,.故选:.【点睛】本题考查了角平分线的定义,垂直的定义及有关角的计算,解题的关键是确定.3.如图所示,直线AB,CD相交于点O,于点O,OF平分,,则下列结论中不正确的是()A.B.C.与互为补角D.的余角等于【答案】D【分析】根据垂直的定义及角平分线的性质判断A,利用对顶角的性质判断B,利用邻补角的性质判断C,根据余角的定义判断D.【详解】∵于点O,∴∠AOE=,∵OF平分,∴∠2=,故A正确;∵直线AB,CD相交于点O,∴∠1与∠3是对顶角,∴∠1=∠3,故B正确,∵,∴与互为补角,故C正确;∵,∴的余角=,故D错误,故选:D.【点睛】此题考查垂直的定义,角平分线的性质,对顶角的性质,余角的定理,邻补角的性质,几何图形中角度的计算,熟记各定义及性质是解题的关键.4.已知点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离为()A.4 cm B.5 cm C.小于2 cm D.不大于2 cm【答案】D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于2cm,综上所述:点P到直线m的距离不大于2cm,故选D.【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.5.如图,若直线与相交于点,平分,且,则的度数为()A.B.C.D.【答案】C【分析】根据角平分线的定义得到,根据垂线的定义得到,利用邻补角的定义即可求解.【详解】解:∵,平分,∴,∵,∴,∴,故答案为:C.【点睛】本题考查邻补角的定义、角平分线的定义、垂直的定义等内容,运用几何知识进行角的和差运算是解题的关键.6.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为()A.35°B.45°C.55°D.25°【答案】A【分析】根据垂直得出∠NOM=90°,求出∠COM=35°,根据角平分线定义得出∠AOM=∠COM,即可得出答案.【详解】解:∵ON⊥OM,∴∠NOM=90°,∵∠CON=55°,∴∠COM=90°-55°=35°,∵射线OM平分∠AOC,∴∠AOM=∠COM=35°,故选:A.【点睛】本题考查了垂直定义,角平分线定义等知识点,解题的关键是能求出∠COM的度数和求出∠AOM=∠COM.7.已知,如图,直线,相交于点,⊥于点,∠=35°.则∠的度数为().A.35°B.55°C.65°D.70°【答案】B【分析】直接利用垂线的定义结合已知角得出∠COE的度数即可.【详解】∵OE⊥AB于点O(已知),∴∠AOE=90°(垂直定义).∵直线AB,CD相交于点O,∠BOD=35°(已知),∴∠AOC=35°(对顶角相等).∴∠COE=∠AOE−∠AOC=90°−35°=55°.∴∠COE=55°.故选B.【点睛】此题考查垂线的定义,对顶角,解题关键在于得出∠AOC=35°.8.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】B【分析】由垂直得∠COE=90°,从而知∠AOC=64°,则∠BOD也得64°,由角平分线和平角定义得∠COF 的度数.【详解】∵OE⊥CD,∴∠COE=90°,∴∠AOC=∠COE-∠AOE=90°-26°=64°,∵∠AOC=∠BOD,∴∠BOD=64°,又∵OF平分∠BOD,∴∠DOF=∠BOD=×64°=32°,∴∠COF=180°-∠DOF=180°-32°=148°.故选B.【点睛】本题考查了垂线的定义、邻补角、对顶角定义、角平分线定义等知识点.本题属于基础题,推理过程的书写是关键,从垂直入手与已知相结合得出∠AOC的度数,使问题得以解决;同时要注意对顶角和平角性质的运用.9.如图,直线,,相交于点,,,射线,则的度数为___________.【答案】20°或160°【分析】先求出∠EOD=70°,再分射线OG在直线EF的两侧进行讨论求解即可.【详解】解:∵,,∠2=∠AOE,∴∠EOD=180°-50°-60°=70°,分两种情况:①如图,∵,∴∠EOG=90°,∴∠DOG=∠EOG-∠EOD=90°-70°=20°;②如图,∵∠EOG=90°,∠EOD=70°,∴∠DOG=∠EOD+∠EOG=70°+90°=160°,综上,的度数为20°或160°,故答案为:20°或160°.【点睛】本题考查邻补角、对顶角、垂线性质、角的运算,熟练掌握对顶角相等、邻补角互补,分情况讨论是解答的关键.10.如图,点C,O,D在一条直线上,,OE平分比大,的度数为________.【答案】##72.5度【分析】根据比大,和互补,即可求出,进而由垂直性质可求出,再由角平分线性质即可得出答案.【详解】解:∵比大,∴设,则,∵,∴,∴,∴,∵,∴,∴,∴,∵OE平分,∴.故答案为:.【点睛】本题考查了垂直的性质,角平分线的性质以及角的运算,掌握以上知识是解题的关键.11.如图,直线AB,CD交于点O,OC平分∠BOE,OE⊥OF,若∠DOF=15°,则∠EOA=_________.【答案】30°##30度【分析】根据垂直定义可得∠EOF=90°,从而利用平角定义求出∠COE=75°,然后利用角平分线的定义求出∠BOE=2∠COE=150°,最后利用平角定义求出∠EOA,即可解答.【详解】解:∵OE⊥OF,∴∠EOF=90°,∵∠DOF=15°,∴∠COE=180°﹣∠EOF﹣∠DOF=75°,∵OC平分∠BOE,∴∠BOE=2∠COE=150°,∴∠AOE=180°﹣∠∠BOE=30°,故答案为:30°.【点睛】本题考查了垂线,角平分线的定义,根据题目的已知条件并结合图形分析是解题的关键.12.如图,直线AB、CD相交于点O,,O为垂足,如果,则________°.【答案】57.5【分析】根据垂线的定义,可得,根据角的和差,可得的度数,根据邻补角的定义,可得答案.【详解】解:∵∴∴∵,∴,∴,∴,故答案为:.【点睛】本题考查了垂线的定义,邻补角的和等于180°,角与分的转化等知识.解题的关键在于领会由垂直得直角.13.如图,直线AB和CD交于O点,OD平分∠BOF,OE⊥CD于点O,∠AOC=40 ,则∠EOF=_______.【答案】130°【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE ⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵AB、CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∵OE⊥CD,∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.14.如图所示,已知,若,,,则点到的距离是______,点到的距离是______.【答案】 4 2.4【分析】根据点到直线的距离概念可得点到的距离为垂线段AC的长,设点到的距离为,依据三角形面积,即可得到点到的距离.【详解】解:∵,∴,∴点到的距离为垂线段AC的长,又∵,∴点到的距离为4cm;设点到的距离为,,,,∵,,,,,故答案为:4;2.4.【点睛】本题考查了点到直线的距离,利用三角形的面积得出是解题关键.15.如图,直线,相交于点,平分.(1)若,,求的度数;(2)若平分,,求的度数.【答案】(1)70°(2)50°【分析】(1)根据角平分线的性质可得,根据垂线的定义以及已知条件求得,继而求得,根据对顶角相等即可求解;(2)根据角平分线的性质可得,,设,则,根据平角的定义建立方程,解方程即可求解.(1)解:平分,,,,,,∴;(2)平分,,,设,则,,解得:,故的度数为:.【点睛】本题考查了几何图形中角度的计算,角平分线的定义,垂线的定义,一元一次方程的应用,数形结合是解题的关键.16.如图,直线相交于点O,平分,求:(1)的度数;(2)写出图中互余的角;(3)的度数.【答案】(1)70°(2)∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余(3)55°【分析】(1)根据对顶角相等即可得到;(2)根据余角的定义求解即可;(3)先根据角平分线的定义求出∠DOE=35°,则∠EOF=∠DOF-∠DOE=55°.(1)解:由题意得;(2)解:∵∠COF=90°,∴∠DOF=180°-∠COF=90°,∴∠BOF+∠BOD=90°,∠EOF+∠EOD=90°,∵OE平分∠BOD,∴∠BOE=∠DOE,∴∠EOF+∠BOE=90°,∵∠AOC=∠BOD,∴∠BOF+∠AOC=90°,∴∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余;(3)解:∵∠BOD=70°,OE平分∠BOD,∴∠DOE=35°,∴∠EOF=∠DOF-∠DOE=55°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,对顶角相等,余角的定义,熟知相关知识是解题的关键.17.如图,已知,,是内三条射线,平分,平分.(1)若,,求的度数.(2)若,,求的度数.(3)若,,求的度数.【答案】(1)(2)(3)【分析】对于(1),由角平分线的定义求出和,再根据即可求解;对于(2),先求出,再根据角平分线的定义求出和,然后根据即可求解;对于(3),由角平分线的定义得,结合已知条件可得,,即,进而得出,可得答案.【详解】(1)∵平分,平分,∴,,∴;(2)∵,∴.∵,∴.∵平分,平分,∴,,∴;(3)∵平分,∴.∵,∴.∵,∴,∴,∴,∴.【点睛】本题主要考查了角的和差,关键是由角平分线定义得出相关等式.18.点O为直线l上一点,射线均与直线l重合,如图1所示,过点O作射线和射线,使得,,作的平分线.(1)求与的度数;(2)作射线,使得,请在图2中画出图形,并求出的度数;(3)如图3,将射线从图1位置开始,绕点O以每秒的速度逆时针旋转一周,作的平分线,当时,求旋转的时间.【答案】(1),(2)或(3)6秒或秒【分析】(1)根据,,即可得出的度数,根据角平分线的定义得出,然后根据得出的度数;(2)根据题意得出的度数,然后分两种情况进行讨论:①当射线在内部时;②当射线在外部时;分别进行计算即可;(3)根据平分得出,根据题意画出图形,计算的角度,然后计算时间即可.【详解】(1)解:由题意可知,,∵,∴,∵平分,∴,∴;(2)由(1)知,,∴,①当射线在内部时,如图2(1),;②当射线在外部时,如图2(2),,综上所述,的度数为或;(3)∵平分,∴,①如图3,,∵平分,∴,∴,∴旋转的时间(秒);②如图3(1),此时,,∵平分,∴,∴,∴,∴旋转的时间(秒);综上所述,旋转的时间为6秒或秒.【点睛】本题主要考查角度的计算,角平分线的定义等内容;第(2)问进行合适的分类讨论是解题的关键;第(3)问,搞清楚在射线旋转的过程中,和的相对位置在不断的变化,以此进行分类画图.1.(2022·江苏常州·中考真题)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A.【点睛】本题考查垂线段最短,熟知垂线段最短是解答的关键.2.(2022·河南·中考真题)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【答案】B【分析】根据垂直的定义可得,根据平角的定义即可求解.【详解】解:EO⊥CD,,,.故选:B .【点睛】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.3.(2021·北京·中考真题)如图,点在直线上,.若,则的大小为()A.B.C.D.【答案】A【分析】由题意易得,,进而问题可求解.【详解】解:∵点在直线上,,∴,,∵,∴,∴;故选A.【点睛】本题主要考查垂直的定义及邻补角的定义,熟练掌握垂直的定义及邻补角的定义是解题的关键.4.(2021·浙江杭州·中考真题)如图,设点是直线外一点,,垂足为点,点是直线上的一个动点,连接,则()A.B.C.D.【答案】C【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点是直线外一点,,垂足为点,是垂线段,即连接直线外的点与直线上各点的所有线段中距离最短,当点与点重合时有,综上所述:,故选:C.【点睛】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.5.(2020·湖北孝感·中考真题)如图,直线,相交于点,,垂足为点.若,则的度数为()A.B.C.D.【答案】B【分析】已知,,根据邻补角定义即可求出的度数.【详解】∵∴∵∴故选:B【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平角度数为180°.6.(2020·河北·中考真题)如图,在平面内作已知直线的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【答案】D【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D.【点睛】此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义.7.(2020·吉林·中考真题)如图,某单位要在河岸上建一个水泵房引水到处,他们的做法是:过点作于点,将水泵房建在了处.这样做最节省水管长度,其数学道理是_______.【答案】垂线段最短【分析】直线外一点与直线上各点连结的所有线段中,垂线段最短.【详解】通过比较发现:直线外一点与直线上各点连结的所有线段中,垂线段最短.故答案为:垂线段最短.【点睛】此题主要考查点到直线的距离,动手比较、发现结论是解题关键.。
人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(7)

5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.如图,以A为公共端点的两条线段AB、AC互相垂直,点B、D、C在同一条直线上,AD⊥BC,则图形中能表示点到直线的距离的线段有( )条.A.6 B.5 C.4 D.32.到直线a的距离等于2㎝的点有()个A.0个B.1个C.无数个D.无法确定3.如图所示,AB⊥AC,AD⊥BC,垂足分别为A,D,下列说法不正确的是()A.点A到BC的垂线段为AD B.点C到AD的垂线段为CDC.点B到AC的垂线段为AB D.点D到AB的垂线段为BD4.下列语句叙述正确的有( )①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.0个 B.1个 C.2个 D.3个5.如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度6.下列说法中正确的是()A.有且只有一条直线与已知直线垂直;B.从直线外一点到这条直线的垂线段,叫做这点到这条直线距离;C.互相垂直的两条线段一定相交;D.直线l外一点A与直线l上各点连接而成的所有线段中,最短线段的长度是3cm,则点A 到直线l的距离是3cm.7.如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是()A.两点之间,线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线8.如图,OA⊥OB,若∠1=55°,则∠2的度数是( )A.35° B.40° C.45° D.60°9.如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是().A.两点确定一条直线B.经过一点有且只有一条线段垂直于己知直线C.过一点只能作一条垂线D.垂线段最短二、填空题1.如图,BC⊥AC,CB=8 cm,AC=6 cm,点C到AB的距离是4.8 cm,那么点B到AC的距离是____ cm,点A到BC的距离是____ cm,A,B两点间的距离是____ cm.2.如图,AB⊥l 1,AC⊥l 2,垂足分别为B ,A ,则A 点到直线l 1的距离是线段__的长度.3.如图,直线AB CD ,相交于点,O EO AB ⊥.重足为35,O EOC ∠=︒,则AOD ∠的度数为__________度4.已知OA⊥OC 于O ,∠AOB∶∠AOC=2∶3,则∠BOC 的度数为____________度.5.如图,直线a 与b 相交于点O ,直线c⊥b,且垂足为O ,若∠1=35°,则∠2=_____.三、解答题1.如图,已知直线a ,b ,点P 在直线a 外,在直线b 上,过点P 分别画直线a ,b 的垂线.2.如图,按要求画图并回答相关问题:(1)过点A 画线段BC 的垂线,垂足为D ;(2)过点D 画线段..DE∥AB,交AC 的延长线于点E ;(3)指出∠E 的同位角和内错角.3.如图所示,点P 是∠ABC 内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?4.如图,是一条河,C是河边AB外一点:(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)⊥于点O.5.如图,己知90∠=,过点O作直线CD,作OE CDAOB()1图中除了直角相等外,再找出一对相等的角,并证明它们相等;()2若70∠的度数;∠=,求BOCAOD()3将直线CD绕点O旋转,若在旋转过程中,OB所在的直线平分DOE∠的∠,求此时AOD度数.参考答案一、单选题1.B分析:根据点到直线距离的定义进行解答即可.详解:解:∵AB、AC互相垂直,AD⊥BC,∴线段AB的长度是点B到直线AC的距离;线段AC的长度是点C到直线AB的距离;线段AD的长度是点A到直线BC的距离;线段CD的长度是点C到直线AD的距离;线段BD的长度是点B到直线AD的距离.∴图形中能表示点到直线的距离的线段有5条.故选:B.点睛:本题考查了点到直线的距离的定义,即直线外一点到直线的垂线段的长度,叫做点到直线的距离,熟知概念是关键.2.C解析:详解:解:到直线a的距离等于2的点的轨迹是与a平行,且到a的距离等于2的两条直线,直线是由无数个点组成.故选C.3.D解析:A. 点A到BC的垂线段为AD,正确; B. 点C到AD的垂线段为CD,正确;C. 点B到AC的垂线段为AB,正确;D. 点B到AD的垂线段为BD.故选D.4.B解析:试题①如果两个角有公共顶点且它们的两边互为反向延长线,那么这两个角是对顶角;故错误.②如果两个角相等,那么这两个角是对顶角;错误.③连接两点的线段长度叫做两点间的距离;正确.④直线外一点到这条直线的垂线段的长度叫做这点到直线的距离.错误.故选B.5.B解析:由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.6.D解析:对照垂线的两条性质逐一判断.①从直线外一点引这条直线的垂线,垂线段最短;②过一点有且只有一条直线与已知直线垂直.详解:解:A、和一条直线垂直的直线有无数条,故A错误;B、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度,故B错误;C、互相垂直的两条线段不一定相交,线段有长度限制,故C错误;D、直线l外一点A与直线l上各点连接而成的所有线段中最短线段就是垂线段,可表示点A 到直线l的距离,故D正确.故选:D.点睛:本题考查的是垂线的相关定义及性质,只要记住并理解即可正确答题.7.C分析:根据“垂线段的性质:垂线段最短”解答即可.详解:这样做的理由是垂线段最短.故选C.点睛:本题考查了垂线段最短.垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.8.A解析:试题分析:∵OA⊥OB,∴∠AO∠=90°,即∠2+∠1=90°.∵∠1=55°,∴∠2=35°.故选A.考点:1.垂直的性质;2.数形结合思想的应用.9.B解析:利用OM⊥NP,ON⊥NP,所以直线ON与OM重合,其理由是:同一平面内,经过一点有且只有一条直线与已知直线垂直.故选B.二、填空题1.6 10解析:∵BC⊥AC,CB=8cm, AC=6cm,∴点B到AC的距离是8cm,点A到BC的距离是6cm,故答案为8,6,10.2.AB详解:解:根据点到直线的距离的定义,易得A点到直线l的距离是线段AB的长度.1故答案为:AB.3.125分析:根据垂直的定义及角的加法,求出∠BOC的度数,根据对顶角相等求解即可.详解:⊥∵EO AB∴∠EOB=90°∵∠EOC=35°∴∠BOC=∠EOB+∠EOC=125°∴∠AOD=∠BOC =125°故答案为:125点睛:本题考查的是垂直的定义及角的加减,掌握垂直的定义及能从图形中确定角之间的关系是关键.4.30°或150°分析:根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=2:3,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.详解:∵OA⊥OC,∴∠AOC=90°,∵∠AOB:∠AOC=3:2,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.如图,①当在∠AOC内时,∠BOC=90°-60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故答案为30°或150°.点睛:此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.5.55°解析:如下图,∵直线a、b、c相交于点O,且c⊥b,∴∠1+∠2+3∠=180°,∠3=90°,又∵∠1=35°,∴∠2=180°-35°-90°=55°.故答案为55°.三、解答题1.图形见解析.分析:根据过直线外一点作已知直线的垂线和过直线上一点作已知直线的垂线分别画出即可详解:解:如答图所示,PA为直线a的垂线,PB为直线b的垂线.点睛:垂线的作法是本题的考点,熟练掌握作图方法是解题的关键.2.(1)见解析(2)见解析(3)∠E的同位角是∠ACD,∠E的内错角是∠BAE和∠BCE.解析:(1)如图,过A点作AD⊥BD与BC的延长线交于D点即可;(2)如图,过D点作DE∥AB与AC的延长线交于E点即可;(3)根据同位角与内错角的定义进行解答即可.详解:(1)(2)如图所示.(3)∠E的同位角是∠ACD,∠E的内错角是∠BAE和∠BCE.点睛:本题主要考查基础作图,同位角与内错角的定义,熟练掌握其知识点是解此题的关键.3.(1)图形见解析(2)∠EPF=∠B解析:试题分析:(1)①过点P作BC的垂线,D是垂足;②过点P作BC的平行线交AB于E ,过点P 作AB 的平行线交BC 于F ;(2)根据平行线的性质可得∠AEP=∠B,∠EPF=∠AEP 然后利用等量代换得到结论即可. 解:如图所示,(1)①直线PD 即为所求;②直线PE 、PF 即为所求.(2)∠EPF=∠B,理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),∠EPF=∠B(等量代换).点睛:本题考查了平行线和垂线的画法及平行线的性质,熟练掌握两直线平行同位角相等,两直线平行内错角相等是解答本题的关键.4.详见解析.解析:试题分析:(1)过点C 作AB 的平行线.(2)过点C 作CD 垂直于AB 交AB 于点D .根据垂线段最短,可得CD 长度最小,量出CD 的长度,然后按比例尺求出实际的距离. 试题如图:(1)过点C 画一平行线平行于AB .(2)过点C 作CD 垂直于AB 交AB 于点D .然后用尺子量CD 的长度,再按1:2000的比例求得实际距离即可.经测量0.9,CD cm =0.92000180018.cm m ⨯==5.(1)AOD BOE ∠=∠;(2)160BOC ∠=;(3)45AOD ∠=.解析:(1)根据垂直定义可得∠DOB+∠BOE=90°,再根据同角的余角相等可得∠AOD=∠BOE;(2)根据余角定义可得∠BOD=20°,再根据邻补角互补可得∠BOC 的度数;(3)根据角平分线性质可得∠DOB=12∠DOE=45°,再根据角的和差关系可得答案.详解:解:()1AOD BOE∠=∠,∵OE CD⊥于点O,∴90DOB BOE∠+∠=,∵90AOB∠=,∴90AOD DOB∠+∠=,∴AOD BOE∠=∠;()2∵70AOD∠=,90AOB∠=,∴20BOD∠=,∴18020160BOC∠=-=;()3∵OB所在的直线平分DOE∠,∴1452DOB DOE∠=∠=,∵90AOB∠=,∴904545AOD∠=-=.点睛:此题主要考查了垂线,以及余角,补角,关键是掌握两角之和为90°时,这两个角互余,两角之和为180°时,这两个角互补.。
人教版数学七年级下《垂线》课堂练习题含答案

5.1.2 垂线基础题知识点1 认识垂直1.(贺州中考)如图,OA⊥OB,若∠1=55°,则∠2的度数是(A)A.35°B.40°C.45°D.60°2.如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是垂直;若已知AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD=90°.3.如图,已知直线AB,CD,EF相交于点O,AB⊥CD,∠DOE=127°,求∠AOF的大小.解:因为AB⊥CD,所以∠DOB=90°.又因为∠DOE=127°,所以∠BOE=∠DOE-∠DOB=127°-90°=37°.所以∠AOF=∠BOE=37°.知识点2 画垂线4.(和平区期中)画一条线段的垂线,垂足在(D)A.线段上B.线段的端点C.线段的延长线上D.以上都有可能5.(邢台期中)下列各图中,过直线l外点P画l的垂线CD,三角板操作正确的是(D)知识点3 垂线的性质6.下列说法正确的有(C)①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个7.下面可以得到在如图所示的直角三角形中斜边最长的原理是(D)A.两点确定一条直线B.两点之间线段最短C.过一点有且只有一条直线和已知直线垂直D.垂线段最短8.某中学创建绿色和谐校园活动中要在一块三角形花园里种植两种不同的花草,同时拟从点A修建一条花间小径到边BC.若要使修建小路所使用的材料最少,请在图中画出小路AD,你这样画的理由是垂线段最短.知识点4 点到直线的距离9.点到直线的距离是指这点到这条直线的(D)A.垂线段B.垂线C.垂线的长度D.垂线段的长度10.(枝江市期中)如图所示,在灌溉农田时,要把河(直线l表示一条河)中的水引到农田P处,设计了四条路线PA,PB,PC,PD(其中PB⊥l),你选择哪条路线挖渠才能使渠道最短(B)A.PA B.PB C.PC D.PD11.如图所示,AB⊥AC,AD⊥BC,垂足分别为A,D,AB=6 cm,AD=5 cm,则点B到直线AC的距离是6_cm,点A 到直线BC的距离是5_cm.中档题12.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数有(D)A.1个B.2个C.3个D.4个13.(淄博中考)如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有(D) A.2条B.3条C.4条D.5条14.如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP的长不可能是(A) A.2.5 B.3C.4 D.515.(济源期末)点P为直线l外一点,点A,B,C为直线上三点,PA=2 cm,PB=3 cm,PC=4 cm,则点P到直线l的距离为(D)A.等于2 cm B.小于2 cmC.大于2 cm D.不大于2 cm16.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D.当AB与CD垂直时,他跳得最远.17.如图,当∠1与∠2满足条件∠1+∠2=90°时,OA⊥OB.18.(河南中考改编)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为55°.19.如图,已知DO⊥CO,∠1=36°,∠3=36°.(1)求∠2的度数;(2)AO与BO垂直吗?说明理由.解:(1)因为DO⊥CO,所以∠DOC=90°.因为∠1=36°,所以∠2=90°-36°=54°.(2)AO⊥BO.理由如下:因为∠3=36°,∠2=54°,所以∠3+∠2=90°.所以AO⊥BO.20.如图,两直线AB ,CD 相交于点O ,OE 平分∠BOD ,如果∠AOC ∶∠AOD =7∶11.(1)求∠COE ;(2)若OF ⊥OE ,求∠COF.解:(1)因为∠AOC ∶∠AOD =7∶11,∠AOC +∠AOD =180°, 所以∠AOC =70°,∠AOD =110°. 所以∠BOD =∠AOC =70°, ∠BOC =∠AOD =110°. 又因为OE 平分∠BOD ,所以∠BOE =∠DOE =12∠BOD =35°.所以∠COE =∠BOC +∠BOE =110°+35°=145°. (2)因为OF ⊥OE ,所以∠FOE =90°.所以∠FOD =∠FOE -∠DOE =90°-35°=55°. 所以∠COF =180°-∠FOD =180°-55°=125°.综合题21.如图所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,C ,D 分别是位于公路AB 两侧的村庄.(1)该汽车行驶到公路AB 上的某一位置C ′时距离村庄C 最近,行驶到D ′位置时,距离村庄D 最近,请在公路AB 上作出C ′,D ′的位置(保留作图痕迹);(2)当汽车从A 出发向B 行驶时,在哪一段路上距离村庄C 越来越远,而离村庄D 越来越近?(只叙述结论,不必说明理由)解:(1)过点C 作AB 的垂线,垂足为C ′,过点D 作AB 的垂线,垂足为D ′. (2)在C ′D ′上距离村庄C 越来越远,而离村庄D 越来越近.。
5.1.2 垂线 人教版七年级数学下册重难点专项练习(含答案)

5.1.2《垂线》重难点题型专项练习考查题型一垂线的定义典例1.(2022秋·北京·七年级北京市第一六一中学校考期末)如图,O是上一点,于点O,直线经过O点,,则的度数为( )A.100°B.105°C.115°D.125°【答案】C【分析】由,可得,由对顶角相等可得,根据角的和差即可解答.【详解】解:∵,∴,∵,∴.故选:C.【点睛】此题考查垂直的定义以及对顶角,题目很简单,解题时要仔细识图.变式1-1.(2022秋·四川泸州·七年级统考期末)已知:如图,于点O,c为经过点O的任意一条直线,那么与的关系是()A.互余B.互补C.互为对顶角D.相等【答案】A【分析】根据对顶角相等得到,利用,得到,即可推出.【详解】解:由题意得,∵,∴,∴,故选:A.【点睛】此题考查了对顶角相等,垂直的定义,余角的定义,熟记各定义是解题的关键.变式1-2.(2022春·黑龙江哈尔滨·七年级哈尔滨风华中学校考期中)如图,,直线BD 经过点O,则的度数为( )A.B.C.D.【答案】B【分析】先利用垂直的含义求解再利用邻补角的含义求解即可.【详解】解:∵,∴∵直线BD经过点O,∴故选B.【点睛】本题考查的是垂直的含义,邻补角的含义,熟练的利用垂直与邻补角的定义求解角的度数是解本变式1-3.(2022秋·辽宁本溪·七年级统考期末)如图,,,垂足为点O,,垂足为点O,则等于()A.24°B.42°C.48°D.64°【答案】B【分析】根据,,可得∠BOD=∠AOC=90°,再由,可得∠AOB=48°,即可求解.【详解】解:∵,,∴∠BOD=∠AOC=90°,∵,∴∠AOB=∠AOD-∠BOD=48°,∴∠BOC=∠AOC-∠AOB=42°.故选:B【点睛】本题主要考查了角与角间的和与差,垂直的性质,明确题意,准确得到角与角之间的关系是解题的关键.考查题型二作已知直线的垂线典例2.(2021秋·广东珠海·七年级统考期中)过点C向AB边作垂线段,下列画法中正确的是( )A.B.C.D.【分析】根据垂线段的定义逐个判断即可得出正确结论.【详解】解:A.此选项是过点A作BC边的垂线段,故错误;B.此选项是过点B作AB边的垂线段,故错误;C.此选项是过点C作AB边的垂线段,故此项正确;D.此选项是过点B作CA边的垂线段,故错误.故选:C.【点睛】本题考查了垂线段的定义及作法,是一道基础题,解题时要善于观察,准确理解垂线段的定义是解题的关键.变式2-1.(2022秋·河北承德·七年级统考期末)下列选项中,过点P画AB的垂线CD,三角尺放法正确的是( )A.B.C.D.【答案】C【分析】根据P点在CD上,CD⊥AB进行判断.【详解】解:过点P画AB的垂线CD,则P点在CD上,CD⊥AB,所以三角尺放法正确的为【点睛】本题考查了作图-基本作图,熟练掌握基本作图(过一点画已知直线的垂线)是解决问题的关键.变式2-2.(2022秋·河北石家庄·七年级校联考期中)下列各图中,过直线外的点画直线的垂线,三角尺操作正确的是()A.B.C.D.【答案】C【分析】根据垂线的作法,用直角三角板的一条直角边与l重合,另一条直角边过点P后沿直角边画直线即可;【详解】根据分析可得C的画法正确;故答案选C.【点睛】本题主要考查了垂线的作法,准确理解是解题的关键.变式2-3.(2020秋·广西·七年级广西大学附属中学校考阶段练习)下列用三角板过点P画AB的垂线CD,正确的是()A.B.C.D.【答案】D【分析】根据垂线的作法,用直角三角板的一条直角边与重合,另一条直角边过点后沿直角边画直线即可.【详解】解:根据分析可得,用直角三角板的一条直角边与重合,另一条直角边过点后沿直角边画直线,选项的画法正确,故选:.【点睛】此题主要考查了垂线的画法,在平面内,过一点有且只有一条直线与已知直线垂直.考查题型三垂线的性质的应用典例3.(2022秋·重庆云阳·七年级校考阶段练习)春节过后,某村计划挖一条水渠将不远处的河水引到农田(记作点O),以便对农田的小麦进行灌溉,现设计了四条路段,,,,如图所示,其中最短的一条路线是( )A.OA B.OB C.OC D.OD【答案】B【分析】根据垂线段的性质:垂线段最短,可得答案.【详解】由垂线段最短,得四条线段,,,,如图所示,其中最短的一条路线是,故选:B.【点睛】本题考查了垂线段的的性质,熟记性质是解题关键.变式3-1.(2022·江苏盐城·校考三模)如图,是测量学生跳远成绩的示意图,即的长为某同学的跳远成绩,其依据是( )A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线与已知直线垂直【答案】C【分析】由点到直线的距离的定义及跳远比赛的规则作出判断.【详解】解:能正确解释这一现象的数学知识是垂线段最短,故选:C.【点睛】此题考查了垂线段最短的性质的运用,解答此题的关键是熟练掌握由点到直线的距离的定义及跳远比赛的规则.变式3-2.(2022秋·河北保定·七年级校考期中)如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A.两点确定一条直线B.两点之间,直线最短C.两点之间,线段最短D.垂线段最短【答案】D【分析】根据垂线段最短解答即可.【详解】解:过点C作于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是:垂线段最短.故选D.【点睛】本题考查了垂线段的性质,熟练掌握垂线段性质是解答本题的关键.从直线外一点到这条直线上各点所连的线段中,垂线段最短.变式3-3.(2022秋·河南安阳·七年级统考期末)如图,从位置O到直线公路l有四条小道,其中路程最短的是()A.OA B.OB C.OC D.OD【答案】C【分析】根据垂线的性质即可得到结论.【详解】解:根据垂线段最短得,能最快到达公路l的小道是OC,故选C.【点睛】本题考查了垂线段最短,熟记垂线的性质是解题的关键.考查题型四点到直线的距离典例4.(2022春·黑龙江哈尔滨·七年级哈尔滨市第四十九中学校校考阶段练习)如图,直角三角形中,,,垂足是点,则下列说法正确的是()A.线段的长表示点到的距离B.线段的长表示点到的距离C.线段的长表示点到的距离D.线段的长表示点到的距离【答案】C【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.【详解】解:A.线段的长度表示点A到的距离,说法错误,不符合题意;B.线段的长度表示点C到的距离,说法错误,不符合题意;C.线段的长度表示点B到的距离,说法正确,符合题意;D.线段的长度表示点B到的距离,说法错误,不符合题意;故选C.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.变式4-1.如图,P为直线l外一点,A,B,C在l上,且PB⊥l,下列说法中,正确的个数是()①PA,PB,PC三条线段中,PB最短;②线段PB叫做点P到直线l的距离;③线段AB的长是点A到PB 的距离;④线段AC的长是点A到PC的距离.A.1个B.2个C.3个D.4个【答案】B【分析】根据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;从直线外一点到这条直线上各点所连的线段中,垂线段最短.逐一判断.【详解】解:①线段BP是点P到直线l的垂线段,根据垂线段最短可知,PA,PB,PC三条线段中,PB最短;故原说法正确;②线段BP是点P到直线l的垂线段,故线段BP的长度叫做点P到直线l的距离,故原说法错误;③线段AB是点A到直线PB的垂线段,故线段AB的长度叫做点P到直线l的距离,故故原说法正确;④由题意及图形无法判断线段AC的长是点A到PC的距离,故原说法错误;综上所述,正确的说法有①③;故选:B.【点睛】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.变式4-2.(2022春·广东梅州·七年级校考阶段练习)如图,已知三角形ABC中,∠ACB=90°,CD⊥AB,垂足为D,则表示点A到直线CD距离的是( )A.线段CD的长度B.线段AC的长度C.线段AD的长度D.线段BC的长度【答案】C【分析】根据点到直线的距离的概念:直线外一点到这条直线的垂线段的长度即为该点到这条直线的距离作答即可.【详解】解:点A到CD的距离是线段AD的长度.故选C.【点睛】本题主要考查了点到直线的距离的概念,解题的关键是熟练掌握并理解点到直线的距离的概念.变式4-3.(2022秋·山东济宁·七年级统考期末)如图,点A在直线l1上,点B,C在直线l2上,AB⊥l2于点B,AC⊥11于点A,AB=4,AC=5,则下列说法正确的是( )A.点B到直线l1的距离等于4B.点A到直线l2的距离等于5C.点B到直线l1的距离等于5D.点C到直线l1的距离等于5【答案】D【分析】根据点到直线的距离的定义求解即可.【详解】解:∵AB⊥于点B,AC⊥于点A,AB=4,AC=5,∴点A到直线的距离等于4,点C到直线的距离等于5,故选:D.【点睛】本题考查了点到直线的距离,利用点到直线的距离定义是解题关键.。
人教版七年级数学下册《5.1.2垂线》同步训练题-附答案

人教版七年级数学下册《5.1.2垂线》同步训练题-附答案 学校:___________班级:___________姓名:___________考号:___________一、单选题 1.如图,下列线段中,长度最短的是( )A .PDB .PC C .PBD .PA2.平面内过直线l 外一点O 作直线l 的垂线能作出( )A .0条B .1条C .2条D .无数条3.在同一平面内,经过一点(已知直线上或直线外),能画出已知直线的垂线数为( ) A .0条 B .1条 C .2条 D .无数条4.P 为直线m 外一点,A ,B ,C 为直线m 上三点4cm 5cm 6cm PA PB PC ===,,,则点P 到直线m 的距离( )A .等于5cmB .等于4cmC .小于4cmD .不大于4cm 5.如图,点D 在AB 上BE AC ⊥,垂足为E ,BE 交CD 于点F ,则下列说法错误的是( )A .线段AE 的长度是点A 到直线BE 的距离B .线段FD 的长度是点F 到直线AB 的距离C .线段FE 的长度是点F 到直线AC 的距离D .线段CE 的长度是点C 到直线BE 的距离 6.如图,直线AB ,CD 相交于点O ,射线OM 平分AOC ∠,ON OM ⊥若70AOC ∠=︒,则CON ∠的度数为( )A.35︒B.45︒C.55︒D.60︒,,点P在直线CD上,用三角尺过点P画直线AB的垂线l.下7.如图,已知直线AB CD列选项中,三角尺摆放位置正确的是()A.B.B.C.D.8.如图,已知OA⊥OB,直线CD经过顶点O,若⊥BOD⊥⊥AOC=5⊥2,则⊥BOC等于()A.6B.4.8C.2.4D.5二、填空题11.已知,.若OB 在内,则的度数为______. 12.如图所示的是小明同学在体育课上跳远后留下的脚印,体育老师测量小明同学的跳远成绩时,选取了线段DC 进行测量,其依据是 .13.如图,直线AB 、CD 相交于点O ,射线OF CD ⊥于点O ,36AOC ∠=︒则BOF ∠= 度.三、解答题14.如图,直线AB CD ⊥,垂足为O ,直线EF 经过点O ,∠2=55°,求∠1,∠3,∠BOE 的度数.15.如图,是某同学在学校运动会跳远比赛中留下的脚印,请测量他的成绩.(要求:画出图形,并进行简要说明,按照答题卡...测量距离,比例尺1:200计算)参考答案:1.C2.B3.B4.D5.B6.C7.C8.B9.110.12011.CD的长12.垂线段最短13.30°14.135∠=︒ 335∠=︒ 145BOE ∠=︒ 15.小明这次跳远的成绩是4.4m . 16.(1)ON CD ⊥ (2)60BOD ∠=︒。
初一数学下册:垂线(含知识点、练习和答案)

初一数学下册:垂线(含知识点、练习和答案)知识点总结一、定义1、垂直:两条直线相交所成的四个角中,如果如果有一个角为90度,那么这两条直线互相垂直。
2、垂线:垂直是相交的一种特殊情形,如果两条直线垂直,其中一条直线叫做另一条直线的垂线。
3、垂足:两条垂线的交点叫垂足。
4、垂直三要素:垂直关系,垂直记号,垂足。
5、垂线特点:过一点有且只有一条直线与已知直线垂直。
二、三角形的高1、做直角三角形的高:两条直角边即是钝角三角形的高,只要做出斜边上的高即可。
2、做钝角三角形的高:最长的边上的高只要向最长边引垂线即可,另外两条边上的高过边所对的顶点向该边的延长线做垂线。
三、垂直公理:过一点有且只有一条直线与已知直线垂直。
四、垂线段最短;点到直线的距离:直线外一点到这条直线的垂线段的长度。
五、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
同步练习1、如图,OA⊥OB,若∠1=55°,则∠2的度数是( )A、35°B、40°C、45°D、60°2、如图,直线AB与直线CD相交于点O,已知OE⊥AB,∠BOD=45°,则∠COE的度数是( )A、125°B、135°C、145°D、155°3、过线段外一点,画这条线段的垂线,垂足在( )A、这条线段上B、这条线段的端点4、在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为( )A、1个B、2个C、3个D、4个5、下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线。
七年级数学下册垂线练习题

七年级数学下册垂线练习题七年级数学下册《垂线》练习1一、选择题:(每小题3分,共18分)1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBAGOFEDCBA(1) (2) (3) (4)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( ) ①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线. A.1个 B.2个 C.3个 D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( ) A.0个 B.1个; C.无数个 D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( ) A.4cm B.2cm; C.小于2cm D.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,• ∠AOD=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分) 如上图4所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,•求∠DOG的度数.四、提高训练:(共15分)如图5所示,村庄A 要从河流L 引水入庄,需修筑一水渠,请你画出修筑水渠的路线图.OD CBANM B A(5) (6) (7) 五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线.(1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.六、中考题与竞赛题:(共20分)1、如图7所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,M,N•分别是 位于公路AB 两侧的村庄,设汽车行驶到P 点位置时,离村庄M 最近,行驶到Q 点位置时,•离村庄N 最近,请你在AB 上分别画出P,Q 两点的位置.2、如图,完成下列画图,并填空:(1)过A 作直线a 的垂线交b 与B ; (2)过A 作直线b 的垂线,垂足为C ; (3)过A 作AD ⊥直线c 于D ; (4)作出线段AB 的垂直平分线MN ;(5)量出点A 到直线b 的距离是 cm ,点B 到直线MN 的距离是 cm(精确到0.1cm)。
完整word版七年级数学下册垂线练习题

1七年级数学下册《垂线》练习) ,共18分一、选择题:(每小题3分( )1所示,下列说法不正确的是 1.如图ACC到的垂线段是线段ABB到AC的垂线段是线段AB; B.点 A.点的垂线段到AD到BC的垂线段; D.线段BD是点BC.线段AD是点D E A A D A O D AB DCO CG CBBCD B F(1) (2) (3) (4)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( ) ①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线. A.1个 B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( ) A.0个 B.1个; C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( ) A.4cm B.2cm; C.小于2cm D.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,? ∠AOD=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分) 如上图4所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,?求∠DOG的度数.1)分四、提高训练:(共15.要从河流L,请你画出修筑水渠的路线图引水入庄,需修筑一水渠如图5所示,村庄A MD ACABl ABNO) (6) (7( 5)) 共五、探索发现分:(201所示,O为直线AB上一点,∠AOC=∠如图6BOC,OC是∠AOD的平分线.3 (1)求∠COD的度数;(2)判断OD与AB的位置关系,并说明理由.六、中考题与竞赛题:(共20分)1、如图7所示,一辆汽车在直线形的公路AB上由A向B行驶,M,N?分别是位于公路AB两侧的村庄,设汽车行驶到P点位置时,离村庄M最近,行驶到Q点位置时,?离村庄N最近,请你在AB上分别画出P,Q两点的位置.2、如图,完成下列画图,并填空:(1)过A作直线a的垂线交b与B; (2)过A作直线b的垂线,垂足为C;(3)过A作AD⊥直线c于D; (4)作出线段AB的垂直平分线MN;(5)量出点A到直线b的距离是 cm,点B到直线MN的距离是 cm(精确到0.1cm)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《垂线》拔高练习一.选择题(本大题共5小题,共25.0分)1. (5分)如图,因为直线丄/于点B, BCAJ于点、B,所以直线佔和BC重合,则其中蕴含的数学原理是()AC11BA. 平面内,过一点有且只有一条直线与已知直线垂直B. 垂线段最短C. 过一点只能作一条垂线D. 两点确定一条直线2. (5分)已知线段CD,点M在线段结合图形,下列说法不正确CA・延长线段A3、CD.相交于点FB. 反向延长线段84、DC,相交于点FC. 过点M画线段A3的垂线,交CD于点ED. 过点M画线段CD的垂线,交CD于点E3. (5分)如图,已知直线AD、BE、CF相交于点O, OG丄AD,且ZBOC=35° ,ZFOG=30Q ,则ZDOE的度数为()B4.(5分)如图,OB丄CD于点O, Z1 = Z2,则Z2与Z3的关系是()BA. Z2=Z3 B・Z2与Z3互补C. Z2与Z3互余D.不确定5. (5分)如图,直线AB与直线CD相交于点O, E是ZCOB内一点,且OE丄AB, ZAOC=35° ,则ZEOD的度数是()1C、2 _______A GA.155°B. 145°C. 135°D. 125°二.填空题本大题共5小题,共25.0分)6. (5分)如图,直线佔与CD相交于点O, EO丄CD于点O, OF平分ZAOC,若ZBOE: ZAOC=4: 5,则ZEOF为 __________ 度.7・(5分)如果两个角的两条边分别垂直,而其中一个角比另一个角的4倍少60° , 则这两个角的度数分别为_ .& (5分)如图,直线AB、CD相交于点O,OE丄AB,垂足是点O, ZBOC=\40Q , 则ZDOE= ________ .9. (5分)已知ZAOB和ZCOD的两边分别互相垂直,且ZCOD比ZAO3的3倍少60°,则ZCOD的度数为_________10. (5分)如图,三条直线AB. CD、EF相交于0,且CD丄EF, ZAOE=6S° .若三、解答题(本大题共5小题,共50.0分)11. (10分)如图1,已知A 、O 、3三点在同一直线上,射线OD 、OE 分别平 分ZAOC 、ZBOC.(1) 求ZDOE 的度数;(2) 如图2,在ZAOD 内引一条射线OF 丄OC,其他不变,设ZDOF=a° (o"/<90°).g 求ZAOF 的度数(用含“的代数式表示);b.若ZBOD 是ZAOF 的2倍,求ZDOF 的度数.(1) ___________________ ZDOE 的补角有 :(2) 若ZDOE : ZAOD=i : 7,求ZAOC 的度数;(3) 射线OF 丄OE.① 当射线OF 在直线AB 上方时,试探究ZBOC 与上DOF 之间的数量关系,并说明理由;O, OE 是ZBOD 的平分线E图1 02②当射线OF在直线AB下方时,ZBOC与ZDOF之间的数量关系是__________ .13.(10分)已知直线AB和CD相交于O点,CO丄OE,OF平分ZAOE, Z2=26° .(1) ___________________________ 写岀图中所有Z4的余角•(2)写出图中相等的三对角:①②③(3)求Z5的度数.14. (10分)已知:如图,AO丄BC, DO丄OE・(1)不添加其他条件情况下,请尽可能多地写出图中有关角的等量关系(至少3个);(2)如果ZCOE=35° ,求ZBOD的度数・15. (10分)若ZA与的两边分别垂直,请判断这两个角的数量关系.(1) ___________________________________ 如图①,ZA与ZB的数量关系是;如图②,ZA与的数量关系是______ .(2)请从图①或图②中选择一种情况说明理山.《相交线》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1. (5分)如图,因为直线A3丄/于点B, BC丄/于点B,所以直线AB和BC重合,则其中蕴含的数学原理是()AC1A. 平面内,过一点有且只有一条直线与已知直线垂直B. 垂线段最短C. 过一点只能作一条垂线D. 两点确定一条直线【分析】根据垂线的性质即可判断.【解答】解:因为直线佔丄/于点B, BC丄/于点B,所以直线AB和3C重合(在平面内,过一点有且只有一条直线与已知直线垂直),故选:A.【点评】本题考查垂线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.2. (5分)已知线段AB、CD,点M在线段上,结合图形,下列说法不正确CA. 延长线段AB、CD,相交于点FB. 反向延长线段84、DC,相交于点FC. 过点M画线段的垂线,交CD于点ED. 过点M画线段CD的垂线,交CD于点E【分析】根据线段和垂线段的定义,结合图形进行分析即可. 【解答】解:A、延长线段AB、CD,相交于点F,说法正确;B、反向延长线段84、DC,相交于点尺说法正确;C、过点M画线段AB的垂线,交CD于点E,说法正确;D、过点M画线段CD的垂线,交CD于点E,说法错误;故选:D.【点评】此题主要考查了直线、射线、线段,关键是正确掌握三线的特点.3. (5分)如图,已知直线AD、BE、CF相交于点O, OGLAD,且ZBOC=35° ,ZFOG=30Q ,则ZDOE的度数为()【分析】根据对顶角相等,以及垂直的定义求出所求角度数即可.【解答】解:V ZBOC=35° , ZFOG=30° ,A ZEOF=ZBOC=35° ,Z GOE= Z GOF+ Z FOE=65 ° ,TOG 丄AD,A ZGOD=90Q ,A ZDOE=25° ,故选:D.【点评】此题考查了垂线,以及对顶角、领补角,熟练掌握各自的性质是解本题的关键.4・(5分)如图,OB丄CD于点6 Z1 = Z2,则Z2与Z3的关系是()C. Z2与Z3互余D.不确定【分析】根据垂线定义可得Z l +再根据等量代换可得Z2+Z3=90°・【解答】解:、:OB 丄CD,.\Z1+Z3=9O° ,VZ1=Z2,A Z2+Z3=90° ,・・・Z2与Z3互余,故选:C.【点评】此题主要考查了垂线和余角,关键是掌握垂线的定义当两条直线相交所 成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直 线叫做另一条直线的垂线.5. (5分)如图,直线与直线CD 相交于点O, E 是ZCOB 内一点,且OE 丄AB,ZAOC=35° ,则ZEOD 的度数是( )【分析】山对顶角相等可求得ZBOD,根据垂直可求得ZEOB,再利用角的和差 可求得答案.【解答】解:V ZAOC=35° ,r. ZBOD=35° ,':EOLAB,A Z £05=90° ,r. ZEOD=ZEOB+ZBOD=90° +35° =125° , 故选:D.【点评】本题主要考查对项角相等和垂直的定义,掌握对顶角相等是解题的关键, 注意山垂直可得到角为90° .二、填空题(本大题共5小题,共25.0分)6. (5分)如图,直线与CD 相交于点O, EO 丄CD 于点O, OF 平分Z4OC,第28页(共18页)C. 135°D. 125°B. 145°若ZBOE: ZAOC=4: 5,则A EOF为一115 度.【分析】依据ZAOC+ZBOE=90° , ZBOE: ZAOC=4:5,即可得出ZAOC=50° , 根据OF平分ZAOC,可得Z COF=25 ° ,进而得到Z EOF= Z COF+ Z COE=\\5° .【解答】解:•:EO丄CD,;・ZCOE=90° ,r. ZAOC+ZBOE=90° ,又V ZBOE: ZA0C=4: 5,A ZAOC=50° ,乂YOF平分ZAOC,:.ZCOF=25° ,A ZEOF=ZCOF+ZCOE=25° +90° =115° ,故答案为:115.【点评】本题主要考查垂线的定义、角平分线的定义、对顶角的性质、邻补角的性质,关键在于熟练运用各性质定理,推出相关角的度数.7.(5分)如果两个角的两条边分别垂直,而其中一个角比另一个角的4倍少60° ,则这两个角的度数分别为48°、132°或20°、20° ..【分析】分两种悄况进行讨论,依据两个角的两条边分别垂直画出图形,而其中一个角比另一个角的4倍少60°,即可得到这两个角的度数.【解答】解:如图,a+P=180° , 3 =4 a・60° ,解得 a =48° , 3=132°;如图,a 二 B , B =4 a - 60° ,解得a = P =20 _;综上所述,这两个角的度数分别为48°、132°或20°、20° .故答案为:48°、132°或20°、20° .【点评】本题考查了垂线,当两条直线相交所成的四个角中,有一个角是直角时, 就说这两条直线互相垂直.& (5分)如图,直线AB、CD相交于点O,OE丄AB,垂足是点O, ZBOC=\40Q , 则ZDOE= 50°【分析】运用垂线的定义,对顶角的性质进行计算即可.【解答】解:・・•直线AB、CD相交于点O,A ZBOC=ZAOD=\40° ,乂TOE 丄AB,r.ZZ)OE=140o・90° =50° ,故答案为:50° .【点评】本题主要考查了对顶角和垂线的定义,解题的关键是运用对顶角的性质:对顶角相等.9. (5分)已知ZAOB和ZCOD的两边分别互相垂直,且ZCOD比ZAOB的3 倍少60°,则ZCOD的度数为30°或120°【分析】有两种情况:①如图1,根据ZCO£>=90° +90°- ZAOB,列方程可得结论;②如图2, ZAOB+ Z BOD= Z COD+ ZAOC,列方程可得结论.【解答】解:设ZAOB=x° ,则ZCOD=3x° - 60° ,分两种情况:①如图1, -ZAOB和ZCOD的两边分别互相垂直,・•・ ZCOD=90Q +90°・ ZAOB,即3x - 60=90+90 - %,*60° ,.\ZCOD=3X60°・60° =120°;②如图2, TOA丄OC, OB丄OD,・•・ ZAOB+ ZBOD= Z COD+ ZAOC,x+90=3x - 60+90,x=30° ,A ZCOD=30° ,综上所述,ZCOD的度数为30°或120° ,故答案为:30°或120°•【点评】此题主要考查了角的讣算,以及垂直的定义,关键是根据图形理清角之间的和差关系.10. (5分)如图,三条直线AB、CD、EF相交于O,且CD丄EF, ZAOE=68° .若OG 平分ZBOF,则ZDOG= 56 度.c八【分析】直接利用垂直的定义得出ZAOC=ZBOD的度数,再利用角平分线的定义得出答案.【解答】解:•: CD丄EF,ZCOE=90° ,V ZAOE=68° ,A ZAOC=ZBOD=22° , ZBOF=68° ,TOG 平分ZBOF,:.ZBOG=^ZBOF=34° ,2・•・ Z DOG= ZDOB+ ZBOG=56° .故答案为:56.【点评】此题主要考查了垂线以及角平分线的定义和角的计算,正确应用垂直的定义是解题关键.三、解答题(本大题共5小题,共50.0分)11. (10分)如图1,已知A、0、B三点在同一直线上,射线OD、OE分别平分ZAOC、ZBOC.(1)求ZDOE的度数;(2)如图2,在ZAOD内引一条射线OF丄OC,其他不变,设ZDOF=a°(o"<a<90°).g求ZAOF的度数(用含“的代数式表示);b.若ZBOD是ZAOF的2倍,求ZDOF的度数.图1 @2【分析】(1)根据角平分线的性质解答即可;(2) G 根据互余解答即可.b.根据ZBOD 是ZAOF 的2倍,列方程可得a 的值.【解答】解:(1)•・•点A, O, B 在同一条直线上,A ZAOC+ZBOC=\SO° ,•・•射线OD 和射线OE 分别平分ZAOC 和ZBOC,A ZCOD=^ZAOC, ZCOE 丄ZBOC2 2 A ZCOD+ZCOE=^ CZAOC+ZBOC ) =90° , 2r. ZDOE=90° ;(2) a. *:OC 丄OF,r. ZCOF=90° ,I ZDOF= a J:.ZCOD=90° - a ° ,I ZAOD=ZCOD.・•・ ZAOF=ZAOD ・ ZDOF=90° ・a° ・ a ° = (90-2a )b. V ZBOD 是ZAOF 的 2 倍,A180° ・(90 ・ a ) ° =2 (90-2a ) ° , a =18° ,即ZDOF=\S Q.【点评】此题主要考查了垂线和角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.(1) ZDOE 的补角有ZAOE 和 ZCOE ;(2) 若ZDOE : ZAOD=\: 7,求ZAOC 的度数;(3) 射线OF 丄OE2 OE 是ZBOD 的平分线①当射线OF在直线AB上方时,试探究ZBOC与ZDOF之间的数量关系,并说明理由;②出射线OF在直线下方时,ZBOC与ZDOF之间的数量关系是—丄ZB0C±2 ZDOF=180°.【分析】(1)根据角平分线的定义可得ZDOE二ZBOE,再根据补角的定义结合图形找出即可;(2)根据角平分线的定义列方程计算即可求出ZBOE,然后根据对顶角相等可得结论;(3 )计算出Z EOF的度数是90° ,设Z BOE=x , Z BOF=y ,则ZCO£>=2v+2y=180o ,可得结论.【解答】解:(1)如图1, TOE是ZBOD的平分线,・•・ ZDOE=ZBOE,由题意得:ZDOE的补角有:ZAOE^IZCOE;故答案为:ZAOE和ZCOE;(2)V ZDOE: ZAOD=\: 7,设ZDOE=x, ZAOD=7x,/.x+x+7.r=180,x=20° ,A ZAOC=ZBOD=2.x=40!3;(3)①如图2, ZDOFAZBOC,理由是:2TOE 丄OF,:.ZEOF=90° ,A ZDOF+ZDOE=90° ,•••上DOE A ZBOD,2・・・ZDOF气ZAOD斗ZBOC;②如图3, L Z B0C+ZDOF=180° ,理山是:2TOE 丄OF,;・ZEOF=90° ,第18页(共18贞)A ZBOF+ZBOE=90° ,••• ZBOF丄ZBOC,2设ZBOE=x, ZBOF=yVZC(?D=2x+2)^180°/.丄ZBOC+ Z DOF=y+2x+y= 180 °・2【点评】此题主要考查了垂线,以及角平分线定义,关键是理清角之间的关系,掌握从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.13.(10分)已知直线A3和CD相交于O点,CO丄OE,OF平分ZAOE, Z2=26° . (1)写出图中所有Z4的余角Zl, Z5 .(2)写出图中相等的三对角:① Z1二Z5 ② ZAOF=ZEOF③ ZCOE二ZDOE .(3)求Z5的度数・EA6【分析】(1)依据垂直的定义以及对顶角相等,即可得到所有Z4的余角;(2) 依据对顶角相等,角平分线的定义以及垂直的定义,即可得到相等的三对角;(3) 根据垂直的定义可得ZCOE=90° ,然后求出ZEOF,再根据角平分线的定义求出ZAOF,然后求出ZAOC,再根据对顶角相等解答即可.【解答】解:(1) TCO丄OE,:.Z4+Z5=90° ,XVZ1=Z5,r.Zl+Z5=90° ,・・・Z4的余角为Zl, Z5,故答案为:Zl, Z5;(2) •・•直线4B和CD相交于O点,.\Z1=Z5,*:OF平分ZAOE,・•・ ZAOF=ZEOF f•: CO 丄OE,・•・ ZCOE=ZDOE:故答案为:Z1=Z5, ZAOF=ZEOF, ZCOE=ZDOE;(3) *:CO丄OE,・・・ZCOE=90° ,XVZCOF=26° ,A ZEOF=90°・26° =64° ,':OF平分ZAOE,第18贞(共18页)EZAOF=EOF=M° ,6r. ZAOC=64°・26° =38° ,第18贞(共18页)•・• ZAOC与Z5是对顶角,.\Z5=38° .【点评】本题考查了余角和补角的定义,角平分线的定义,准确识图,找出各角度之间的关系是解题的关键.14. (10分)已知:如图,AO丄BC, DO丄OE.(1)不添加其他条件悄况下,请尽可能多地写出图中有关角的等量关系(至少3个);(2)如果ZCOE=35° ,求ZBOD的度数.B O C【分析】(1)已知AO丄BC, DO丄OE,就是已知ZDOE= ZAOB= ZA OC=90° , 利用同角或等角的余角相等,从而得到相等的角.(2)由DO丄OE, ZCOE=35° ,知ZBOD=\SO° ■乙DOE ■乙COE,故可求解.【解答】解:(1) TAO丄BC, DOLOE,A ZDOE=ZAOB=ZAOC=90° , ZBOD+ZAOD=90° , ZAOD+ZAOE=90° ,ZAOE+ZCOE=90° ,:.ZDOA=ZEOC, ZDOB=ZAOE, ZAOB=ZAOC, ZAOB=ZDOE, ZAOC=ZDOE;(2) TDO丄OE, ZCOE=35° ,r.ZBOD= 180°・ ZDOE - ZCOE=90°・ 35° =55° .【点评】本题主要考查了同角或等角的余角相等这一性质,山垂直的定义得出直角是解决本题的关键.15. (10分)若ZA与的两边分别垂直,请判断这两个角的数量关系.(1)如图①,ZA与ZB的数量关系是相等;如图②,ZA与ZB的数量关系是互补 .(2)请从图①或图②中选择一种情况说明理山.D【分析】(1)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的关系是相等或互补;(2)根据垂直的量相等的角都等于90。