7-隔振、测振仪表、阻尼做功

合集下载

振动测试学习

振动测试学习
有利的一面:振动给料机、振动筛选机、振动破碎机、振动 球磨机、振动打桩、振动测桩、振动抛光、结构的减振、抗震等 都是利用振动的特性进行工作的。
第3页/共53页
振动测试的意义
危害结构强度的振动
第4页/共53页
振动测试的意义
• 振动对人体的影响
实验表明: 振动频率在4~8Hz之
间时,人体将处于垂直方 向振动的共振状态,胸、 心脏不适。
第23页/共53页
振动参量的测试
振动参量的测量就是测量振动物体上某点的位移、速度、加 速度、频率和相位等参量。 位移:更多采用非接触方法测量。 速度:常采用惯性式、跟随式测试方法。 频率: 采用直接法和比较法测量谐振动的频率是单一频率 。 相位:测定同频两个振动之间的相位差。
根据惯性式测振传感器的特点,按其结构参数不同可构成振幅 计,加速度计,速度计。
第14页/共53页
振动测试系统的组成
振动测试系统组成
振动传感器
对应二次仪表
振动分析仪
显示、记录
振动传感器:把被测的机械振动量转换为机械的、光学的或电的信号, 对于电测法是转换为电量进行测试。 二次仪表:专配压电式传感器的测量线路有电压放大器、电荷放大器 等;此外,还有积分线路、微分线路、滤波线路、归一化装置等等。 振动分析及显示、记录环节:从测量线路输出的电压信号,可按测量 的要求输入给信号分析仪或输送给显示仪器、记录设备等。
第29页/共53页
振动参量的测试
进行加速度测试要求传感器的输出z能正确反映加速度a= ωn 2x , 则灵敏度为
Sa
z a
zm n2 xm
2n
1
1
n
2
2
4
2
n

《阻尼和振动公式》课件

《阻尼和振动公式》课件

线性阻尼的数学模型通常表示为: y''(t) + 2*zeta*omega*y'(t) +
omega^2*y(t) = 0,其中 y(t) 是振动 位移,zeta 是阻尼比,omega 是无阻
尼自然频率。
该模型描述了阻尼振动的基本特征,即 线性阻尼适用于描述大多数物理系统的
振幅随时间衰减的现象。
阻尼行为。
故障诊断与预测
通过监测机械设备的振动数据,结合振动公式,可以对设备故障进 行诊断和预测,及时发现潜在问题,提高设备维护效率。
在航空航天中的应用
1 2 3
飞行器稳定性分析
航空航天领域的飞行器在飞行过程中会受到各种 气动力的作用,振动公式的应用可以帮助分析飞 行器的稳定性。
结构强度与疲劳寿命评估
航空航天器的结构和零部件在长期使用过程中会 受到疲劳损伤,振动公式的应用可以评估结构的 强度和疲劳寿命。
受迫振动
当物体受到周期性外力作用时, 会产生受迫振动。受迫振动公式 的推导基于牛顿第二定律和周期
性外力模型。
多自由度系统的振动公式推导
多自由度系统
当一个物体有多个自由度时,其运动可以用多个振动公式 的组合来表示。多自由度系统的振动公式推导基于牛顿第 二定律和多自由度系统模型。
耦合振动
当多个自由度之间存在耦合作用时,其振动规律更为复杂 。耦合振动公式的推导需要考虑各自由度之间的相互作用 。
实验步骤与操作
步骤一
准备实验器材,包括振动平台、 阻尼器、测量仪器等。
步骤三
启动振动平台,记录物体在不同 阻尼条件下的振动情况。
步骤二
将待测物体放置在振动平台上, 调整阻尼器以模拟不同阻尼情况 。

隔振器动力学参数相关测试技术

隔振器动力学参数相关测试技术

隔振器动力学参数相关测试技术在隔振器的设计与使用过程中,针对隔振器的阻尼系数以及刚度系数等动力学参数类型进行科学合理的测试,以最终确定隔振器在使用过程中的具体使用性能以及使用标准,是隔振器在设计检测过程中必须着重考虑的问题。

然而在以往的隔振器阻尼系数以及刚度系数的测量检测过程中,针对隔振器相关动力学参数的测试却存在着工艺流程较为繁复、测试结果不够标准的问题,对于隔振器设备的动力学参数测试结果和最终应用范围造成了较为不利的影响。

文章将以大阻尼粘性流体微振动隔震器为具体的测试类型,在以往隔振器阻尼系数以及刚度系数测试技术的基础上,提出一种新型的隔振器多参数模型阻尼系数以及刚度系数测试方法,并将最终的阻尼系数以及刚度系数数据进行仿真实验与隔振器的迟滞环法动力学参数测试结果进行比较,验证两种测试方法的结果误差,评论两种方法的具体隔振器动力学参数测试过程中的优异性。

标签:隔振器;动力学参数;多参数模型;迟滞环法;测试结果隔振器为机器设备与机器基础提供连接功能的弹性元件,能够有效的减少设备在运动过程中传递到机器基础以及机器基础传递到机器设备上的振动力,因此广泛的适用于与航天、航空、国防、汽车等诸多领域。

以隔振器在航天领域中的应用为例,一般来说航天器建设使用过程中的振动控制方法包括吸振、阻振以及隔振三种类型,而隔振器结构在航天器飞行使用过程中能够有效的减少航天器本体结构上的高频扰动震动能量传递,对保证航天器飞行过程中的稳定性有着非常重要的意义。

值得注意的是,隔振器虽然在航天器结构中的应用具备非常重要的作用,但是当前阶段针对隔振器使用过程中的阻尼系数以及刚度系数等动力学参数在具体的测试方法中却一直存在着测试流程较为复杂、测试结果精度较低的现象,对于隔振器性能的精确设计和使用造成了一定的影响。

1 隔振器动力学参数的传统测试方法针对隔振器动力学参数的传统测试方法,主要是根据隔振器结构使用过程中的内在隔震原理,采取实验机械阻抗曲线拟合获取方法来完成对隔振器结构阻尼系数以及刚度系数的测试工作,但是值得注意的是实验机械阻抗曲线拟合获取方法只能针对隔振器动力学参数中的阻尼以及刚度数值进行单一的验算,在具体验算的过程中没有充分的考虑到粘性流体的阻尼和刚度会随着振动频率的变化而出现变化,进而对振动器的隔震性能产生影响这一状况。

电子设备的振动分析与控制技术考核试卷

电子设备的振动分析与控制技术考核试卷
A.提高设备的可靠性
B.降低设备的制造成本
C.减小设备的体积
D.增加设备的重量
16.在进行电子设备振动分析时,以下哪个步骤是必要的?()
A.确定设备的振动频率
B.忽略设备的质量和阻尼
C.仅考虑设备的线性振动
D.忽略环境因素对振动的影响
17.以下哪个参数与电子设备的振动控制效果密切相关?()
A.振动的频率
C.对设备进行预热处理
D.忽略环境因素对测试结果的影响
8.以下哪个指标用于评估振动控制技术的效果?()
A.振幅降低率
B.能量耗散率
C.振动频率变化
D.设备重量变化
9.在电子设备振动控制中,以下哪种方法主要用于降低振动传递?()
A.增加质量
B.增加阻尼
C.减少刚度
D.提高激励频率
10.关于振动控制技术的应用,以下哪个说法是正确的?()
17.以下哪些材料常用于制造振动隔离装置?()
A.合成橡胶
B.金属弹簧
C.空气垫
D.纤维材料
18.振动控制技术在哪些领域有广泛应用?()
A.军事装备
B.工业制造
C.医疗设备
D.消费电子产品
19.以下哪些情况可能需要增加振动控制措施?()
A.设备运行在振动水平较高的环境中
B.设备的振动导致性能下降
C.设备的振动引起用户不适
A.设备在高频振动环境中工作
B.设备需要长时间稳定运行
C.设备包含精密光学元件
D.设备用于极端气候条件
13.振动控制技术的选择依据通常包括以下哪些?()
A.设备的振动特性
B.控制目标的要求
C.成本和资源的限制
D.设备的使用寿命
14.以下哪些方法可以用来评估振动控制的效果?()

机械振动的测试

机械振动的测试

第四节 测振传感器
分类:接触式和非接触式 按壳体的固定方式可分为相对式和绝对式。 机械振动是一种物理现象,而不是一个物理参数,和振动相关的物理量有振动位移、振动速度、振动加速度等,所以振动测试是对这些振动量的检测,它们反映了振动的强弱程度。
1、惯性式测振传感器的力学模型和特性分析
力学模型和运动方程式
单自由度无阻尼自由振动系统
x o k 运动学特征 动力学特征 由 微分方程特征 以弹簧振子为例得出普遍结论:
加速度
速 度
v
t
x
a
解 可得
位 移
振动方程
常数A和j 的确定
说明: (1) 一般来说j 的取值在-π和π(或0和2π)之间; (2) 在应用上面的式子求j 时,一般来说有两个值,还要由初始条件来判断应该取哪个值; (3)常用方法:由
求A,然后由 x0=Acosj v0=-Aωsinj 两者的共同部分求j 。
单自由度无阻尼系统的自由振动是以正弦或余弦函数或统称为谐波函数表示的,故称为简谐振动, 自由振动的角频率即系统的自然频率仅由系统本身的参数所确定,而与外界激励、初始条件等均无关. 无阻尼自由振动的周期为 自由振动的振幅X和初相角由初始条件所确定。 单自由度无阻尼系统的自由振动是等幅振动。
三、随机激励方法
纯随机激励 理想的纯随机信号是具有高斯分布的白噪声,它在整个时间历程上是随机的,不具有周期性,在频率域上它是一条几乎平坦的直线。
(二)伪随机激励
伪随机信号是一种有周期性的随机信号,它在一个周期内的信号是纯随机的,但各个周期内的信号是完全相同的。这种方法的优点在于试验的可重复性。
将白噪声在T内截断,然后按周期T反复重复,即形成伪随机信号。
机械振动的测试

实验八 主动隔振和被动隔振(2H)

实验八 主动隔振和被动隔振(2H)

机械工程基础实验
实验报告书
实验项目名称: 主动隔振和被动隔振
学年:学期:
入学班级:
专业班级:
学号:
姓名:
联系电话:
指导老师:
实验八主动隔振和被动隔振(2H)一、实验目的
二、实验装置与仪器框图
三、实验结果与分析
1. 主动隔振 1) 实验数据
表 1
2) 根据主动隔振方法1)按公式(2)、(4)计算出隔振系数a η和隔振效率a ε。

3)根据主动隔振方法2)按公式(3)、(4)计算出隔振系数a η和隔振效率a ε
4)对两种结果进行对比分析
2. 被动隔振 1)实验数据
隔振系统固有频率0f =( )Hz
表 2
(注:本表一定要包含1λ=的两个点)
2)根据表2绘制λη-p 曲线和λε-p 曲线(要求用坐标纸绘制)。

机械振动实验课件振动参数的测量

机械振动实验课件振动参数的测量

讨论:1)当 0 2 时, a 1, A2 A1 ,隔振器没有隔振效果
1时,即 0 共振
2)当 时2
A2, A隔1 振器才发生作用
注意:1) /0 也不宜过大,因为 /0 ,意味着隔振装置要设计得很柔
软,静扰度要很大,同时体积也要做得很大,安装的稳定性差,
容易摇晃。
2)当 /0 后5, 变化a 并不明显,因此,实际使用中
而变化的曲线,量出相邻的I个振幅 An 、Ani
那么:
i An / Ani ei nTd
---减幅系数
ln i / i (ln An / Ani ) / i
---对数减幅
ln einTd / i nTd
又由于 : ln( A1 / A2 ) ln[( A2 A2 ) / A2 ] ln(1
信号发生器的粗调和小,所以会出现灵敏度比较高
信号发生器在改变输出频率时,显示会产生一定的时间延迟,导
致不易调节。
2)本实验由于使用带宽法测系统的阻尼比,而两半功率点的频率相距 较近,实验的误差较大。
3)虚拟示波器的采样频率不宜太高,一般应取500赫兹左右,以减小 高频噪声
4)测振仪的显示和信号源的输出信号的电流稳定性有关 5)实验时,应尽量不人为触动振动实验台,以减小外界干扰
机械振动实验课件
振动参数的测定
(固有频率和阻尼比)
一、实验目标
1.1 实验目的
1、了解单自由度系统自由振动的有关概念 2、了解单自由度系统强迫振动的有关概念 3、会根据自由衰减振动波形确定系统的固有频率和阻尼比会 4、根据强迫振动幅频特性曲线确定系统的固有频率和阻尼比
1.2实验重点
1、自由振动的波形特点(周期、频率及振幅) 2、强迫振动幅频特性曲线

7-隔振、测振仪表、阻尼做功解析

7-隔振、测振仪表、阻尼做功解析

例 3.5—2
设 F=10sinπt(N) , x=2sin(πt-30o)(cm) ,
试求开始6s内与开始1/2s内所做的功。
解 : 力 F 与 位 移 x 振 动 频 率 ω=π , 周 期 T=2π/ω=2s,在6s内有三个周期,故由方程,有
其中1/2 s内有1/4个周期数。
上次内容回顾:复频率响应 讲述的内容
第三章 强迫振动 3.3 隔振 3.4 振动测量仪器 3.5 简谐力与阻尼力的功
3. 3
隔振
机器运转时由于各种激励因素的存在,振动通
常是不可避免的。这种振动不但影响附近仪器设备
的正常工作,还会引起机器本身结构和部件的损坏
或降低效率等,由于振动产生的噪声对人体健康也 是有害的,因此有效地隔离振动是现代化工业中的 重要问题。为了减小这种振动,通常在机器底部加 装弹簧、橡胶等隔振材料,相当于在机器底部与地
频率适用范围都受到阻尼的很大影响。图用比较
大的比例尺表示了各个不同ζ值的放大因子
β=│ H(ω)│是如何随频率比λ=ω/ωn而改变 的。大多数加速度计都采用ζ接近于O.70,这样 不仅能扩大仪表的量程,而且可以减免相位的畸 变。
3.5
简谐力与阻尼力的功
有阻尼的系统在振动时,机械能不断耗散
而使振动逐渐衰减,如果不从外界输入能量,
起作同样的振动,利用连接在质量上的指针或通过
电信号指示出所测位移或加速度。
振动系统的之间的相对位移,据此上式可
以改写为 假设简谐激励为 则方程成为 通过类似于前面的分析,得出响应为
令 z=Zei(ωt-φ) ,可以得出 Z/Y 对ω/ωn的曲线与图
相同,只要将纵坐标坐MX/me以Z/Y代替。 (1)位移计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

面之间有弹簧与阻尼器隔开,
振动隔离
机器设备运转时发生的剧烈振动,不但会引起机 器本身结构或部件的破坏、缩短寿命、降低效率等不 利影响,而且会影响周围的精密仪器设备不能正常工 作或降低其灵敏度和精确度。由振动产生的噪音对人 体健康也很有害。因此必须有效地隔离振动。 根据振源的不同,一般分为两种性质不同的隔振。 一种称为主动隔振,一种称为被动隔振。
可见,粘性阻尼力所做的功与振幅的平方成正比, 与振动频率也成正比。
当每个周期的能量输入与耗散相等时,由上
两方程,有
在发生共振时ω=ωn,φ=π/2,可得
这时激励每个周期所做的功最大,阻尼力所消耗 的能量也最大。
括号内第一项是常量,第二项是频率2ω的正弦波。
例 3.5—2
设 F=10sinπt(N) , x=2sin(πt-30o)(cm) ,
振动经过一段时间之后就会停止。在强迫振动
中,激励对振动物体做功,能量不断输入振动
系统,当能量输入与能量耗散相等时,振幅保 持常值,系统进行稳态振动。现在就来说明激 励与阻尼在强迫振动中所做功的计算方法。
(1)简谐激振力在一个周期内所做的功
设有激励F=F0sinωt,沿x轴方向,作用于物体m
上,其运动方程的解为x=xsin(ωt-φ),则在一个周 期内激励所做的功为
选取λ值在2.5~5之间隔振效果已经足够了。
(3)当λ> 时,传递率随相对阻尼系数ζ的增
大而提高。即在此情况下增大阻尼不利于隔振。
3.4振动测量仪器
振动测量仪器基本上分为三
类:即位移计 、速度计和加
速度计。它们都是利用支承
运动产生的强迫振动振幅频 率特性制成的 。图示意了测 振仪的 基本原理,测振仪内部包括一个惯性质量m、弹簧k 和阻尼c,组成一个单自由度振动系统。测振时直 接把仪器外壳与振动物体固接,外壳随振动物体一
(2)加速度计
把响应幅值Z变换为如下形式
式中
为被测振动物体加速度的幅值。可以看
,此时指针指示的值与
出,当λ→0时,z→
被测物体的加速度成比例。加速度计要求系统本
身的固有频率ωn必须比振动物体的频率ω足够高, 从而使λ足够小。所以加速度计是一种高固有频 率的仪器。
必须指出,无论是位移计,还是加速度计的
如图所示。显然,力 是通过弹簧和阻尼器
传给地基的,该力为
根据
X的表达式并代人上式得
则传递力的幅值为
取无量纲的比值
这就是实际传递力的力幅与激励力幅之比,称为传递率。
如图同样可尼大小,只有当频率比λ> 有隔振效果。 (2)λ> 以后,随着频率比增加,传递率逐渐 趋于零。但在λ>5以后,传递率几乎水平,实际上 时,才
频率适用范围都受到阻尼的很大影响。图用比较
大的比例尺表示了各个不同ζ值的放大因子
β=│ H(ω)│是如何随频率比λ=ω/ωn而改变 的。大多数加速度计都采用ζ接近于O.70,这样 不仅能扩大仪表的量程,而且可以减免相位的畸 变。
3.5
简谐力与阻尼力的功
有阻尼的系统在振动时,机械能不断耗散
而使振动逐渐衰减,如果不从外界输入能量,
把响应幅值Z变换为如下形式
可以看出,当λ→∞时,Z→Y,此时指针所指示 的就是振动物体的位移。实际上只要振动物体的频率 ω比测振仪的固有频率ωn足够高,就可以使测得的Z 值足够准确地接近于振动物体的实际振幅。为此,测 振仪要求振动质量要大,弹簧要软,所以位移计的缺 点就是构造重,体积大,可见位移计是一种低固有频 率的仪器。
可见,简谐激励每周所做功的大小,不仅决定于力 与振幅的大小,还决定于两者之间的相位差。在 φ=π/2,即共振时,EF取最大值。
(2)阻尼力在一个周期内所消耗的能量,即一个周期
内所做的功
对于粘性阻尼力F=c ,同样系统作简谐强迫振
动时,有x=xsin(ωt-φ),
的功为
=Xωcos(ωt-φ),所
以F=cXωcos(ωt-φ),故阻尼力在一个周期内所做
起作同样的振动,利用连接在质量上的指针或通过
电信号指示出所测位移或加速度。
振动系统的微分方程
设z=x-y为质量m和外壳之间的相对位移,据此上式可
以改写为 假设简谐激励为 则方程成为 通过类似于前面的分析,得出响应为
令z=Zei(ωt-φ) ,可以得出Z/Y对ω/ωn的曲线与图
相同,只要将纵坐标坐MX/me以Z/Y代替。 (1)位移计
主动隔振
若机器本身是振源,使它与地基隔开来,以减少 它对周围的影响,称为主动隔振。例如把机器安装 在较大的基础上,在基础与地基之间设置若干橡胶 隔振器就是常用的一种主动隔振措施。
被动隔振
若振源来自地基运动,如前面 讲过的支承运动引起的振动,为了 使外界振动少传到系统中来,采取 隔振措施,称为被动隔振。 被动隔振的效果用被动隔振系数 (位移传递率)表示。
试求开始6s内与开始1/2s内所做的功。
解 : 力 F 与 位 移 x 振 动 频 率 ω=π , 周 期 T=2π/ω=2s,在6s内有三个周期,故由方程,有
其中1/2 s内有1/4个周期数。
上次内容回顾:复频率响应 讲述的内容
第三章 强迫振动 3.3 隔振 3.4 振动测量仪器 3.5 简谐力与阻尼力的功
3.3
隔振
机器运转时由于各种激励因素的存在,振动通
常是不可避免的。这种振动不但影响附近仪器设备
的正常工作,还会引起机器本身结构和部件的损坏
或降低效率等,由于振动产生的噪声对人体健康也 是有害的,因此有效地隔离振动是现代化工业中的 重要问题。为了减小这种振动,通常在机器底部加 装弹簧、橡胶等隔振材料,相当于在机器底部与地
相关文档
最新文档