归纳《图形的全等》参考课件1.ppt

合集下载

华师大版七年级数学下册第十章《10.5 图形的全等》优质课件

华师大版七年级数学下册第十章《10.5 图形的全等》优质课件
7.自学P135例
课后作业
1.教材P136习题10.5第1、2、3题; 2.完成练习册本课时的习题.
学习如果想有成效,就必须专 心。学习本身是一件艰苦的事,只 有付出艰苦的劳动,才会有相应的 收获。 —— 谷超豪
这一 样个 的人 人所 才受 有的 学教 问育 。超
过 了 自 己 的 智 力 ,
随堂演练
1. 下列说法正确的是(C )
①用一张像纸冲洗出来的10张1寸像片是全等图形;
②我国国旗上的4颗小五角星是全等图形;
③所有的正方形是全等图形;
④全等图形的面积一定相等.
A.1个
B.2个
C.3个
D.4个
2.对于两个图形,给出下列结论:①两个图形的周长
相等;②两个图形的面积相等;③两个图形的周长
【归纳结论】
能够完全重合的两个图形 叫做全等图形.
P133做一做:观察图中的平面图形,你能发现哪两个 图形是全等图形吗?
【归纳结论】
图形的翻折、旋转、平 移是图形的三种基本的运动. 图 形经过这样的运动,位置虽然 发生了变化,但形状、大小却 没有改变,前后两个图形是全 等的.反过来,两个全等的图形 经过这样的运动一定能够重合.
P134思考:观察下图中的两对多边形,其中的一个可以 经过怎样的运动和另一个图形重合?
上面的两对多边形都是全等图形,也称为全等多边 形.两个全等的多边形,经过运动而重合,相互重合的 顶点叫做对应顶点,相互重合的边叫做对应边,相互 重合的角叫做对应角.
如下图中的两个五边形是全等的,记作五边形 ABCDE≌五边形A′B′C′D′E′.(这里,符号“≌”表 示全等,读作“全等于”.).点A与A′,B与B′,C 与C′,D与D′,E与E′分别是对应顶点.

全等三角形判定ppt课件

全等三角形判定ppt课件

若两个三角形全等,则它们的周长也 相等。
对应角相等
在全等三角形中,任意两个对应 的角都相等。
若两个三角形全等,则它们的内 角和也相等,且均为180度。
可以通过测量两个三角形的三个 内角来判断它们是否全等。
面积相等
若两个三角形全等,则它们的面积也相等。 可以通过计算两个三角形的面积来判断它们是否全等。
1 2
定义
两边和它们的夹角分别相等的两个三角形全等。
图形语言
若a=a',∠B=∠B',b=b',则⊿ABC≌⊿A'B'C'。
3
符号语言
∵a=a',∠B=∠B',b=b',∴⊿ABC≌⊿A'B'C'( SAS)。
角边角判定法(ASA)
01
02
03
定义
两角和它们的夹边分别相 等的两个三角形全等。
图形语言
实例1
证明两个三角形全等并求出未知 边长
实例2
利用全等三角形判定方法证明两个 四边形面积相等
实例3
利用全等三角形判定方法解决一个 实际问题,如测量一个不可直接测 量的距离
06
总结与展望
判定全等三角形的方法总结
三边分别相等的两个三角形全等。这是最基本的判定 方法,通过比较三角形的三边长度来确定两个三角形
证明过程
可以通过AAS(角角边)全等条件进行证明,即 如果两个三角形有两个角和其中一个角的对边分 别相等,则这两个三角形全等。这也是一种常用 的全等三角形判定方法。
实际应用举例
在实际应用中,角角边判定法常用于解决与角度 和边长有关的问题。例如,在建筑设计中,如果 需要确保两个建筑结构的角度和边长完全相等, 就可以利用角角边判定法来进行验证。

1三角形全等的判定(第4课时)PPT课件(华师大版)

1三角形全等的判定(第4课时)PPT课件(华师大版)

当堂检测
1.为班级中每名同学准备了长分别为a、b、c三根木条,所有同学都
用三根木条,首尾顺次拼接组成三角形,这时小陈同学说:“我们所
有人的三角形,形状和大小是完全一样的”小陈同学的说法根据
_______.
SSS
根据:三个木条长度a,b,c,无论怎么摆放,长度不变,利用三
角形全等的判定理由:SSS
当堂检测
(简写为“边边边”或“S.S.S.”)
A
几何语言:
在△ABC和△ DEF中,
AB=DE,
B
C
D
BC=EF,
CA=FD,
∴ △ABC ≌△ DEF(S.S.S.).
E
F
讲授新课
典例精析
【例1】如图,在四边形 ABCD 中,AD = CB,AB = CD.
求证: ∠B = ∠D.
证明:在△ABC 和△CDA 中,
=,
= ,
=.
∴△ABC≌△DFC(SSS).
讲授新课
变式1 若将上题中右边的三角形向左平移(如图),若AB=DF,
AC=DE,BE=CF.问:△ABC和△DFE全等吗?
解:全等.
A
B
E
D
C
F
∵ BE=CF ,
∴BE+EC=CF+EC.
即BC=FE .
在△ABC和△DFE中,
在△ABD和△CDB中,
=(已知),
= (已知),
=(公共边).
∴△ABD≌△CDB(SSS),
∴∠A=∠C.(全等三角形的对应角相等).
②证明:∵ △ABD≌△CDB(已证) ,
∴∠ABD=∠CDB, ∠ADB=∠CBD .
(全等三角形的对应角相等)

人教版《三角形全等的判定》PPT全文课件

人教版《三角形全等的判定》PPT全文课件
知识回顾
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.

∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).

《图形的全等》课件

《图形的全等》课件

2023《图形的全等》课件contents •知识导入•基础概念与定理•应用与实践•全等四边形的概念与性质•全等五边形的概念与性质•全等六边形的概念与性质目录01知识导入图形全等是指两个图形能够完全重合,即它们的形状和大小都相同。

定义全等是几何中一个非常重要的概念,在后续的学习中我们将学习如何判定两个图形是否全等以及如何进行图形的全等变换。

理解什么是图形的全等相似是指两个图形形状相同,但大小不一定相等。

全等与相似是两个不同的概念,虽然它们有一定的联系。

在全等变换中,可以将一个图形放大或缩小,但它的形状保持不变。

举例:正方形和其中心对称图形是全等的,但它们不是相似的。

图形的全等与相似的关系图形全等的证明方法通过证明两个图形的对应边相等,对应角相等来证明两个图形全等。

定义法判定定理举例注意通过证明两个图形满足 SSS、SAS、ASA、AAS 中的任意一个来证明两个图形全等。

在三角形全等的证明中,我们通常使用 SSS、SAS、ASA、AAS 中的任意一个进行证明。

在证明图形全等时,要注意对应边和对应角的位置和顺序,避免出现“张冠李戴”的情况。

02基础概念与定理全等形形状和大小都相同的图形称为全等形。

全等三角形如果有两个三角形全等,则它们的三组对应边分别相等,三个对应角也相等。

基础概念1图形的全等的定理23对于两个三角形,如果对应边相等、对应角相等,则这两个三角形全等。

定理1对于两个三角形,如果一个三角形的三边分别与另一个三角形的对应边成比例,且它们的夹角相等,则这两个三角形全等。

定理2对于两个三角形,如果一个三角形的三个角分别等于另一个三角形的对应角,则这两个三角形全等。

定理3全等三角形的对应边相等。

性质1性质2性质3全等三角形的对应角相等。

全等三角形的对应中线、对应角平分线、对应中垂线分别相等。

03全等三角形的性质020103应用与实践证明两个三角形全等运用全等三角形证明线段和角相等利用全等三角形进行测量的应用全等三角形的应用明确问题首先需要明确需要解决的问题是什么,并收集相关的已知条件。

《全等三角形》ppt课件

《全等三角形》ppt课件

《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。

注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。

利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。

构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。

典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。

例如,可以先构造角平分线,再利用中线或高线的性质进行证明。

在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。

这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。

通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。

相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。

定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。

周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。

初中数学《图形的全等》公开课ppt北师大版1

初中数学《图形的全等》公开课ppt北师大版1

随堂检测
2、如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=__1_2_0_°___.
随堂检测
3、如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对
应顶点,AF与DE交于点M,则∠DCE等于( A )
A.∠B
B.∠A
C.∠EMF
D.∠AFB
随堂检测
学习目标 1 了解全等图形、全等多边形、全等三角形. 2 掌握全等多边形性质与识别方法,全等三角形的性质 .
情境导入
观察这些图片,你能看出形状、大小完全一样的几何图形吗?
追问 你能再举出生活中的一些类似例子吗?
活动探究
探究点一: 全等图形
活动探究
探究点一: 全等图形
活动探究
探究点一: 全等图形
个性化作业
1、下列说法中正确的有( ) ①用一张底片冲洗出来的10张1寸相片是全等图形; ②我国国旗上的4颗小五角星是全等图形; ③所有的正方形是全等图形; ④全等图形的面积一定相等. A.1个 B.2个 C.3个 D.4个 2、在图中找出两对全等的三角形,并指出其中的对应角和对应边.
个性化作业
3、如图,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B,C,D三点在一条直上, 求∠ACE的度数.
4、如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,指出其他的对应边和 对应角.
再见

1.情节是叙事性文学作品内容构成的 要素之 一,是叙 事作品 中表现 人物之 间相互 关系的 一系列 生活事 件的发 展过程 。
活动探究
探究点二:全等三角形及对应元素
能够完全重合的两个三角形,叫做_全__等__三__角__形___.

图形的全等(课件ppt)

图形的全等(课件ppt)

新知讲解
全等的表示方法
A
F
B
CD
E
△ABC 与△DEF 全等 记作“△ABC ≌△DEF ” 读作: △ABC 全等于△DEF 注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.
新知讲解
【议一议】 全等三角形对应边的高、中线相等吗?还有哪些相等的线段,举例 说明.
相等 全等三角形对应角的角平分线也相等
=2∠CAB+10°=120°, ∴∠CAB=55°.∵∠B=∠D=25°, ∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.
课堂总结
全等形:能够完全重合的 两个图形叫作全等形.
全等三角 形
全等三角形:能够完全重合的两个 三角形叫作全等三角形.
全等三角 形的性质
全等三角形的 对应边相等
新知讲解
【议一议】
如图 ,已知△ABC ≌ △A′ B′ C′ ,你如何在△A′ B′ C′ 中画出与线
段DE 相对应的线段?
A
A′
E
B
D
C B′
C′
新知讲解
【议一议】 如图 ,已知△ABC ≌ △A′ B′ C′ ,你如何在△A′ B′ C′ 中画出与线 段DE 相对应的线段?
①在A'B'上截取B'E'=BE,在B'C'上截取B'D'=BD
(1)你能说出生活中全等图形的例子吗?
(2)观察下面三组图形,它们是不是全等图形?为什么?与同伴交 流.
形状相同 大小不同
形状不同 大小相同

新知讲解
(3)如果两个图形全等,它们的形状和大小一定都相同吗?
全等图形的形状和大小都相同.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.精品课件.
12
2.三角形的变换
⑴平移
⑵翻折
⑶旋转
平移、翻折、旋转形状、大小都不变
结论:平移、翻折、旋转前后的图形全等。
.精品课件.
13
3. 全等的对应元素及表示方法
A
D
B
C
E
你能找到图中的对应边和对应角吗?
.精品课件.
F
14
表示方法: △ABC≌△DEF
A
D
B
C
E
F
注意:要把表示对应顶点的字母写在对应的位置上
第三章 三角形
3.2 图形的全等
.精品课件.
1
请欣赏图片1
.精品课件.
2
请欣赏图片2
.精品课件.
3
两个能够重合的图形称为全等图形
.精品课件.
4
观察下面两组图形,它们是不是全等图形?为 什么?与同伴进行交流。
(1)
(2)
.精品课件.
5
如果两个图形全等,它们的形 状和大小一定都相等
.精品课件.
6
练习:
一、找出下列图形中的全等图形
.精品课件.
7
与图1所示图形全等的图形是
图1
A
B
C
D
将图2所示绕A点顺时针转90°所得到的图形是
B
A
图2
C
A
B C .精品课件.
D
8
图中共有多少对全等图形,他们分别是
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8) (9)
(12) (13)
(14) (15) (16) (17)
B
.精品课件.
19
议一议
(1)全等三角形对应边的高相等吗?对应边的 中线呢?还有那些相等的线段?举例说明。
(2)如图,已知△ABC≌△A'B'C',你如 何在A'B'C'中画出与线段DE相对应的线段?
A
A'
D
B
E
C B'
C

.精品课件.
20
我校要修一座等边三角形花池(形状如下), 有这么几种方案:
(全等三角形的对应边相等) ∠A=∠D,∠B=∠E,∠C=∠F
(全等三角形的.精对品课应件.角相等)
17
(三)拓展与应用
1. 全等对应元素的找法
A
D
O
C
B
B
A
D
D
A
D C
A
B
C
B EC
.精品课件.
18
2、如图:△AOD≌△BOC,写出其中相等的角
D
C
解:∠A=∠B
∠D=∠C
O
∠DOA=∠COB
A
.精品课件.
15
想一想
A
D
能否记作 ∆ABC≌ ∆DEF?
B
F
CE
应该记作:∆ABC≌ ∆DFE
原因:A与D、B与F、C与E对应。对应顶点 要写在对应位置上。
.精品课件.
16
4. 全等三角形的性质
A
D
B
C
E
F
对应边相等,对应角相等
如图,∵∆ABC≌ ∆DEF ∴A B=D E,A C=D F,BC= E F
.精品课件.
9
想一想:
如图是由几种全等图形拼凑而成的
.精品课件.
10
议一议
(1)你能说出生活中全等图形的例子吗? (2)观察下面三组图形,它们是不是全等 图形?为什么?与同伴进行交流。
全等图形的形状和大小都相同
.精品课件.
11
全等三角形的定义
A D
F
B
C
E
全等图形:能够完全重合的两个图形;
定义 全等三角形:能够完全重合的两个三角形。
1、把它分成两个全等的三角形 2、把它分成三个全等的三角形 3、把它分成四个全等的三角形 并在分成的全等三角形中种上不同颜色的花, 你赞成哪种方案?请绘出你的平面效果图,大 家评一评,看谁的方案最漂亮?
.精品课件.
21
课堂小结
交流:学会了什么?
收获了什么? 有什么感受?
.精品课件.
22
重点掌握: “全等”和“对应相等”
明白道理: 因“完全重合”而“全等”
因“完全重合”而“对应”边(角)相等
口 诀: 形状相同大小等,完全重合是根本; 顶点一二三对应,边角相等方入门。
.精品课件.
23
相关文档
最新文档