(完整版)中考规律探究题的解题方法

合集下载

完整版)初中数学规律探究题的解题方法

完整版)初中数学规律探究题的解题方法

完整版)初中数学规律探究题的解题方法初中数学规律探究题的解法指导在新课标中,要求用代数式表达数量关系及规律,培养学生的抽象思维能力。

规律探究常常要求通过归纳特例,猜想一般规律,并列出通用的代数式。

这种问题在中考或学业水平考试中频繁出现,考生往往感到困难。

然而,只要细心观察,大胆猜想,精心验证,就能解决这类问题。

一、数式规律探究数式规律探究通常给定一些数字、代数式、等式或不等式,要求猜想其中的规律。

这种问题考查了学生的分析、归纳、抽象、概括能力。

一般解法是先写出数式的基本结构,然后通过横比或纵比找出各部分的特征,改写成要求的格式。

数式规律探究是规律探究问题中的主要部分,解决此类问题注意以下三点:1.常用字母n表示正整数,从1开始。

2.在数据中,分清奇偶,记住常用表达式。

正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…偶数…2n-2,2n,2n+2…3.熟记常见的规律n(n+1)/2、n(n+1)、1、4、9、16.n、1、3、6、10……2、1+3+5+…+(2n-1)=n²、1+2+3….+n=n(n+1)/2、2+4+6+…+2n=n(n+1)数字规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:1.观察法例1.观察下列等式:①1×1=1-。

②2×2=2-。

③3×3=3-。

④4×4=4-……猜想第几个等式为(用含n的式子表示)分析:将等式竖排:4545111-2222②2×=2-3333③3×=3-44①1×1④4×=4-n×n+1通过观察相应位置上变化的数字与序列号,易得到结果为:n²-n+1.规律,第①个正多边形需要用4个黑色棋子,第②个需要用8个黑色棋子,第③个需要用12个黑色棋子,依次类推,第n个需要用(4n)个黑色棋子。

)探索图形结构成元素的规律是数学中的一个重要主题。

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学规律探究问题是指通过观察数列、图形或数据等,在一定的规则下寻找并探究其中的规律性的问题。

这种问题在初中数学中占有很重要的地位,有助于学生培养数学思维能力、观察力和逻辑推理能力。

初中数学规律探究问题的类型可以分为数列规律、图形规律和数据规律三类。

一、数列规律问题:数列规律问题是最常见的一类规律探究问题。

通过观察数列中的数字间的关系,找出数列中的规律,并根据规律继续发展数列的下一项。

解题技巧:1. 观察数列中的数字之间的差值或倍数关系,找出数列的通项公式。

1, 3, 5, 7, ...这个数列中,每项相差2,可推测通项公式为2n-1。

2. 观察数列中的数字之间的乘积关系,找出数列的通项公式。

2, 6, 18, 54, ...这个数列中,每项之间都是前一项乘以3,可推测通项公式为2*3^n-1。

3. 观察数列中的数字之间的其他关系,如开方、乘方、递推等。

1, 2, 4, 8, ...这个数列中,每项都是前一项乘以2,可推测通项公式为2^n。

二、图形规律问题:图形规律问题是通过观察一系列图形的形状、数量、位置等特征,找出其中的规律,并根据规律继续绘制下一个图形。

解题技巧:1. 观察图形中的线段、角度、对称性等几何特征,找出图形的规律。

菱形图形的内角和都是360度,可用来判断菱形的特征。

2. 观察图形之间的变形关系,如旋转、平移、翻转等。

向上平移一次得到下一个图形,可用来判断图形的规律。

3. 观察图形中的数字和符号之间的关系,如大小、顺序、重复等。

图形中重复出现的数字可能有特殊的含义,可以利用这些数字来推测规律。

解题技巧:1. 观察数据之间的数值关系,如加减、乘除、指数等。

一组数据之间的差值相等,可用来推测规律。

2. 观察数据之间的变化趋势,如递增、递减、周期性等。

一组数据呈现递增或递减的趋势,可用来推测规律。

3. 观察数据之间的比例关系,如比值、百分比、占比等。

中考数学12题探索规律题解题思路

中考数学12题探索规律题解题思路

探索规律题解题思路分析在中考试卷中经常出现一类题型,它要求学生通过对题目中所给出的一些“数或图形”的特点,分析其规律,从而给出结论,这就是所谓“探索规律题”。

规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。

这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。

其目的是考查学生收集、分析数据,处理信息的能力。

规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型主要是填空题。

从近几年12小题的变化趋势看,明显向新课标靠拢,通过试题的编排,尽可能地为学生提供观察、操作、归纳、类比、猜测、证明的机会,发展学生的推理能力. 对于12小题,要求学生不但要会用代数式表示规律,还要通过画图、计算等操作发现规律,对学生要求较高.从近几年中考试卷看,北京市命题延续了此类型的题目,并且难度有所增加(12小题,10年0.45,12年0.47,13年0.35),虽然本题难度有波动,但一般控制在0.5左右. 教学要重视.一、主要类型:第一类:递进规律类型题(一)数字排列规律型的探索性问题例1.(七上期末)14. 填在下面各正方形中的四个数之间都有相同的规律,根据这种规律m的值是.分析规律:上述问题中的规律是较典型的多种规律的复合叠加,应该是有相当的难度,首先单个的方格分析,一个对角方向的两数之和等于另一对角方向的两数之积如0+2=1×2、2+10=3×4等),左边的两格是两个连续偶数; 而从横向的不同方格分析,它又不是我们常见的1、2、3…n 的规律,我们知道它们的右上格依次也是连续偶数排列。

初三规律题的解题技巧

初三规律题的解题技巧

初三规律题的解题技巧
初三数学规律题解题技巧
一、发现找规律的方法
观察题目所给的数或式子,分析它们之间的相互联系,从而发现数或式子的变化规律。

二、掌握找规律的方法
1. 标出序列号:找规律的题目,通常按照一定的顺序给出一系列数,要求我们根据这些数的变化规律找出其中的规律。

对于较复杂的找规律题,我们可以先将各个数列出来,然后分析它们的变化趋势,再根据前后的变化关系找出规律。

2. 试探法:有些题目,我们无法从整体上分析出规律,这时我们可以采用试探法。

从数列的第一个数开始,依次代入到公式中,观察结果的变化,从而找出规律。

3. 归纳法:对于一些较为复杂的找规律题目,我们可以采用归纳法。

通过对给出的数列进行观察和分析,归纳出数列中数的变化规律。

三、运用所发现的规律解题
根据所发现的规律,将题目中的数或式子代入到规律中,从而求出答案。

总之,解答初三数学规律题需要我们认真观察、分析、归纳和运用所发现的规律,从而找到解题的方法。

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学规律探究问题是指通过观察数学题目或运算过程中的规律,探索问题的解题方法和相关数学规律的问题。

这类问题不仅提高了学生的数学思维能力和数学创新能力,还培养了他们分析问题、归纳总结和解决问题的能力。

本文将介绍几种常见的初中数学规律探究问题的类型及解题技巧分析。

1. 数列规律探究问题:数列规律问题是初中数学中经常出现的一类问题,通过观察数列中的规律,确定下一个数或数列的规律。

解决这类问题时,可以采用以下解题技巧:- 分析数列中相邻项之间的规律,计算相邻项的差或比是否存在固定的规律;- 观察数列中的倍数关系,判断是否是等差数列或等比数列;- 求和法:将数列中的数相加,观察是否存在数列和的规律;- 分析数列中各项之间的乘积是否存在固定的规律。

2. 几何图形规律探究问题:几何图形规律探究问题是通过观察几何图形的属性和变化规律,确定下一个图形或各个部分的属性。

解决这类问题时,可以采用以下解题技巧:- 分析图形形状的特点,观察是否存在旋转、平移、翻转等操作;- 计算图形各个部分的长度、角度或面积的规律,通过计算得到的数值是否存在固定的关系;- 将图形进行分解、组合或简化,观察得到的新图形是否存在相似或等价的关系。

3. 运算规律探究问题:运算规律探究问题是通过观察运算过程中的规律,寻找运算结果之间的关系。

解决这类问题时,可以采用以下解题技巧:- 分析运算中各个数的特点,观察是否存在某种运算规律;- 运用代数表达式表示运算过程,并寻找代数表达式之间的关系;- 尝试不同的数值进行计算,观察得到的结果是否存在固定的关系。

在解决初中数学规律探究问题时,还需要注意以下几点技巧:- 善于利用数学工具和图形绘制,辅助观察和分析问题中的规律;- 对于较复杂的问题,可以尝试将问题简化,找到其中的规律再进行推广; - 加强数学基本概念和数学公式的掌握,有助于发现问题中的规律;- 锻炼逻辑思维能力和数学推理能力,培养解决问题的主动性和创造性。

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学中,规律探究问题是一类需要通过观察、归纳、推理等方法来找出数学规律的问题。

这类问题通常涉及数字序列、图形变换、等式变形等方面,要求学生在探究规律的过程中培养逻辑思维能力和数学思维方式,提高解决问题的能力。

一、数字序列类问题数字序列类问题是初中数学中最常见的规律探究问题。

这类问题通常要求学生根据给定的数字序列找出其中的规律,并推算出下一个数字或几个数字。

解决这类问题的关键是观察敏锐和逻辑推理能力。

具体的解题技巧如下:1.观察数字序列中的差值:有些数字序列是等差数列,差值相等;有些数字序列是等比数列,比值相等;有些数字序列可能是其他规律,需要用其他方法来找出。

2.找出数字序列中的特殊数字:有些数字序列中会有特殊的数字,比如首项为1的斐波那契数列,第三个数字开始,每个数字是前两个数字之和。

3.归纳误差法:当已知前几个数字后无法确定规律时,可以假设一个规律并进行验证,找出规律的特点和一般性质,再用这个规律来验证后续数字。

二、图形变换类问题图形变换类问题通常涉及图形的旋转、翻转、平移、缩放等操作,要求学生根据给定的图形或一系列图形的变换找出其中的规律。

解决这类问题的关键是观察图形的形状和位置的变化,利用几何知识进行分析。

具体的解题技巧如下:1.观察图形的对称性:有些图形在某种变换后会保持对称,比如旋转180度后还是原来的图形。

2.观察图形的放大缩小关系:有些图形在变换后会变成原来的图形的倍数,比如放大或缩小一定的倍数。

3.观察图形的平移关系:有些图形在变换后会平移一定的距离,比如向左或向右平移一定的格数。

三、等式变形类问题等式变形类问题通常要求学生通过等式的变形推导出另一个等式,并验证等式的等价性。

解决这类问题的关键是掌握等式变形的基本方法和技巧。

具体的解题技巧如下:1.使用性质和定理:根据等式的性质和定理进行变形,如分配律、合并同类项等;2.开展移项、约去等操作:通过移动变量的位置、约去相同因式等操作推导出新的等式;3.代入数值验证等式的等价性:可以代入一些具体的数值来验证等式是否成立。

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学中,规律探究问题是指通过分析数列、图形或公式等数学对象的特点,寻找其中隐藏的规律并加以运用来解决问题的一类问题。

这类问题需要学生具备分析能力、抽象能力、推理能力等多方面的综合能力。

初中数学规律探究问题的类型较为多样,常见的有以下几类:1. 数列问题:通过观察数列中的数字之间的规律,找出数列的通项公式或下一个数字,进而解决问题。

已知数列1、2、4、7、11、16的通项公式是多少?解题技巧:观察数列中相邻数字之间的差或比例是否存在固定规律,如果存在,可通过运算找出通项公式;如果不存在,则考虑是否可以构造新的数列来寻找规律。

2. 图形问题:通过观察图形中的形状、边长、角度等特点,找出图形的规律并解决问题。

已知一个正方形从第一阶到第四阶的边长依次为1、2、3、4,第十个阶的边长是多少?解题技巧:观察图形中相邻部分之间的关系,寻找存在的等差、等比、对称等规律;如果能够构造新的图形来辅助分析,更容易找出规律。

3. 公式问题:通过观察公式中的变量、系数等特点,推测出公式的规律并解决问题。

已知一个等差数列的公差是d,前n项的和为Sn,求第n项的值。

1. 观察法:通过观察数列、图形或公式等数学对象的特点,寻找其中存在的规律。

2. 归纳法:通过观察到的规律,总结规律的表达式或公式。

3. 推理法:通过观察到的规律,根据数学常识进行推理和证明。

4. 验证法:通过代入具体数值,验证所得的规律是否成立。

5. 构造法:通过构造新的数列、图形或公式等,辅助分析和解题。

除了以上解题技巧外,良好的数学基础知识和逻辑思维能力也是解决规律探究问题的重要因素。

平时要加强基础知识的学习,培养逻辑思维能力,多进行思维训练和思维导图的绘制,提高解决问题的能力。

中考数学规律题解题技巧有哪些好的方法

中考数学规律题解题技巧有哪些好的方法

中考数学规律题解题技巧有哪些好的方法中考数学规律题解题技巧:标出序列号,找规律的数学题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

中考数学规律题解题技巧标出序列号找规律的数学题目,通常按照一定的顺序给出一系列量,要求我们根据这些数学已知的量找出一般规律。

找出的规律,通常包序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

看增幅如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a1为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a1+(n-1)b。

中考数学规律题解题方法有哪些1、线段、角的计算与证明中考数学的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

2、一元二次方程与函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。

几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。

相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。

中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。

一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。

但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考规律探究题的解题方法
数式规律探究
通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了学生的分析、归纳、抽象、概括能力。

一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。

数式规律探究是规律探究问题中的主要部分,解决此类问题注意以下三点:
1、一般地,常用字母n为正整数,从1开始。

2、在数据中,分清奇偶,记住常用表达式。

正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…
偶数…2n-2,2n,2n+2…
3、熟记常用的规律
①1、4、9、16...... n2②1、3、6、10……
(1)
2
n n+
③1、3、7、15……2n-1④1+2+3+4+…n=
(1)
2
n n+
⑤1+3+5+…+(2n-1)= n2 ⑥2+4+6+…+2n=n(n+1)
⑦12+22+32….+n2=1
6
n(n+1)(2n+1)⑧13+23+33….+n3=
1
4
n2(n+1)
数字规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:
1、观察法
例1:观察下列等式:①1×1
2
=1-
1
2
②2×
2
3
=2-
2
3
③3×
3
4
=3-
3
4
④4×4
5
=4-
4
5
……猜想第几个等式为(用含n的式子表示)
例2:探索规律:31=3,32=9,33=27,34=81,35=243,36=729……,那么
32009的个位数字是。

2、函数法
例3、将一正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法
n
= (用含
例4:有一组数:1、2、5、10、17、26……请观察这组数的构成规律,用你发现的规律确定第8个数为。

练习:
1、观察下列等式:1×3=12+2×1;2×4=22+2×2;3×5=32+2×3……请将
你猜想到的规律用含自然数n(n≥1)的代数式表示出来:。

2
、观察下列各式:
2
1
×2=
2
1
+2;
3
2
×3=
3
2
+3;
4
3
×4=
4
3
+4;
5
4
×5=
5
4
+5……
设n为正整数,用关于n的等式表示这个规律为。

3、请你将猜想到的规
律用含正整数n(n≥1)的代数式表示出来为。

4、已知:2+
2
3
=22×
2
3
;3+
3
8
=32×
3
8
;4+
4
15
=42×
4
15
;5+
5
24
=52×
5
24
…,若10+
b
a
=102×
b
a
符合前面式子的规律,则a+b= 。

5、观察下列等式:9-1=8;16-4=12;25-9=16;36-16=20……设n(n≥1)表示正整
数,用关于n的等式表示这个规律为。

6、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102…由
此规律可推出第n等式:。

7、下列一组按规律排列的数:1,2,4,8,16……第2010个数是。

8、探索规律:31=3,32=9,33=27,34=81,35=243,36=729……那么32008的个位数字
是。

9、观察下列等式:71=7,72=49,73=343,74=2041……由此可判断7100的个位数字
是。

10、小说《达·芬奇密码》中的一个故事里出现了一串神密排列的数:1,1,2,3,
5,8……则这列数的第8个数是。

11、世界上著名的莱布尼茨
1
1
1
三角形如图所示则排在第10
1
2
1
2
1 1
行从左边数第3个位置上的数
1
3
1
6
1
3
1 2 1
是。

1
4
1
12
1
12
1
4
1 3 3 1
1
5
1
20
1
30
1
20
1
5
1 4 6 4 1
1
6
1
30
1
60
1
60
1
30
1
6
1 5 10 10 5 1
…………
12、我国宋代数学家杨辉,发现的“(a+b)展开式的系数,如右图所示,被后世称
为“杨辉三角”则第5行左边第4个数为。

1
2
13、瑞士中学教师巴尔末成功地从光谱数据95,1612,2521,36
32
……中得到巴尔末公式,
从而打开了光谱奥妙的大门,按此规律第七个数据是 。

14、已知a 1=1123⨯⨯+12=23,a 2=1234⨯⨯+13=38,a 3=1345⨯⨯+14=4
15
……按此规律,
则a 99= 。

15,已知112⨯=1-12,123⨯=12-13,134⨯=13-1
4……,则
1
12
⨯+123⨯+134⨯+…+1(1)n n += ;用相同思路探究:
1
13⨯+135⨯+157
⨯…+1(21)(21)n n -+= 。

二、图形规律探究 拆图法
例6.按如下规律摆放三角形:则第④堆三角形的个数为 ;第(n )堆三角形的个数为 。

△ △ △ △ △ △ △△△ △ △ △△△△△ △
△△△△△△△
① ② ③
练习:1、如图7-①,图7-②,图7-③,图7-④,,是用围棋棋子按照某种规律摆成的一行“广”
字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是
________
2.如图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.
- 3.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有
个 .
4.图(3)是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为s ,则s = . (用n 的代数式表示s )
5.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 __________块,第n 个图形中需要黑色瓷砖__________块(用含n 的代数式表示).
6.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .
7.如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.
(1) (2) (3)
……
n =1
n =2
n =3
第1个
第2个
第3个
… … 第1幅 第2幅 第3幅 第n 幅
图5
(2)
(3) ……。

相关文档
最新文档