实验一梁结构静力有限元分析(精)
悬臂梁—有限元ABAQUS线性静力学分析实例

线性静力学分析实例——以悬臂梁为例线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。
在ABAQUS中,该类问题通常采用静态通用(Static,General)分析步或静态线性摄动(Static,Linear perturbation)分析步进行分析。
线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。
这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。
在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I)的性价比很高。
对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。
悬臂梁的线性静力学分析1.1 问题的描述一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises应力、位移分布。
ν材料性质:弹性模量3=E=,泊松比3.02e均布载荷:F=103N图1-1 悬臂梁受均布载荷图1.2 启动ABAQUS启动ABAQUS有两种方法,用户可以任选一种。
(1)在Windows操作系统中单击“开始”--“程序”--ABAQUS 6.10 --ABAQUS/CAE。
(2)在操作系统的DOS窗口中输入命令:abaqus cae。
启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。
1.3 创建部件在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。
有限元受力分析--结构梁-力-计算

有限元受力分析–结构梁-力-计算1. 前言受力分析是工程设计中至关重要的一环,能够帮助工程师完善设计并避免安全事故的发生。
在此,我们将介绍有限元受力分析在结构梁设计中的应用。
本文将重点讲解有限元受力分析的相关理论和计算方法。
2. 有限元受力分析有限元分析是数值计算的一种方法,可用于解决工程中的受力分析问题。
它把结构离散为有限个单元,然后对每个单元进行分析。
有限元分析可分为线性有限元分析和非线性有限元分析两种类型。
本文我们只讨论线性有限元分析。
在有限元分析中,结构被分解为离散的单元,每个单元都是基于解析解的一部分。
有限元的形状、尺寸和材料属性可以通过计算机程序进行定义。
使用数学模型和有限元方法,可以计算单元的应力、变形和应变,从而进行结构的受力分析。
3. 结构梁结构梁相信大家应该都知道,它是工程中最为常用的结构之一。
它具有一定的强度和刚度,可以支撑和传递载荷。
一般来说,结构梁通常由简单的杆件单元组成。
在进行结构梁受力分析时,我们需要考虑弯曲、剪切和挤压等不同形式的载荷,以及结构在工作条件下的应变和应力分布情况。
有限元受力分析对于这些问题的研究提供了很好的解决方案。
4.力的分析在受力分析中,载荷是非常关键的参数。
载荷可以是点载荷、均布载荷、集中荷载等。
在本文中,我们将分别介绍这些载荷类型的有限元分析方法。
4.1 点载荷分析点载荷通常是一个单点受到的载荷。
对于点载荷的有限元分析,我们可以通过构建一个网格模型,然后将点载荷作用在网格的节点上。
此外,还需要设定材料的弹性模量和截面的截面面积,以计算结构的应力和变形。
需要注意的是,点载荷分析过程中的网格划分应当尽量精细,以达到更为优秀的数值精度。
4.2 均布载荷分析均布载荷是沿着梁的长度方向均匀分布的载荷,例如一根梁的自重、荷载等。
在进行均布载荷的有限元分析时,我们可以在网格的中央位置放置均布载荷,然后将梁的边缘节点设置为固定的约束条件。
同样,需要设定材料的弹性模量和截面的截面面积以计算结构的应力和变形。
有限元分析中的结构静力学分析怎样才能做好精选全文

可编辑修改精选全文完整版有限元分析中的结构静力学分析怎样才能做好1 概述结构有限元分析中,最基础、最根本、最关键、最核心同时也是最重要的一种分析类型就是“结构静力学分析”。
静力学分析可用于与结构相关、与流体相关、与电磁相关以及与热相关的所有产品;静力学分析是有限元分析的根基,是有限元分析的灵魂。
2 基础理论结构静力学按照矩阵的形式可表示为微分方程:[K]{x}+{F}=0其中,[K]代表刚度矩阵,{x}代表位移矢量,{F}代表静载荷函数。
由此可知,结构静力学有限元分析过程就是求解微分方程组的过程。
2.1 三个矩阵的说明静力学分析微分方程组三个矩阵进一步说明:[K]代表刚度矩阵。
举例说明,如果用手折弯一根筷子,假设筷子是钢材料的,比较硬,很难折断;假设筷子是常规木材的,比较脆,基本上都能折断。
这里筷子断与不断的本质并不是钢或者木材,而是钢或者木材表在筷子上表现出来的刚度(或者叫硬度),这里刚度用计算机数值分析的方式来描述,就是刚度矩阵。
{x}代表位移矢量。
举例说明,一把椅子,如果有人偏瘦,坐在椅子上,椅面基本不下沉;如果有人偏胖,坐在椅子上,椅面会有明显下沉(谁坐谁知道...),此时,椅面的下沉量,可用位移矢量来表示。
{F}代表静载荷函数,也是静力学分析的关键。
举例说明,上面筷子例子中,手腕对筷子的作用,就是一种载荷(或者叫外力、荷载、负荷、承重等);上面椅子例子中,人对椅子表面的作用,也是一种载荷。
这些载荷在大多数情况下,没有明显的快慢效应,就可用静载荷函数来表示。
2.2 静力学分析中的载荷说明静载荷函数本质说明:假设1,相同一根筷子,又假设筷子比较粗(或者说是几根筷子捆绑在一起):双手慢慢用1 / 5力,筷子难断;双手快速用力,筷子难断,此时慢慢折弯的效果就可以理解为静力学过程。
假设2,相同椅子:慢慢坐下去,椅子没有明显晃动;快速坐下去,椅子没有明显下沉与晃动,此时慢慢坐在椅子上的过程就可以理解为静力学过程。
有限元-结构静力学分析

03
结果优化
如果结果不满足设计要求,需要对有 限元模型进行优化设计,如改变梁的 截面尺寸、增加支撑等。
THANKS
谢谢您的观看
结构静力学的求解方法
解析法
解析法是通过数学方法求解结构在静载荷作用下的响应的求解方法。它通常 适用于具有简单几何形状和载荷条件的结构,如梁、板、壳等。
数值法
数值法是一种通过数值计算方法求解结构在静载荷作用下的响应的求解方法 。它通常适用于具有复杂几何形状和载荷条件的结构,如飞机、汽车等。
结构静力学的基本假设和简化
问题描述和基本方程
问题描述
弹性地基梁是支撑在弹性地基上的梁,受到垂直荷载的作用。该问题可描述为求 解地基反力和梁的挠度。
基本方程
该问题的基本方程包括梁的平衡方程、几何方程和物理方程。这些方程描述了梁 在受力后的变形和应力分布情况。
利用有限元法进行每个单元之间通过节点相连。每个节点具有三个自由度:沿 x、y、z方向的移动。
系统方程的建 立
将所有单元的平衡方程 和变形协调方程组合起 来,得到整个结构的系 统方程。
求解系统方程
利用数值方法(如高斯 消元法)求解系统方程 ,得到每个节点的位移 和应力。
结果分析和讨论
01
结果输出
输出每个节点的位移、应力、应变和 弯矩等结果。
02
结果评估
根据输出结果,对框架结构的强度、 刚度和稳定性进行评估,判断是否满 足设计要求。
连续性假设
结构静力学的基本假设是结构的材料是连续的, 即结构的内部没有空隙和缺陷。
各向同性假设
结构静力学的基本假设是结构的材料是各向同性 的,即结构的各个方向具有相同的材料性质。
均匀性假设
结构静力学的基本假设是结构的材料是均匀的, 即结构的各个部分具有相同的材料性质。
梁的有限元分析原理

梁的有限元分析原理梁的有限元分析原理是一种工程结构分析方法,广泛应用于建筑、桥梁、航空航天、汽车等领域。
它通过将连续的结构离散化为有限数量的小单元,通过数学模型进行计算,得出结构的力学性能和响应情况。
梁的有限元分析原理是有限元分析的基础,下面将对其进行详细介绍。
首先,梁的有限元分析原理基于梁理论,即在横向较小、纵向较长的情况下,结构可以近似为一维梁。
梁的有限元分析原理通过将梁划分为多个单元,每个单元内部可以看作两个节点之间的一段杆件,通过建立节点之间的力学关系方程,得到整个结构的力学性能。
其次,梁的有限元分析原理利用了变分原理,即将结构的势能取极小值,建立了结构的力学方程。
通过对于梁的弯曲、剪切和轴向力等方面的力学模型进行合理的假设与简化,可以得到结构的位移与力的关系,从而解决结构的力学问题。
在梁的有限元分析中,需要进行以下几个步骤:1.几何离散化:将梁结构划分为多个单元,每个单元具有相同的形状与尺寸,通常为矩形或三角形。
2.模型建立:根据梁理论以及力学方程的简化假设,建立节点的力学关系方程,包括位移、应力、应变等参数。
3.材料性能定义:确定梁材料的力学性能参数,如弹性模量、截面惯性矩等。
这些参数对梁结构的力学性能具有重要影响。
4.边界条件施加:根据实际问题设定边界条件,包括固定支座、约束条件等。
这些条件对于解决梁结构的位移、应力等问题至关重要。
5.方程求解:通过数学方法求解得到节点之间的力学关系方程,利用数值计算技术进行迭代求解,得到梁结构的位移、应力等参数。
6.结果分析:根据求解得到的结果,进行力学性能分析,如最大应力、挠度、模态分析等。
根据分析结果评估结构的强度与稳定性。
总结起来,梁的有限元分析原理是一种基于梁理论的工程结构分析方法,通过将结构离散化为多个小单元,利用力学关系方程和数值计算技术求解得到结构的力学性能。
通过梁的有限元分析原理,工程师可以更加准确地评估结构的强度与稳定性,对结构进行优化设计。
梁模型有限元计算_ANSYS Workbench有限元分析实例详解(静力学)_[共7页]
![梁模型有限元计算_ANSYS Workbench有限元分析实例详解(静力学)_[共7页]](https://img.taocdn.com/s3/m/ba2491b227d3240c8547ef2c.png)
4.2 梁单元静力学分析当结构长度对横截面的比率超过10:1,沿长度方向的应力为主要分析对象,且横截面始终保持不变时,即应用梁单元。
梁单元可用于分析主要受侧向或横向载荷的结构,如建筑桁架、桥梁、螺栓等。
在WB中默认为铁摩辛柯(Timoshenko)梁单元,即Beam188和Beam189,可计算弯曲、轴向、扭转和横向剪切变形。
其中Beam188采用线性多项式作为形函数,Beam189采用二次多项式作为形函数,当WB的Mesh设置中Mesh-Element Midside Nodes为Dropped 时,即为Beam188;Mesh-Element Midside Nodes为Kept时,即为Beam189。
有限元对单元特性的描述包括单元形状、节点数目、自由度和形函数。
表4-2-1为Beam 单元的对比。
在WB中默认设置为二次单元。
一般来说,线性单元需要更多的网格数才能达到二次单元的精度。
选用二次单元可提高计算精度,这是因为二次单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且二次插值函数可更高精度地逼近复杂场函数,所以当结构形状不规则、应力分布或变形很复杂时可以选用高阶单元。
但高阶单元的节点数较多,在网格数量相同的情况下由高阶单元组成的模型规模要大得多,计算内存消耗也多,因此,在使用时应权衡考虑计算精度和时间。
表4-2-1 Beam单元对比4.2.1 梁模型有限元计算用ProE建立一桁架模型,导入WB进行分析计算。
(1)ProE建模。
在草绘界面绘制一边长为30mm、40mm、50mm的三角形,然后选择投影命令将草绘图形投影到基准面上,另存为x_t文件(其他3D软件操作方法类似)。
(2)导入模型。
如图4-2-1所示,在Import设置中,Operation设为Add Frozen,Line Bodies 设为Yes。
– 65 –– 66 – 图4-2-1 Import ProE模型文件设置(3)梁截面赋值,并定义截面方向,最后用Form New Part将三根梁合并为一个部件,如图4-2-2所示。
AnsysWorkbench工程实例之——梁单元静力学分析

AnsysWorkbench工程实例之——梁单元静力学分析本文可能是您能在网络上搜索到的关于Ansys Workbench梁单元介绍最详细全面的文章之一。
梁单元常用于简化长宽比超过10的梁与杆模型,比如建筑桁架、桥梁、螺栓、杠杆等。
Workbench中的梁单元有Beam188(默认)与Beam189两种,Beam188无中节点,Beam189有中节点。
在全局网格设置下,梁单元的中节点设置Element MIdside Nodes默认为dropped(无中节点),即默认使用Beam188单元,如果改为kept(有中节点),则将改变为Beam189单元。
类型单元形状中节点自由度形函数Beam188 3D梁无 6 线性Beam189 3D梁有 6 二次Beam188Beam1891 梁单元分析概要1.1 建模与模型导入线框模型可在DM中创建,也可导入stp/igs等模型。
以下分别介绍通过DM创建与通过CAD软件创建导入过程。
1.1.1 梁线体的创建方法1,简单的线体模型可以在DM中创建,一般在XY平面绘制草图或点,再通过Concept——Lines From Sketches、Lines From Points或3D Curve等创建。
区别在于Lines From Sketches是提取草图所有的线条,如果线条是相连接的,提取的结果为一个线几何体。
Lines From Points或3D Curve用于将草图的点(可以是草图线条的端点)连接成为线体,结合Add Frozen选项,可以创建多个线几何体。
操作3次后多个线条可以通过From New Part功能组合为一个几何体,组合后两条线共节点,相当于焊接在一起。
选中后右击方法2,通过CAD软件创建后导入。
如果读者使用的是creo建模,可在草图中创建点,退出草图后选择基准——曲线——通过点的曲线。
操作3次后输出时需要注意,可另存为stp或igs格式,在输出对话框中必须勾选基准曲线和点选项。
悬臂梁—有限元ABAQUS线性静力学分析报告实例

线性静力学分析实例——以悬臂梁为例线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。
在ABAQUS 中,该类问题通常采用静态通用(Static ,General )分析步或静态线性摄动(Static ,Linear perturbation )分析步进行分析。
线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。
这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。
在一般的分析中,应尽量选用精度和效率都较高的二次四边形/ 六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I)的性价比很高。
对于复杂模型,可以采用分割模型的方法划分二次四边形/ 六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/ 四面体单元进行网格划分。
悬臂梁的线性静力学分析1.1 问题的描述一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1 所示,求梁受载后的Mises 应力、位移分布。
材料性质:弹性模量 E 2e3 ,泊松比0.3均布载荷:F=103N图1-1 悬臂梁受均布载荷图1.2 启动ABAQUS启动ABAQUS有两种方法,用户可以任选一种1)在Windows 操作系统中单击“开始” -- “程序” --ABAQUS 6.10 -- ABAQUS/CA。
E(2)在操作系统的DOS窗口中输入命令:abaqus cae 。
启动ABAQUS/CA后E ,在出现的Start Section (开始任务)对话框中选择Create Model Database 。
1.3 创建部件在ABAQUS/CA顶E 部的环境栏中,可以看到模块列表:Module:Part ,这表示当前处在Part (部件)模块,在这个模块中可以定义模型各部分的几何形体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 梁结构静力有限元分析
一、实验目的:
1、 加深有限元理论关于网格划分概念、划分原则等的理解。
2、 熟悉有限元建模、求解及结果分析步骤和方法。
3、 能利用ANSYS 软件对梁结构进行静力有限元分析。
二、实验设备:
微机,ANSYS 软件(教学版)。
三、实验内容:
利用ANSYS 软件对图示由工字钢组成的梁结构进行静力学分析,以获得其应力分布情况。
A-A B-B
四、实验步骤:
1、建立有限元模型:
(1) 建立工作文件夹:
在运行ANSYS 之前,在默认工作目录下建立一个文件夹,名称为beam ,在随后的分析过程中所生成的所有文件都将保存在这个文件夹中。
启动ANSYS 后,使用菜单“File ”——“Change Directory …”将工作目录指向beam 文件夹;使用“Change Jobname …”输入beam 为初始文件名,使分析过程中生成的文件均以beam 为前缀。
选择结构分析,操作如下:
GUI: Main Menu > Preferences > Structural
(2) 选择单元:
操作如下: GUI: Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Structural Beam >3D 3 node 189
然后关闭Element Types 对话框。
(3) 定义材料属性:
定义弹性模量和泊松比,操作如下:
GUI: Main Menu > Preprocessor > Material Props > Material Models > Structural > linear > Elastic > Isotropic
在弹出的对话框中输入材料参数: 杨氏模量(EX): 2.06e11
泊松比(PRXY): 0.3
(4) 定义梁的截面类型和尺寸:
操作如下: GUI: Main Menu > Preprocessor > Sections > Beam > Common Sections
选择“工”字型,W1=W2=0.4,W3=0.6,t1=t2=t3=0.015
(5)创建实体模型:
F=10000N 6m
6m A A B B
首先定义3个关键点,然后通过关键点生成梁实体模型。
定义关键点操作如下:
GUI: Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS
关键点坐标参数如下:
1#关键点 X=0,Y=0,Z=0
2#关键点 X=0,Y=6,Z=0
3#关键点 X=6,Y=6,Z=0
连线操作如下:
GUI: Main Menu > Preprocessor > Modeling > Create > Lines > Lines > Straight Line 将1和2、2和3连成直线。
(6)划分网格
①首先要设定各梁的截面方向,操作如下:
GUI: Main Menu > Preprocessor > Meshing > Mesh Attributes > Picked Lines
选中12线后点“OK”,在弹出对话框中“Pick Orientation Keypoint”项选为Yes,选中第3点为参考点。
同样,选中23线后以第1点为参考点。
②划分网格为10份,操作如下:
GUI: Main Menu > Preprocessor > Meshing > MeshTool > Lines set (NDIV处输入10) > Mesh
③划分完后显示出截面可看得更清楚,操作如下:
菜单“Plotctrls” > Style > Size and Shape … > Display of element 项为 On Ctrl键+鼠标右键可调角度。
④保存数据库。
GUI: Toolbar >SAVE_DB
2、施加载荷并求解:
(1)定义约束
定义1#关键点的约束,操作如下:
GUI: Main Menu > Solution > Define Loads > Apply > Structural > Displacement > On Keypoints 选择1#关键点,单击OK按钮。
在被约束自由度(DOFs to be constrained)列表中选”All DoF”限制所有,单击OK按钮。
这时在图形窗口中可看到1#关键点处出现箭头,表示此点已被约束,箭头表示被约束的方向。
(2) 施加载荷
在梁的上边中间施加向下的载荷Fy=-10000N,操作如下:
GUI:Solution > Define Loads > Apply > Structural > Force/ Moment > On Nodes
弹出Apply F/M on Nodes 对话框,键入Fy载荷值-10000,单击OK按钮。
(3) 求解
GUI:Solution > Solve > Current LS
3、查看分析结果:
(1)查看模型变形前后图
GUI: Main Menu > General Postproc > Plot Results > Deformed Shape> Def+undeformed
保存图使用菜单“PlotCtrls” > Hardcopy > To file…
(2)查看等效应力
显示等效应力等值线图,操作如下:
GUI: Main Menu > General Postproc > Plot Results > Nodal Solu > Stress > von Mises stress
单击OK按钮。
保存图使用菜单“PlotCtrls” > Hardcopy > To file…
(3)查看变形过程动画
菜单PlotCtrls > Animate > Deformed Results > Stress > von Mises SEQV
动画内容自动在工作目录下保存为avi格式。