基于NX有限元分析实验报告

合集下载

基于UG NX和ANSYS的减速箱渐开线圆柱齿轮有限元分析

基于UG NX和ANSYS的减速箱渐开线圆柱齿轮有限元分析

基于UG NX和ANSYS的减速箱渐开线圆柱齿轮有限元分析摘要:通过三维机械设计软件UG NX构建直齿圆柱齿轮几何实体模型,运用有限元分析软件ANSYS对齿根进行应力分析计算,计算出齿轮的最大应力和最大应变。

通过与理论分析结果的比较,说明ANSYS在齿轮计算中的有效性。

有限元分析有利于对齿轮传动过程中力学特性进行深入研究,为齿轮传动的优化设计提供了基础理论。

关键词:直齿圆柱齿轮应力分析ANSYS UG 失效齿根弯曲疲劳折断是齿轮主要失效形式之一,因为在载荷的多次重复作用下,齿根处产生的弯曲应力最大,且齿根过渡部分的截面突变及加工刀痕等引起的应力集中作用,当齿根处的交变应力超过材料的疲劳极限时,最终会造成轮齿的弯曲疲劳折断,因此,需进行齿根弯曲强度计算。

本文利用三维设计软件UG NX4.0对齿轮进行实体建模,通过软件数据接口实现数据传递,从而把所建立的实体模型导入有限元分析软件ANSYS11.0中,然后通过ANSYS对齿轮进行网格划分,加载求解,进行应力场分析,计算出轮齿传动过程中所受的最大应力、应变等,得到了齿根处最大弯曲应力,进行了齿根弯曲强度校核。

1 直齿圆柱齿轮几何实体模型的建立由于ANSYS有限元分析软件几何建模功能的限制,采用UGNX6.0建立直齿渐开线圆柱齿轮实体模型。

鉴于渐开线轮齿的复杂性,本文采用了UG NX6.0的齿轮插件来绘制齿轮。

输入想要绘制的齿轮参数(模数、齿数、压力角、齿顶高系数、顶系系数、齿轮厚度、齿轮孔直径),如图1所示,就可生成齿轮几何模型,完成建模,为了便于分析,提高运算效率,通过实体修剪,取三齿几何模型进行分析,将其保存为.prt文件格式。

本文所要分析的齿轮参数如下:齿轮转速n=1460r/min,传动功率P=50kW,模数m=4,齿轮齿数z=19,压力角α=20°,齿轮厚度34mm。

2 数据传递在UG 6.0中创建的保存为.prt文件格式的几何模型,ANSYS软件可以自动识别和导入.prt三维实体数据格式,从而实现UG和ANSYS 的数据传递,齿轮几何模型以体形式导入到ANSYS中。

有限元实验报告

有限元实验报告

有限元实验报告一、实验目的本实验旨在通过有限元方法对一个复杂的工程问题进行数值模拟和分析,从而验证理论模型的正确性,优化设计方案,提高设计效率。

二、实验原理有限元方法是一种广泛应用于工程领域中的数值分析方法。

它通过将连续的求解域离散化为由有限个单元组成的集合,从而将复杂的偏微分方程转化为一系列线性方程组进行求解。

本实验将采用有限元方法对一个具体的工程问题进行数值模拟和分析。

三、实验步骤1、问题建模:首先对实际问题进行抽象和简化,建立合适的数学模型。

本实验将以一个简化的桥梁结构为例,分析其在承受载荷下的应力分布和变形情况。

2、划分网格:将连续的求解域离散化为由有限个单元组成的集合。

本实验将采用三维四面体单元对桥梁结构进行划分,以获得更精确的数值解。

3、施加载荷:根据实际工况,对模型施加相应的载荷,包括重力、风载、地震等。

本实验将模拟桥梁在车辆载荷作用下的应力分布和变形情况。

4、求解方程:利用有限元方法,将偏微分方程转化为线性方程组进行求解。

本实验将采用商业软件ANSYS进行有限元分析。

5、结果后处理:对求解结果进行可视化处理和分析。

本实验将采用ANSYS的图形界面展示应力分布和变形情况,并进行相应的数据处理和分析。

四、实验结果及分析1、应力分布:通过有限元分析,我们得到了桥梁在不同工况下的应力分布情况。

如图1所示,桥梁的最大应力出现在支撑部位,这与理论模型预测的结果相符。

同时,通过对比不同工况下的应力分布情况,我们可以发现,随着载荷的增加,最大应力值逐渐增大。

2、变形情况:有限元分析还给出了桥梁在不同工况下的变形情况。

如图2所示,桥梁的最大变形发生在桥面中央部位。

与理论模型相比,有限元分析的结果更为精确,因为在实际工程中,结构的应力分布和变形情况往往受到多种因素的影响,如材料属性、边界条件等。

通过对比不同工况下的变形情况,我们可以发现,随着载荷的增加,最大变形量逐渐增大。

3、结果分析:通过有限元分析,我们验证了理论模型的正确性,得到了更精确的应力分布和变形情况。

基于NX有限元分析实验报告

基于NX有限元分析实验报告

基于NX有限元分析实验报告有限元分析及应用专业:机械姓名:你喝学号:2 0 1 3 X X指导老师:没意义工字梁热力学与结构学耦合分析有限元分析(FEA,Finite Element Analysis)将物体划分成有限个单元,这些单元之间通过有限个节点相互连接,单元看作是不可变形的刚体,单元之间的力通过节点传递,然后利用能量原理建立各单元矩阵;在输入材料特性、载荷和约束等边界条件后,利用计算机进行物体变形、应力和温度场等力学特性的计算,最后对计算结果进行分析,显示变形后物体的形状及应力分布图。

有限元分析的基本概念是用较简单的问题代替复杂问题后再求解。

它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。

这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。

由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。

热——结构耦合分析是指求解温度场对结构中应力、应变和位移等物理量的影响,热——结构耦合问题是结构分析中较常见的一类耦合分析问题。

由于结构温度场的分布不均会引起结构的热应力,或者是结构件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素。

为此需要先进行相应的热分析,然后再进行结构分析。

在NX环境中进行热——结构耦合分析,首先进行热分析求得结构的温度场,然后再进行结构分析,并将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布。

1.模型建立2.热分析2.1新建FEM和仿真点击开始按钮,选择“高级仿真”,激活高级仿真模块。

在仿真导航器中选择“新建FEM 和仿真”2.2解算方案2.3网格收集器添加材料属性,从材料清单中选择“Steel”,单击“确定”2.5划分网格2.6添加约束(进入仿真环境)所有外表面添加对流约束,环境温度为45,对流系数为100W/m^2-C2.7添加热约束在工字梁顶端设置65恒温2.8解算方案求解2.9结果分析计算完成后,右击击导航器中的“Results”,打开后观察结果由热分析所得的工字梁的温度分布云图可看出,最高温度出现在工字梁顶端,为65,最低温度在梁的底部,为45.953.结构分析前面步骤与热分析基本一致,在网格划分完毕后,添加载荷与约束,在工字梁的两端分别添加1000N的恒力,固定约束。

NX有限元分析示例

NX有限元分析示例

高压SCR试验台结构有限元分析报告一,分析目的1.1SCR系统管路及试验台的整体强度1.2SCR系统固定支撑强度二,分析对象图1-2图1-31.SCR系统管路系统原理图图1-1 2. SCR系统管路三维模型图1-2图1-3三,3D模型结构受力分析2.分析目的2.1SCR系统管路及试验台的整体强度2.2SCR系统固定支撑强度3.分析对象2.1根据管路系统的原理图(图1-1),分析得出其主要部件如下:滑动支撑、固定支撑、膨胀节(万向型)、膨胀节(压力平衡型)、混合器、反应器。

2.2受力分析2.2.1滑动支撑受力分析滑动支撑受力为:管道重力+摩擦力+管道内气体重力经计算该力F较小,计算时可忽略。

2.2.2固定支撑受力分析固定支撑受力分析经分析系统对万向型膨胀节的盲板力为20T,反应器工作重力约8.5T。

因此下图中三处红圈位置处的固定支撑受力为20T,另有反应器处8.5吨的重力。

为本次分析的主要载荷。

除此三个固定点受力外,其他固定支撑点受力较小,暂不分析。

图2-1四,3D模型结构有限元分析1.分析方法基于NX8.5的高级有限元分析算法选择求解器:NX NASTRAN 结算方案类型:SOL 1012.分析过程2.1.三维模型转化为一维单元线条20T20T8.5T图3-12.2.一维单元划分网格并附加三维截面及属性图3-2其中的划分网格单元: 26772其中使用的节点: 26577单元根据实际三维模型附加截面,材料选择为steel2.3.载荷附加及边界条件固定约束设置图3-2固定位置为:竖梁底部和侧撑固定端。

载荷位置如图3-2 所示(共计四个)。

2.4.NX分析分析结果最大位移量如图3-3所示:图3-3最大位移量为:15.56mm,具体位置在图中所示部位。

最大应力节点位置如图3-4 所示:图3-4最大应力节点为:161.61MPa,具体位置在图中所示部位。

根据以上软件分析结果汇总如下:此框架在受到载荷情况下的。

有限元分析报告(1)

有限元分析报告(1)

有限元分析报告(1)有限元仿真分析实验⼀、实验⽬的通过刚性球与薄板的碰撞仿真实验,学习有限元⽅法的基本思想与建模仿真的实现过程,并以此实践相关有限元软件的使⽤⽅法。

本实验使⽤HyperMesh 软件进⾏建模、⽹格划分和建⽴约束及载荷条件,然后使⽤LS-DYNA软件进⾏求解计算和结果后处理,计算出钢球与⾦属板相撞时的运动和受⼒情况,并对结果进⾏可视化。

⼆、实验软件HyperMesh、LS-DYNA三、实验基本原理本实验模拟刚性球撞击薄板的运动和受⼒情况。

仿真分析主要可分为数据前处理、求解计算和结果后处理三个过程。

前处理阶段任务包括:建⽴分析结构的⼏何模型,划分⽹格、建⽴计算模型,确定并施加边界条件。

四、实验步骤1、按照点-线-⾯的顺序创建球和板的⼏何模型(1)建⽴球的模型:在坐标(0,0,0)建⽴临时节点,以临时节点为圆⼼,画半径为5mm的球体。

(2)建⽴板的模型:在tool-translate⾯板下node选择临时节点,选择Y-axis,magnitude输⼊,然后点击translate+,return;再在2D-planes-square ⾯板上选择Y-axis,B选择上⼀步移下来的那个节点,surface only ,size=30。

2、画⽹格(1)画球的⽹格:以球模型为当前part,在2D-atuomesh⾯板下,surfs 选择前⾯建好的球⾯,element size设为,mesh type选择quads,选择elems to current comp,first order,interactive。

(2)画板的⽹格:做法和设置同上。

3、对球和板赋材料和截⾯属性(1)给球赋材料属性:在materials⾯板内选择20号刚体,设置Rho为,E为200000,NU为。

(2)给球赋截⾯属性:属性选择SectShll,thickness设置为,QR设为0。

(3)给板赋材料属性:材料选择MATL1,其他参数:Rho为,E为100000,Nu 为,选择Do Not Export。

有限元分析实验报告

有限元分析实验报告

学生学号1049721501301实验课成绩武汉理工大学学生实验报告书实验课程名称机械中的有限单元分析机电工程学院开课学院指导老师姓名学生姓名学生专业班级机电研1502班学年第学期2016—20152实验一方形截面悬臂梁的弯曲的应力与变形分析钢制方形悬臂梁左端固联在墙壁,另一端悬空。

工作时对梁右端施加垂直向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。

方形截面悬臂梁模型建立1.1建模环境:DesignModeler15.0。

定义计算类型:选择为结构分析。

定义材料属性:弹性模量为 2.1Gpa,泊松比为0.3。

建立悬臂式连接环模型。

(1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。

(2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图 1.1所示。

图1.1方形截面梁模型:定义单元类型1.2选用6面体20节点186号结构单元。

网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图 1.2所示:图1.2网格划分1.21定义边界条件并求解本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。

(1)给左端施加固定约束;(2)给悬臂梁右端施加垂直向下的集中力;1.22定义边界条件如图1.3所示:图1.3定义边界条件1.23应力分布如下图1.4所示:定义完边界条件之后进行求解。

图1.4应力分布图1.2.4应变分布如下图1.5所示:图1.5应变分布图改变载荷大小:1.3将载荷改为60kN,其余边界条件不变。

有限元分析试验报告

有限元分析试验报告

第二章有限元分析技术2.2.1 问题描述图2-2所示为由9个杆件组成的衍架结构,两端分别在1,4点用铰链支承,3点受到一个方向向下的力F y ,衍架的尺寸已在图中标出,单位: m。

试计算各杆件的受力。

弹性模量(也称扬式模量)E=206GPa;泊松比μ=0.3;作用力F y =-1000N;杆件的横截面积A=0.125m2.显然,该问题属于典型的衍架图2-2 衍架结构简图静力分析问题,通过理论求解方法(如节点法或截面法)也可以很容易求出个杆件的受力,但这里为什么要用ANSYS软件对其分析呢?2.2.3 实训目的本实训的目的有二:一是使学生熟悉ANSYS8.0软件的用户界面,了解有限元分析的一般过程;二是通过使用ANSYS软件分析的结果和理论计算结果进行比较,以建立起对利用ANSYS软件进行问题根系的信任度,为以后使用ANSYS软件进行更复杂的结构分析打基础。

2.2.2 结果演示通过使用ANSYS8.0软件对该衍架结构进行静力分析,其分析结果与理论计算结果如表2-1所示。

表2-1 ANSYS分析结果与理论计算结果的比较比较结果表明,使用ANSYS分析的结果与理论计算结果的误差不超过0.5%,因此,利用ANSYS软件分析来替代理论计算是完全可行的。

2.2.4 实训步骤一 ANSYS10.0的启动与设置1. 启动。

点击:开始>所有程序> ANSYS8.0> ANSYS ,即可进入ANSYS 图形用户主界面。

如图2-3所示。

其中,几个常用的部分有应用菜单,命令输入栏,主菜单,图形显示区和显示调整工具栏,分别如图2-3所示。

2. 功能设置。

电击主菜单中的“Preference ”菜单,弹出“参数设置”对话框,选中“Structural ”复选框,点击“OK ”按钮,关闭对话框,如图2-4所示。

本步骤的目的是为了仅使用该软件的结构分析功能,以简化主菜单中各级子菜单的结构。

3.图形显示区 主菜单应用菜单命令输入栏显示调整工具栏图2-3 用户主界面图2-43.系统单位设置。

NX8.5有限元分析

NX8.5有限元分析

Idealize Part2
FEM3
FEM4
SIM1
SIM2
3.3 UG 有限元分析的文件结构含义
主模型部件:分析的原始设计部件 包含主模型,装配,未修改的部件几何体;
理想化部件:是原始部件的一个相关拷贝/提升体 可进行编辑,以提高分析质量;
有限元文件 包含材料属性、网格属性、单元类型和大小等;
k1 k1
0
0
k1
k1 k2
k2
0
0
k2 k2 k3 k3
0
0
k3 k3 k4
0
0
0
k4
0 u1 R
0 0 k4
uu32 uF
Ku F
1.3 有限元法概念-基本思想
分割、 逼近
y
Vi
单个 单元
p
vi
U i 求解
ui
Vj
vj q
Uj
Vm
uj r
vm
Um
um
x
Fe k e
单元
组合
边界条件和载荷
单元属性和网格
2020/3/28
1.4 有限元法概念-计算基本流程
分析对象

物体离散化


合 单元特性分析
单元组集
机构,建筑,单个零件,机 械系统,声场,电磁场……
离散成各种单元组成的计算模型。 连续问题,变成离散问题;无限 自由度问题,变成有限自由度问 题。计算结果是实际情况的近似。
已知弹性模量E,杆长L,各段横 截面A,并且:刚度K=AE/L
1.2 有限元法概念-近似解法的推导过程
R k1(u2 u1) 0 k1(u2 u1) k2 (u3 u2 ) 0 k2 (u3 u2 ) k3(u4 u3) 0 k3 (u4 u3) k4 (u5 u4 ) 0 k4 (u5 u4 ) F 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元分析及应用
专业:机械
姓名:你喝
学号:2 0 1 3 X X
指导老师:没意义
工字梁热力学与结构学耦合分析
有限元分析(FEA,Finite Element Analysis)将物体划分成有限个单元,这些单元之间通过有限个节点相互连接,单元看作是不可变形的刚体,单元之间的力通过节点传递,然后利用能量原理建立各单元矩阵;在输入材料特性、载荷和约束等边界条件后,利用计算机进行物体变形、应力和温度场等力学特性的计算,最后对计算结果进行分析,显示变形后物体的形状及应力分布图。

有限元分析的基本概念是用较简单的问题代替复杂问题后再求解。

它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。

这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。

由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。

热——结构耦合分析是指求解温度场对结构中应力、应变和位移等物理量的影响,热——结构耦合问题是结构分析中较常见的一类耦合分析问题。

由于结构温度场的分布不均会引起结构的热应力,或者是结构件在高温环境中工作,材料受到温度的影响会发生性能的改变,这些都是进行结构分析时需要考虑的因素。

为此需要先进行相应的热分析,然后再进行结构分析。

在NX环境中进行热——结构耦合分析,首先进行热分析求得结构的温度场,然后再进行结构分析,并将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布。

1.模型建立
2.热分析
新建FEM和仿真
点击开始按钮,选择“高级仿真”,激活高级仿真模块。

在仿真导航器中选择“新建FEM 和仿真”
解算方案
网格收集器
添加材料属性,从材料清单中选择“Steel”,单击“确定”
划分网格
添加约束(进入仿真环境)
所有外表面添加对流约束,环境温度为45,对流系数为100W/m^2-C
添加热约束
在工字梁顶端设置65恒温
解算方案求解
结果分析
计算完成后,右击击导航器中的“Results”,打开后观察结果
由热分析所得的工字梁的温度分布云图可看出,最高温度出现在工字梁顶端,为65,最低温度在梁的底部,为
3.结构分析
前面步骤与热分析基本一致,在网格划分完毕后,添加载荷与约束,在工字梁的两端分别添加1000N的恒力,固定约束。

解算方案求解
结果分析
计算完成后,右击击导航器中的“Results”,打开后观察结果
由结构分析所得的工字梁的节点位移分布云图可看出,节点最大位移出现在工字梁固定一端,为0mm,节点最大位移出现在工字梁施加力的一端,为。

由结构分析所得的工字梁的节点位移分布云图可看出,节点应力最小为,最大为。

4.耦合分析
新建结构学解算方案(返回到模型)
在结构分析中将热分析的结果导入到此方案的subcase,其它载荷及约束的施加和结构分析相同。

解算方案求解
4.3结果分析
计算完成后,右击击导航器中的“Results”,打开后观察结果
由耦合分析所得的工字梁的节点位移分布云图可看出,节点最小位移出现在工字梁端点,为0 mm,节点最大位移出现在工字梁中间位置,为
由耦合分析所得的工字梁的节点位移分布云图可看出,单元节点最大应力为,最小应力为。

45号钢的抗拉强度:不小于600Mpa ,故满足要求。

5.结语
在环境下,通过对工字梁热力学与结构学耦合分析,热——结构耦合分析所得的工字梁的最大位移比单独在机械载荷作用下结构分析中的大,所得的应力也比单纯结构分析下的应力大,说明温度载荷对工字梁的强度和刚度均有很大影响,在机械载荷和热载荷共同作用下,两种模型的最大应力未超过材料的许用值,满足工字梁的强度要求,通过本次学习,进一步熟悉了NX Nastran求解有限元问题的一般步骤,为今后的学习、工作也打下了良好的基础。

相关文档
最新文档