21HNMR化学位移
核磁谱图NMR常见溶剂峰杂质峰分析-(中文版)

测试核磁的样品一般要求比较纯,并且能够溶解在氘代试剂中,这样才能测得高分辨率的图谱。
为不干扰谱图,所用溶剂分子中的氢都应被氘取代,但难免有氢的残余(1%左右),这样就会产生溶剂峰;除了残存的质子峰外,溶剂中有时会有微量的H2O而产生水峰,而且这个H2O峰的位置也会因溶剂的不同而不同;另外,在样品(或制备过程)中,也难免会残留一些杂质,在图谱上就会有杂质峰,应注意识别。
常用氘代溶剂和杂质峰在1H谱中的化学位移单位:ppm溶剂—CDCl3 (CD3)2CO (CD3)2SO C6D6 CD3CN CD3OH D2O溶剂峰—7.26 2.05 2.49 7.16 1.94 3.31 4.80水峰— 1.56 2.84 3.33 0.40 2.13 4.87 —乙酸— 2.10 1.96 1.91 1.55 1.96 1.99 2.08丙酮— 2.17 2.09 2.09 1.55 2.08 2.15 2.22乙腈— 2.10 2.05 2.07 1.55 1.96 2.03 2.06苯—7.36 7.36 7.37 7.15 7.37 7.33 —叔丁醇CH3 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH —— 4.19 1.55 2.18 ——叔丁基甲醚CCH3 1.19 1.13 1.11 1.07 1.14 1.15 1.21OCH3 3.22 3.13 3.08 3.04 3.13 3.20 3.22氯仿—7.26 8.02 8.32 6.15 7.58 7.90 —环己烷— 1.43 1.43 1.40 1.40 1.44 1.45 —1,2-二氯甲烷 3.73 3.87 3.90 2.90 3.81 3.78 —二氯甲烷— 5.30 5.63 5.76 4.27 5.44 5.49 —乙醚 CH3(t) 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2(q) 3.48 3.41 3.38 3.26 3.42 3.49 3.56二甲基甲酰胺CH 8.02 7.96 7.95 7.63 7.92 7.79 7.92CH3 2.96 2.94 2.89 2.36 2.89 2.99 3.01CH3 2.88 2.78 2.73 1.86 2.77 2.86 2.85二甲基亚砜— 2.62 2.52 2.54 1.68 2.50 2.65 2.71二氧杂环— 3.71 3.59 3.57 3.35 3.60 3.66 3.75乙醇 CH3(t) 1.25 1.12 1.06 0.96 1.12 1.19 1.17 CH2(q) 3.72 3.57 3.44 3.34 3.54 3.60 3.65OH(s) 1.32 3.39 3.63 — 2.47 ——乙酸乙酯CH3CO 2.05 1.97 1.99 1.65 1.97 2.01 2.07 OCH2(q) 4.12 4.05 4.03 3.89 4.06 4.09 4.14CH3(t) 1.26 1.20 1.17 0.92 1.20 1.24 1.24甲乙酮CH3CO 2.14 2.07 2.07 1.58 2.06 2.12 2.19 CH2(q) 2.46 2.45 2.43 1.81 2.43 2.50 3.18CH3(t) 1.06 0.96 0.91 0.85 0.96 1.01 1.26乙二醇— 3.76 3.28 3.34 3.41 3.51 3.59 3.65润滑脂 CH3(m) 0.86 0.87 —0.92 0.86 0.88 —CH2(br) 1.26 1.29 — 1.36 1.27 1.29 —正己烷CH3(t) 0.88 0.88 0.86 0.89 0.89 0.90 —CH2 (m) 1.26 1.28 1.25 1.24 1.28 1.29 —甲醇CH3 3.49 3.31 3.16 3.07 3.28 3.34 3.34 OH 1.09 3.12 4.01 2.16 ——正戊烷 CH3(t) 0.88 0.88 0.86 0.87 0.89 0.90 —CH2(m) 1.27 1.27 1.27 1.23 1.29 1.29 —异丙醇CH3(d) 1.22 1.10 1.04 0.95 1.09 1.50 1.17 CH 4.04 3.90 3.78 3.67 3.87 3.92 4.02 硅脂—0.07 0.13 —0.29 0.08 0.10 —四氢呋喃 CH2 1.85 1.79 1.76 1.40 1.80 1.87 1.88 CH2O 3.76 3.63 3.60 3.57 3.64 3.71 3.74 甲苯 CH3 2.36 2.32 2.30 2.11 2.33 2.32 —CH(o/p)7.17 7.20 7.18 7.02 7.30 7.16 —CH(m) 7.25 7.20 7.25 7.13 7.30 7.16 —三乙基胺 CH3 1.03 0.96 0.93 0.96 0.96 1.05 0.99 CH2 2.53 2.45 2.43 2.40 2.45 2.58 2.57 石油醚—0.5-1.5 0.6-1.9 —————。
核磁谱图NMR常见溶剂峰杂质峰分析_(中文版)

测试核磁的样品一般要求比较纯,并且能够溶解在氘代试剂中,这样才能测得高分辨率的图谱。
为不干扰谱图,所用溶剂分子中的氢都应被氘取代,但难免有氢的残余(1%左右),这样就会产生溶剂峰;除了残存的质子峰外,溶剂中有时会有微量的H2O而产生水峰,而且这个H2O峰的位置也会因溶剂的不同而不同;另外,在样品(或制备过程)中,也难免会残留一些杂质,在图谱上就会有杂质峰,应注意识别。
常用氘代溶剂和杂质峰在1H谱中的化学位移单位:ppm溶剂—CDCl3 (CD3)2CO (CD3)2SO C6D6 CD3CN CD3OH D2O溶剂峰—7.26 2.05 2.49 7.16 1.94 3.31 4.80水峰— 1.56 2.84 3.33 0.40 2.13 4.87 —乙酸— 2.10 1.96 1.91 1.55 1.96 1.99 2.08丙酮— 2.17 2.09 2.09 1.55 2.08 2.15 2.22乙腈— 2.10 2.05 2.07 1.55 1.96 2.03 2.06苯—7.36 7.36 7.37 7.15 7.37 7.33 —叔丁醇CH3 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH —— 4.19 1.55 2.18 ——叔丁基甲醚CCH3 1.19 1.13 1.11 1.07 1.14 1.15 1.21OCH3 3.22 3.13 3.08 3.04 3.13 3.20 3.22氯仿—7.26 8.02 8.32 6.15 7.58 7.90 —环己烷— 1.43 1.43 1.40 1.40 1.44 1.45 —1,2-二氯甲烷 3.73 3.87 3.90 2.90 3.81 3.78 —二氯甲烷— 5.30 5.63 5.76 4.27 5.44 5.49 —乙醚 CH3(t) 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2(q) 3.48 3.41 3.38 3.26 3.42 3.49 3.56二甲基甲酰胺CH 8.02 7.96 7.95 7.63 7.92 7.79 7.92CH3 2.96 2.94 2.89 2.36 2.89 2.99 3.01CH3 2.88 2.78 2.73 1.86 2.77 2.86 2.85二甲基亚砜— 2.62 2.52 2.54 1.68 2.50 2.65 2.71二氧杂环— 3.71 3.59 3.57 3.35 3.60 3.66 3.75乙醇 CH3(t) 1.25 1.12 1.06 0.96 1.12 1.19 1.17 CH2(q) 3.72 3.57 3.44 3.34 3.54 3.60 3.65OH(s) 1.32 3.39 3.63 — 2.47 ——乙酸乙酯CH3CO 2.05 1.97 1.99 1.65 1.97 2.01 2.07 OCH2(q) 4.12 4.05 4.03 3.89 4.06 4.09 4.14CH3(t) 1.26 1.20 1.17 0.92 1.20 1.24 1.24甲乙酮CH3CO 2.14 2.07 2.07 1.58 2.06 2.12 2.19 CH2(q) 2.46 2.45 2.43 1.81 2.43 2.50 3.18CH3(t) 1.06 0.96 0.91 0.85 0.96 1.01 1.26乙二醇— 3.76 3.28 3.34 3.41 3.51 3.59 3.65润滑脂 CH3(m) 0.86 0.87 —0.92 0.86 0.88 —CH2(br) 1.26 1.29 — 1.36 1.27 1.29 —正己烷CH3(t) 0.88 0.88 0.86 0.89 0.89 0.90 —CH2 (m) 1.26 1.28 1.25 1.24 1.28 1.29 —甲醇CH3 3.49 3.31 3.16 3.07 3.28 3.34 3.34 OH 1.09 3.12 4.01 2.16 ——正戊烷 CH3(t) 0.88 0.88 0.86 0.87 0.89 0.90 —CH2(m) 1.27 1.27 1.27 1.23 1.29 1.29 —异丙醇CH3(d) 1.22 1.10 1.04 0.95 1.09 1.50 1.17 CH 4.04 3.90 3.78 3.67 3.87 3.92 4.02 硅脂—0.07 0.13 —0.29 0.08 0.10 —四氢呋喃 CH2 1.85 1.79 1.76 1.40 1.80 1.87 1.88 CH2O 3.76 3.63 3.60 3.57 3.64 3.71 3.74 甲苯 CH3 2.36 2.32 2.30 2.11 2.33 2.32 —CH(o/p)7.17 7.20 7.18 7.02 7.30 7.16 —CH(m) 7.25 7.20 7.25 7.13 7.30 7.16 —三乙基胺 CH3 1.03 0.96 0.93 0.96 0.96 1.05 0.99 CH2 2.53 2.45 2.43 2.40 2.45 2.58 2.57 石油醚—0.5-1.5 0.6-1.9 —————。
nmr 的名词解释

nmr 的名词解释核磁共振(Nuclear Magnetic Resonance,简称NMR)是一种常用于分析物质结构和性质的重要技术。
该技术基于原子核在外加磁场中的共振现象,通过测量被核自旋激发后放射出的信号来得到关于样品中原子组成和环境的信息。
NMR不仅在化学领域有广泛应用,在物理学、生物学以及医学等领域也起着重要作用。
下面将对NMR的相关术语和原理进行解释。
一、共振频率(Resonance frequency)共振频率是指在特定磁场下,某种核的核自旋达到共振状态所对应的频率。
不同核素的共振频率是不同的,因此可以通过测量共振频率来确定样品中核素的种类。
二、化学位移(Chemical Shift)化学位移是指核磁共振信号在频率轴上相对于参考标准信号的位置。
化学位移可以反映样品中各个原子核所处的化学环境,不同化学环境下的原子核具有不同的化学位移值。
通过分析化学位移,可以确定样品中的化学结构和化学键的性质。
三、磁共振图谱(NMR spectrum)磁共振图谱是将核磁共振信号的强度或积分面积绘制在频率轴或化学位移轴上的图形。
磁共振图谱通常呈现出多个峰的形式,每个峰对应着不同的原子核或化学环境。
通过研究峰形、峰面积和化学位移等参数,可以推断样品的化学组成和结构。
四、弛豫过程(Relaxation Process)弛豫过程是指核自旋从激发状态恢复到基态的过程。
弛豫过程可以分为自旋网正弛豫(spin-lattice relaxation)和自旋网络弛豫(spin-spin relaxation)两种类型。
自旋网络正弛豫是核自旋与周围晶格之间的能量交换导致信号衰减的过程,而自旋网络弛豫则是核自旋之间相互作用导致信号衰减的过程。
通过研究弛豫过程,可以获得关于研究对象的更多动力学和结构信息。
五、二维核磁共振谱(2D NMR spectrum)二维核磁共振谱是一种常用于复杂化合物结构分析的方法。
与传统的一维核磁共振谱不同,二维核磁共振谱可以同时测量两个核自旋之间的相互作用。
有机化学 H-NMR

Cl Br Hb
Jab Hb 1 :1 Ha
J ab
1 :1
Ha Hb C C Ha or Ha Hb Ha C C C
Hb
1:2:1triplet
Jab Jab Applied field B0
Ha
Hb
未 被 Hb偶 合的信号 与 Hb偶 合 的信号 未 被 Ha偶 合的信号
H0
与 Ha偶 合 的信号
(二)化学位移
屏蔽作用
磁场强度(很小)的变更
常用参考物:四甲基硅烷(CH3)4Si (Tetramethylsilane,简写TMS) 优点:沸点低,只有一个峰,电负性 Si C,
屏蔽作用很高,常处在最高场
化学位移(Chemical shift) : 其它吸收峰与TMS峰之间的距离
n 样品 n 标准 n 共振仪
n
(I = 1/2核个数)
谱线相对强度
singlet doublet triplet quartet qintet
0 1 2 3 4 ......
1
1 1 1 1 3 2 3 1 1 1
4 6 4 1 ...... ...... ......
五 1H NMR谱的解析
解析核磁共振谱,主要是从其中寻找
s p in s ta te
n: 电磁波频率; h: Planck常数; H0: 外加磁场度; μ : 核磁矩,与自 旋核本身有关
△E=hν=2μH0 ν =(2μ/h)H0
3 获得核磁共振谱两种方式:
1) 扫频: 固定外加磁场强度,用连续变换频率的电磁波
照射样品,以达到共振条件
2) 扫场: 固定电磁波的频率,连续不断改变外加磁场强 度进行扫描,以达到共振条件 目前的核磁共振仪多采用扫场形式
核磁常见基团化学位移

核磁常见基团化学位移
核磁共振(NMR)是一种常用的分析化学方法,可以用于识别化合物的结构和构象。
在核磁共振过程中,化学位移是一个重要的参数,它描述了各个核子相对于一定参考标准的NMR信号位置。
常见的基团化学位移如下:
1. 烷基和芳香基:烷基(CH3)的化学位移一般在0.8-1.2 ppm之间,而芳香基(Ar-H)的化学位移一般在6.5-8.5 ppm之间。
烷基和芳香基结合时,烷基的化学位移会被推至较高的数值。
2. 烯烃和炔烃:烯烃(C=C)和炔烃(C≡C)的化学位移一般在4.5-7.5 ppm 之间。
3. 羟基和氨基:羟基(OH)和氨基(NH2)的化学位移一般在1-5 ppm之间。
当它们结合在芳香杂环上时,它们的化学位移会产生较大的变化。
4. 卡宾:卡宾(C≡N)的化学位移一般在200-250 ppm之间,这是因为它的负电性较高。
5. 羰基和氰基:羰基(C=O)的化学位移在160-190 ppm之间,而氰基(C≡N)的化学位移在100-140 ppm之间。
羰基的化学位移还会受到其它官能团、
分子结构和化学环境的影响。
这些常见的基团化学位移可以帮助我们识别分子结构和化学功能团。
在实际应用中,根据不同的基团化学位移范围可以进行快速的计算和分析。
NMR常见溶剂峰和水峰

.的耦合常13C1H对为溶剂本身1H对与之相对应的1H之间的耦合常数,JCD注:JHD为溶剂本身的其他产生的即水峰的化学位移上的1HH2O和交换了D的HOD数,氯仿:小、中小、中等极性。
对于酚羟基能够出峰。
芳香化合物还是芳香甙,都为DMSO:芳香系统(日光下自然显色、紫外荧光)首选。
吡啶:极性大的,特别是皂甙对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。
极性大的化合物可采用氘代丙酮、重水等。
、针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代吡啶(用于难溶的酸性或芳香化合物)氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)等。
丙酮:中等极性甲醇:极性大氯仿—甲醇:1小极性;石:乙 5 中等极性1:1——石:丙 2:1含有一个糖 6氯仿:甲醇:1极性以上 1 含有两个糖: 2 含有糖的三萜皂甙:一般用吡啶,...常见溶剂的化学位移1H在不同氘代溶剂中的化学位移值常见溶剂multCO(CSCCCDCC(C7.207.571.97.12.57.22.03.34.7残余溶剂8.7brs4.90.42.83.32.14.74.81.5水7.2CHC8.08.36.17.57.92.1C2.22.12.0(C1.52.02.01.6(C2.52.52.62.6S2.72.57.37.37.17.37.37.32.02.02.0 2.0C2.11.5C1.9C,s3.493.163.313.28O3.33.3C3.0OH,s1.04.02.13.18.628.588.528.538.538.588.728.57CH(2),m7.357.297.457.397.206.667.337.44CH(3),m7.67.87.77.77.77.56.97.8CH(4),2.051.992.071.651.971.972.01,s C4.124.034.143.894.054.094.06,qCCOOC 1.261.171.240.921.201.241.20,tCH3s5.445.304.275.49CHCl5.635.76220.88 0.89 0.88 0.86 0.90 0.89 ,t CH3n-hexane 1.261.281.281.251.291.24,mCH21.250.96 1.19 1.12 1.12 1.06 1.17 ,tCH3OHCH52 3.723.603.543.653.573.443.34,qCH2,...常见溶剂的化学位移13C在不同氘代溶剂中的化学位移值常见溶剂的CSOCCDC(CCC(C123.441.32206.26135.4339.549.0128.077.1溶剂118.229.8149.8CHC79.177.777.379.179.479.1215.94207.43205.87204.43209.67206.31207.07C(C30.8 30.130.930.530.630.930.639.341.341.240.0S(C40.440.740.4129.1128.6129.3128.3129.3128.3119.6811 7.60116.43116.02118.06118.26117.91CC1.40.21.81.10.81.71.049.550.4OC49.948.549.849.749.9149.1 8150.07150.67150.27149.90150.76149.58125.12123.75125.53127.76123.84124.57123.58138.2136.0136.5138.3135.9135.2136.821.1520.8320.8 820.5620.6821.1621.04171.36171.68170.96170.31172.89175.26170.44COOC60.4960.9861.5059.7460.5660.2162.3214.113.914.114.514.414.414.5053.52Cl55.3254.78CH53.4654.8454.952214.14 14.45 14.43 14.32 13.88 14.34 22.70 23.40 23.04 22.05 23.28 n-hexane23.6831.6432.3630.9532.3031.9632.73,...核磁知识(NMR)一:样品量的选择氢谱,氟谱,碳谱至少需要5mg. 1H-1H COSY, 1H-1H NOESY, 1H-13C HMBC, 1H-13C HSQC需要10-15mg. 碳谱需要30mg.二:如何选择氘代溶剂常用氘代溶剂: CDCl3, DMSO, D2O, CD3OD.特殊氘代溶剂: CD3COCD3, C6D6, CD3CN。
nmr氢谱中化学位移

nmr氢谱中化学位移
化学位移是NMR中最实用的信息之一,其值的大小可提供磁核的化学环境信息,即提供分子中磁核所处官能团的信息。
影响化学位移的因素主要有:电性效应、各向异性效应、氢键效应、迅速质子交换反应和溶剂效应等。
其中,电性效应和各向异性效应是在分子内部发生的,迅速质子交换和溶剂效应则是在分子间起作用的因素。
在nmr氢谱中,化学位移的范围通常在10-12之间,这是因为羧酸质子有很小的屏蔽效应,并且还受到共轭效应、氢键和各向异性作用的影响。
在实际应用中,化学位移的大小可以提供分子中磁核所处官能团的信息,这对于理解分子的结构和反应机制具有重要意义。
2-1HNMR-化学位移解析

甲基环己烷:室温下以直立和平伏质子的形式存在, 这些构象是不可重合的,低温下,一张谱图包含了这
两种形式。
类固醇这样的环己烷中,在室 温下环是“冻结”的,每个 CH2基团中的直立和平伏质子 不是化学等价的。
(3) 磁的各向异性效应
化合物中非球形对称的电子云(如:π电子系统)因电子的流动而产生诱 导磁场,这个磁场是各向异性的。在不同区域,磁场方向不一致。
与外磁场H0方向相同的区域, 对其中的质子产生顺磁屏蔽 作用(去屏蔽作用, -),发生低场位移。 与外磁场方向相反的区域,对其中的质子产生抗磁屏蔽作 用(屏蔽作用,+),发生高场位移。 产生各向异性的常见基团: 双建、三键、苯环、饱和三元环
•
吸电子作用是通过化学键传递的,相隔化学键越多, 影响越小。 CH3OH CH3CH2OH CH3CH2CH2OH 1.18 0.93
CH3
3.39
-CH3 ,δ =
1.8,出现在高场
-CH2I,δ= 3.1, 出现在低场
• 判断下列化合物中Ha,Hb化学位移的大小
CH3 CH3 I H H C C Cl H H a b CH3CH2CH2I a b c
X的电负 性
δ (ppm)
4.0
4.26
3.5
3.24
3.1
3.05
2.8
2.68
3.0
2.47
2.5
0.88
2.1
0.2
1.9
0
0.98
-1.95
H H C H X
•
相邻电负性基团越多,吸电子诱导效应越大,屏蔽越 弱,δ值也越大 CH3Cl δ 3.05 CH2Cl2 5.30 CHCl3 7.27
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6) 范德华效应
当两个质子在空间结构上非常靠近时,电子云就会互相排 斥,从而使这些质子周围的电子云密度减少,屏蔽作用下降, 共振信号向低场移动,这种效应称为范德华效应。这种效应 与相互影响的两个原子之间的距离密切相关。
(7)溶剂效应
由于溶质分子受到不同溶剂影响而引起的化学位移变化 称为溶剂效应。例如:
环内氢 -1.8
叁键的各向异性效应
• 炔氢正好位于正屏蔽 区,故共振峰出现在较 高场,δ较小,小于烯氢, 一般2~3
单键的各向异性效应
形成单键的sp3杂化轨道是非球形对称的,也有各向 异性效应,但很弱。在沿着单键键轴方向是去屏蔽区, 而键轴的四周为屏蔽区。
R3CH 1.40 ~ 1.65
R2CH2
Br NH2 CH3 H Si(CH3)3 Li 2.8 3.0 2.5 2.1 1.9 0.98
δ (ppm) 4.26 3.24 3.05 2.68 2.47 0.88 0.2
0 -1.95
H HC X
H
• 相邻电负性基团越多,吸电子诱导效应越大,屏蔽越 弱,δ值也越大
CH3Cl δ 3.05
• 积分曲线高度与相应的质子数目成正比—氢的数目 • 谱峰呈现出的多重峰形—耦合作用
4.2.1 1H 的化学位移
1.影响化学位移的因素 2. 各类1H的化学位移
1.影响化学位移的因素
(1)电子效应 • 诱导效应
化学位移随着相邻电负性基团的电负性的增大而增大
X
X的电负 性
F OCH3 Cl 4.0 3.5 3.1
CH3 CH3 H C O C Hb
CH3 CH3 a
HH I C C Cl
HH ab
CH3CH2CH2I a bc
a<b
a<b
a<b<c
• 下面化合物中所标出的质子其1H NMR化学位移从低场
到高场的顺序为( )
O
CH3CH2C O CH2CH3
ab
cd
c 、 b 、d 、a
•共轭效应
(2) 相连碳原子的杂化态影响
4.2 核磁共振氢谱(1H NMR)
—发展最早,研究得最多,应用最为广泛。 —质子的旋磁比 较大,天然丰度接近100%,核磁共振
测定的绝对灵敏度最大; —1H是有机化合物中最常见的同位素,1H NMR谱是有
机物结构解析中最有用的核磁共振谱之一。
CH3CH2CONH2
低场
高场
• 化学位移值,代表谱峰位置—化学环境
作用(去屏蔽作用, -),发生低场位移。 ➢ 与外磁场方向相反的区域,对其中的质子产生抗磁屏蔽作 用(屏蔽作用,+),发生高场位移。 ➢ 产生各向异性的常见基团:
双建、三键、苯环、饱和三元环
双键的各向异性效应
—电子产生诱导磁场,烯氢质子 位于去屏蔽区。δ= 5~6
— 醛基上的氢除位于双键的负屏 蔽区,还受相连氧原子强烈 电负性的影响,使其共振峰 移向更低场,δ= 9.0~10.0。
a )沿环单键的互变
环己烷:-89℃测定:Ha与Hb显示两个峰 常温下测定:显示一个峰
温度低于-89oC时,正己烷构象 固定,2-3键和5-6键的作用使Ha 处于屏蔽区,而Hb处于去屏蔽
区。 Hb - Ha ≈ 0.5ppm
甲基环己烷:室温下以直立和平伏质子的形式存在, 这些构象是不可重合的,低温下,一张谱图包含了这 两种形式。
• 活泼氢的快速交换反应
分子中的-OH、-NH2、-SH和-COOH等活泼氢可在分子间进行 快速交换。
因此, 酸性氢核的化学位移是不稳定的,与交换快慢、 交换是否进行有关。
交换速率:-OH > -NH > -SH
(5) 氢键的影响
➢ 两个电负性基团与氢相连,产生吸电子诱导作用,共振发 生在低场。
解释下列化合物中Ha和Hb质子化学位移差异的原因: Hb位于C=O的去屏蔽区
Ha位于C=C的屏蔽区
苯环的各向异性效应
苯环上的6个π电子产生 比烯氢更强的诱导磁场。δ 在更低场,大于烯氢,约 为6.0~9.0
[18]轮烯有18个H • 12个环外H,受到强的去屏蔽作用。
环外氢 8.9
• 6个环内H ,受到高度的屏蔽作用。
CH2Cl2 5.30
CHCl3 7.27
• 吸电子作用是通过化学键传递的,相隔化学键越多, 影响越小。
CH3OH
CH3 3.39
CH3CH2OH CH3CH2CH2OH
1.18
0.93
-CH3 ,δ = 1.8,出现在高场 -CH2I,δ= 3.1, 出现在低场
• 判断下列化合物中Ha,Hb化学位移的大小
O
C
.. N
CH3 b
H
CH3 a
OC
+ N
C氘代氯仿溶剂中,b2.88;a2.97。
逐步加入各向异性溶剂苯,a和b甲基的化学位移逐渐 靠近,然后交换位置。
➢ 溶剂效应的产生是由于溶剂的磁各向异性造成或者是 由于不同溶剂极性不同,与溶质形成氢键的强弱不同引 起的.
RCH3
CH4
1.20 ~ 1.48 0.85 ~ 0.95
0.22
电子环流引起的各向异性效应是通过空间传递,不 是通过化学键传递。
注:醛基H不仅位于去屏蔽区,而且受羰基的吸电子诱导作用, 产生强烈去屏蔽。
(4)氢核交换
• 分子内交换反应
当一个分子有两种或两种以上的结构,这些结构之间可互变,其转 换速度不同时,会影响谱峰位置和形状。
➢ 分子间氢键:与样品浓度、测定温度以及溶剂等有关,因
此相应质子 不固定。 醇羟基和脂肪胺基: 0.5~5;酚羟基:4~7。
➢ 分子内氢键:强度与分子结构有关。 ➢ 温度升高,不利于氢键形成,质子化学位移向高场移动。 ➢ NMR是研究氢键的一种有力的工具。
乙醇的羟基随浓度增加,分子间氢键增强,化学位移增大
类固醇这样的环己烷中,在室 温下环是“冻结”的,每个 CH2基团中的直立和平伏质子 不是化学等价的。
b) 酮-烯醇互变
乙酰丙酮中,烯醇和酮式之间的互变异构非常缓慢, 谱图中表现出两种形式的吸收峰。在加高温度下测定, 转化速率升高,可以得到单一的平均化了的谱图。
c)围绕部分双键(受阻旋转)的互变 DMF:
电负性:Csp > Csp2 > C sp3 乙烷 0.88; 乙烯 5.23; 乙炔 2.88
(3) 磁的各向异性效应
化合物中非球形对称的电子云(如:π电子系统)因电子的流动而产生诱 导磁场,这个磁场是各向异性的。在不同区域,磁场方向不一致。
➢ 与外磁场H0方向相同的区域, 对其中的质子产生顺磁屏蔽