专题1.6 三角函数模型的简单应用重难点题型(举一反三)(解析版)
【高中数学经典】三角函数的诱导公式重难点题型(举一反三)

【高中数学】三角函数的诱导公式重难点题型【举一反三系列】三角函数的诱导公式【知识点1诱导公式】【知识点2诱导公式的记忆】诱导公式一: sin(α+2kπ) = Sin a ,cos(α + 2kπ) = COSα, taιι(α + 2kπ) = xana ,其中 k ∈Z 诱导公式二: sin(∕r + G) = -Sin a,cos(∕r+α) =—COSα, tan(∕r+α) = tana,其中keZ 诱导公式三: sin(-a) =-Sina, cos(-a) = COSa , tan(-a) = -taιιa ,其中k ∈Z诱导公式四:cos(∕F -a) = -cosa, taιι(^∙-a) = -tana,其中k ∈Z 诱导公式五: Sin π ——a 2 COS π ——a 2 = Sina ,其中R ∈Z诱导公式六:Sin π —+a 2 COS —+a =-sinα ,其中k ∈Z U 丿记忆11诀“奇变偶不变,符号看象限”,意思是说角k-90 ±a(k 为常整数)的三角函数值:当k 为奇数 时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视Q 为锐角 时原函数值的符号.【考点1利用诱导公式求值】【方法点拨】对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化 过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完 成求值.【例1】(2018秋•道里区校级期末)已知点P(l,l)在角Q 的终边上,求下列各式的值.T 、 COS (Λ^ + α)sin(^∙ - a)(I )------------------------------------- ;tan(∕r + α) + sin 2 (彳-a)sin(- + α)cos(- 一 a) (II) 、 2 、——召——cos^ a - sm^ a + tan(;T - a)【分析】由条件利用任意角的三角函数的定义求得smα, cosα, Sna 的值,再利用诱导公式即可求得要 求式子的值.【答案】解:∙.∙角α终边上有一点P(l,l),.x = l , y = l , r =|OP I= √7,Sill CL = — = _ , COS Ct = — = — , tan Ct — -- = It r 2 r 2 X([) cos(∕r + α)sin(%-α)、 -、,兀、 tan(^∙ + α) + sιn^ (― 一 a) ./3∕r 3π([[)SInq-+Q )COS (T _Q ) _ (γosα)(-smα) cos 2 a - sin 2 a + tan(∕r -a) cos 2a - sin 2a 一 tan a【点睛】本题主要考查任意角的三角函数的定义,诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.【变式1-1】 (2019春•龙潭区校级月考)己知tan(^+ «) = -!,求下列各式的值:-COSa ∙smα ton a + cos 2(x(]) 2COS (Λ∙-α)-3sin(∕r+ α)4cos(α - 2πy ) + sin(4∕r - a)(2) siιι(α-7π)cos(a + 5π).【分析】(1)由诱导公式化简后,原式分子分母除以cosα,利用同角三角函数间的基本关系化简,将tana 的值代入计算即可求出值;(2)由诱导公式化简后,原式分母“1”化为sin 2a + ∞s 2a,然后分子分母除以∞s 2a,利用同角三角函数间的基本关系化简,>'J tana 的值代入计算即可求出值.【答案】解:∙.∙tan(∕r + a) = tana =-扌,【点睛】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键,属于基本知识的 考查.【变式1-21(2018春•陆川县校级月考)若COSa = - , a 是第四象限角,求sm(d_2”) + sin(--3∕τ)cos(-3”) 3 COS (龙-a)-COS (-Λ∙ - a) COS(a - 4π)的值.【分析】由条件利用诱导公式进行化简所给的式子,可得结果.【答案】解:∙.∙cosa =扌,a 是第四象限角,- -sina = 一JI-COS 订=_£ ,Sin(Q - 2π) + siιι(-a -3π)cos(a- 3π) _ Sillcr + Siila ・(一COS a) _ Sin a(l- COS a) _3 3 _ ∙√5 cos(∕r — a)-cos(-x-a)cos(a-4;F) — CoSa+ cosa∙cosa COSa(COSa — 1) 亠(一 1) 2【点睛】本题主要考查应用诱导公式化简三角函数式,属于基础题.【变式1-3】 (2019春•沈阳校级月考)己知SlnQ 是方程5√-7x-6 = 0的根,求sin(-a -—龙)∙sin(- π 一 a)∙tan 2 (2π - a) 4 5【分析】把SinQ 代入到方程中解出即可求出Sina 的值进而求出tan'a 的值,然后把所求的式子利用诱导公 式及同角三角函数间的基本关系进行化简,将tan j 的值代入即可求出值.【答案】解:∙.∙sinα是方程SJC-IX-6 = O 的根,二Sina = -O 或Sina = 2 (舍).5+iτ . ■> 9 “16 , 9∣ √ sm^ α = —, cos^ a = — => taιι^ a = —• 25 25 16(1) 2 COS (Λ∙ -Qf)-3 sin(π + a)4cos(α - 2π) + sin(4∕r - a) 3sinα-2cosα 4cosα-siιια 3 tail α - 2 4-tana(2) sin(α — 7π)cos(α + 5π) = Sm a COS a =SlnQCOSa SUra + COS I atanatan 2a + l 的值.「•原式=∞s α∙(-COS α)∙tan^ aSin α∙(- Sin a)∙cos2 asin2 aCOSa•(—COS α) •—____________ COS-CLSill α∙(- Sill α)∙cos2a1cos2a=sec^ a = l +tail" α = l + —=—16 16【点睛】此题要求学生灵活运用诱导公式及同角三角函数间的基本关系化简求值,解这道题的思路是利用已知求出正切函数的平方,所求的式子也要化为关于正切函数平方的关系式.【考点2利用诱导公式化简】【方法点拨】灵活应用诱导公式,应用的原则是:负化正,大化小,化到锐角就终了taιι(Λ∙ - α)cos(2∕τ —α)sin(-α + —)【例2】(2019秋•颍泉区校级期中)化简: ------------- ------ —-------- .cos(-α - π) sm(-∕r - a)【分析】由已知利用诱导公式即可化简得解.tan(∕r —α)cos(2∕r - α)sin(-α + —) 【答案]解: -------- ------ ---------- 一一cos(_a 一π)sιn(-π一a)(一tan a) COS ◎(一COS a) _ -------------------------- =—1.(一COSa)SiiIa【点睛】本题主要考查了诱导公式在三角函数化简求值中的应用,属于基础题.【变式2-1] (2019春•兰考县校级期末)化简:sιn(4—⑵ CoS(I■ + ◎) tan(5 一Q) + a) COS(2Λ,-a)sin(3τr —a) sin(- + O)【分析】利用诱导公式以及同角三角函数基本关系式化简求解即可.【答案】解sin(4Λ∙-α)cos(-÷α) _ tan(5Λ∙-a) _ sin(-αχ-Sina) _ -tana _ Sin Z a十1 I-Sin Z aSm(爭+ a)cos0-a) sm(3^-a)sin(^÷ a) " <-cosa>cos<-a> SInaCoS八CoSF 品- cos2【点睛】本题考查诱导公式以及同角三角函数基本关系式的应用,考查计算能力.sin(8 - 5Λ∙)COS( ------- θ)cos(lπ一θ)【变式2・2】(2019春•东莞市校级期末)化简----------------- F -------------------------sin(8 - #) sin(-3^∙ - θ)【分析】由条件利用诱导公式进行化简所给的式子,可得结果.【答案】解:sin(8 —5π) cos(-壬一 &)cos(7∕r —θ) Sin(^ - π >cos(y + &)・cos(/r -θ)Sin(O -夢)sin(-3;T — 6)-Sin(^- —8)∙sin(∕r - θ)-siu8»(-sin&)・(一cos8) .;---- =—Sln σ • COS8∙sin θ【点睛】本题主要考查应用诱导公式化简三角函数式,要特别注意符号的选取,这是解题的易错点,属于基础题.【变式2-3】(2019春•西安月考)化简:血Sr)SIn(-2—&)CoS(6”也cos(8 - π)siιι(5Λ∙ + θ)【分析】由条件利用诱导公式化简所给的三角函数式,可得结果.r M tan(2∕r-8)sin(-2 広一 &) COS(6兀一&) - tan 0∙(-Sill ^)∙cos θ sin 8L ⅛ 杀J W • ----------------------------------------------- = ----------------------------- =-------- = t∩ιι θ ‘COS(O - π)sin(5∕r + θ)- COS 8・(一Sm θ) COS θ【点睛】本题主要考查利用诱导公式进行化简求值,属于基础题.【考点3诱导公式在函数中的应用】cos(- + x) cos(-x) siιι(- - x)【例3】(2019春•怀化期末)已知/(X) = 一 -------------------- - -- 2——sm(-Λ- - X)CoS(2/T - x)(I )化简/(x);(II)若X是第三象限角,且tmιx = 2,求/⑴的值.【分析】(【)由己知利用诱导公式即可化简得解;(II)由tanx=2,可得SinX=2cosx,根据角的范围利用同角三角函数基本关系式即可求解.【答案】解:([)∕α)=Eτ∙(⅜χ.SillACOSX(II) ∙.∙ta∏Λ = 2, ..sinx = 2COSΛ'» 代Asin3 x+cos2 x = l,得:5cos2 x = l,∙.∙x是第三彖限角,.■- /(X) = COSX = --Y .【点睛】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.【变式3-1】(2019春•大武口区校级期末)己知./(«) =—)su,cos(";)_ sin(-^- - a) cos(y + a) sin(- + a)(1)化简/(«):(2)若/(a) = *,求3sin2α-4siιιαcosof + 5cos2a的值.【分析】(1)直接利用诱导公式化简求解即可.(2)求出正切函数值,利用同角三角函数基本关系式化简表达式为正切函数的形式,代入求解即可.【答案】解:(1)弘)=一Smgm"(Yθsα)=toιm-COS a∙(- Sm QXOS a3 f(a)=-,可得:taιια = -,r . “° 3siιF α — 4sinαcosα + 5cos% 3tan 2α-4taιια + 53SIn- α-4sιnαCOS a + Scos~a = ----------------- ; -------; ----------- = ------------ ; ---------- ,siιι^ a + cos~a taιι^ α + l 将tanα =丄代入, 3Jg得 3siιι2 α-4siιιαCOS a + 5cos 1a = 一 •5 【点睛】本题考查诱导公式以及同角三角函数基本关系式的应用,考查转化思想以及计算能力•【变式3-2】 (2018秋•红塔区校级期末)己知/(α)=泅(2兀一Q )述S + ?COS (FF )cos (∕r - a ) tan (3;T - a )(1) 将/(◎)化为最简形式;(2) f (a )- f (rγ + α) = » 且 Qe (O ,兀),求 tana 的值.【分析】(1)由题意利用诱导公式,化简所给的式子,可得结果.(2)由题意可得Sina+cosa 的值,再利用同角三角函数的基本关系,求得Sina-CoSa 的值,可得Sina 的 COSa 的值,从而求得tana 的值.【答案】解:(1)由题意可得,f(a) = (~SmQf)tanQfeCOSQf) =Sinα . (-cos α)(-taιια)(2) f(a)-f(rγ + Qf) = Sina-Sm(^ + α) = Sinα + COSa = 4©»] 24平方可得 1 + 2SinaCOSQ = ----- .. 2siιιαcosα = -一<0, 25 25π 49 7因为α e (0,兀),所以 α∈(-,Λ-) ∙ SinQ-COSa>0 , (Sina-COSa)2 =1-2SmaCOSa =—,所以SinQ-COSQ = E ②, 由①②可得:Sma = —,cosα = --,5 5 4 结果.(2)利用诱导公式化简要求的式子为sin&-cos0>0,再计算(Sin^-CoS^)2的值,可得要求式子的值.4所以taιια =——• 3【点睛】本题主要考查利用诱导公式,同角三角函数的基本关系,属于基础题.【变式0 (沁秋•汕头校级期中)己知函数蚀少二:(穿1 (1)若 f(θ)×siii — -COS^ = 0,求SineCOSe 的值.(2)若/(B)MosO= £ ,且彳v&v 普,求/(2019Λ--θ)-∞S (2018Λ∙-θ)的值; 【分析】 (1)由题意利用诱导公式求得诚=2,再根据SineCOSe = sin8cos8 sin 2 8+cos' θ总’计算求得【答案】解:(I)函数fg = (SE • +迓哄E = SIn“OS"S1∏Λ∙=若 f(0)×siιι--COS θ = sin&・--COSe = 0 •则 tan 。
2019-2020学年高中数学 第一章 三角函数 1.6 三角函数模型的简单应用学案(含解析)新人教A版必修4

1.6 三角函数模型的简单应用考试标准课标要点学考要求高考要求三角函数模型的实际应用c c知识导图学法指导1.应用三角函数模型解决问题,首先要把实际问题抽象为数学问题,通过分析它的变化趋势,确定它的周期,从而建立适当的三角函数模型.2.在建立三角函数模型时,要注意从数据的周而复始的特点以及数据的变化趋势这两个方面来考虑.1.三角函数模型应用的步骤三角函数模型应用即建模问题,根据题意建立三角函数模型,再求出相应的三角函数在某点处的函数值,进而使实际问题得到解决.步骤可记为:审读题意→建立三角函数式→根据题意求出某点的三角函数值→解决实际问题.这里的关键是建立数学模型,一般先根据题意设出代表函数,再利用数据求出待定系数,然后写出具体的三角函数解析式.2.三角函数模型的拟合应用我们可以利用搜集到的数据,做出相应的“散点图”,通过观察散点图并进行数据拟合,从而获得具体的函数模型,最后利用这个函数模型来解决相应的实际问题.状元随笔解答三角函数应用题应注意四点(1)三角函数应用题的语言形式多为“文字语言、图形语言、符号语言”并用,阅读理解中要读懂题目所要反映的实际问题的背景,领悟其中的数学本质,列出等量或不等量的关系.(2)在建立变量关系这一关键步骤上,要充分运用数形结合的思想、图形语言和符号语言并用的思维方式来打开思想解决问题.(3)实际问题的背景往往比较复杂,而且需要综合应用多门学科的知识才能完成,因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助解决问题.(4)实际问题通常涉及复杂的数据,因此往往需要用到计算机或计算器.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)解答三角函数应用题的一般步骤:审题、建模、求解、检验、还原.( ) (2)在解决实际问题时,利用收集的数据作散点图,可精确估计函数模型.( ) (3)若函数y =a sin x +1在x ∈[0,2π]上有两个不同零点,则实数a 的取值范围是[-1,1].( )(4)已知某地区某一天从4~16时的温度变化曲线近似满足函数y =10sin ⎝ ⎛⎭⎪⎫π8x -54π+20,x ∈[4,16],则该地区在这一时段的温差为20 ℃.( )答案:(1)√ (2)× (3)× (4)√2.商场人流量被定义为每分钟通过入口的人数,五一某商场的人流量满足函数F (t )=50+4sin t2(t ≥0),则在下列哪个时间段内人流量是增加的( )A .[0,5]B .[5,10]C .[10,15]D .[15,20]解析:由2k π-π2≤t 2≤2k π+π2,k ∈Z ,知函数F (t )的增区间为[4k π-π,4k π+π],k ∈Z .当k =1时,t ∈[3π,5π],而[10,15]⊆[3π,5π],故选C.答案:C3.在两个弹簧上各挂一个质量分别为M 1和M 2的小球,它们做上下自由振动,已知它们在时间t (s)时离开平衡位置的位移s 1(cm)和s 2(cm)分别由下列两式确定:s 1=5sin ⎝⎛⎭⎪⎫2t +π6,s 2=5cos ⎝⎛⎭⎪⎫2t -π3. 则在时间t =2π3时,s 1与s 2的大小关系是( )A .s 1>s 2B .s 1<s 2C .s 1=s 2D .不能确定解析:当t =2π3时,s 1=-5,s 2=-5,所以s 1=s 2.答案:C4.如图是一向右传播的绳波在某一时刻绳子各点的位置图,经过12周期后,乙的位置将传播至( )A .甲B .乙C .丙D .丁解析:相邻的最大值与最小值之间间隔区间长度为半个周期,故选C. 答案:C类型一 三角函数在物理中的应用例1 已知弹簧上挂着的小球做上下振动,它离开平衡位置(静止时的位置)的距离h (cm)与时间t (s)的函数关系式为:h =3sin ⎝⎛⎭⎪⎫2t +π4.(1)求小球开始振动的位置;(2)求小球第一次上升到最高点和下降到最低点的时间; (3)经过多长时间小球往返振动一次? (4)每秒内小球能往返振动多少次?【解析】 (1)令t =0,得h =3sin π4=322,所以开始振动的位置为平衡位置上方距离平衡位置322cm 处.(2)由题意知,当h =3时,t 的最小值为π8,即小球第一次上升到最高点的时间为π8 s.当h =-3时,t 的最小值为5π8,即小球第一次下降到最低点的时间为5π8s.(3)T =2π2=π,即经过约π s 小球往返振动一次.(4)f =1T =1π,即每秒内小球往返振动1π次.令t =0解1→令h =±3解2→问题3即求周期T→问题4即求频率f T的倒数方法归纳处理物理学问题的策略(1)常涉及的物理学问题有单摆、光波、电流、机械波等,其共同的特点是具有周期性. (2)明确物理概念的意义,此类问题往往涉及诸如频率、振幅等概念,因此要熟知其意义并与对应的三角函数知识结合解题.跟踪训练1 已知弹簧上挂着的小球做上下振动时,小球离开平衡位置的位移s (cm)随时间t (s)的变化规律为s =4sin ⎝ ⎛⎭⎪⎫2t +π3,t ∈[0,+∞).用“五点法”做出这个函数的简图,并回答下列问题:(1)小球在开始振动(t =0)时的位移是多少?(2)小球上升到最高点和下降到最低点时的位移分别是多少? (3)经过多长时间小球往复振动一次? 解析:列表如下,t-π6 π12 π3 7π12 5π6 2t +π30 π2 π 3π2 2π sin ⎝⎛⎭⎪⎫2t +π3 0 1 0 -1 0 s4-4描点、连线,图象如图所示.(1)将t =0代入s =4sin ⎝⎛⎭⎪⎫2t +π3,得s =4sin π3=23,所以小球开始振动时的位移是2 3 cm.(2)小球上升到最高点和下降到最低点时的位移分别是4 cm 和-4 cm. (3)因为振动的周期是π,所以小球往复振动一次所用的时间是πs.解决此类问题的关键在于明确各个参数的物理意义,易出现的问题是混淆彼此之间的对应关系.类型二 三角函数在实际生活中的应用例2 已知某海滨浴场的海浪高度是时间t (h)的函数,记作y =f (t ).下表是某日各时的浪高数据.t (h) 0 3 6 9 12 15 18 21 24 y (m)1.51.00.51.01.51.00.50.991.5(1)根据以上数据,求出函数y =A cos ωt +b 的最小正周期T 、振幅A 及函数表达式; (2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8时到晚上20时之间,有多长时间可供冲浪者进行运动?【解析】 (1)依题意,得T =12,A =y max -y min2=0.5,b =y max +y min 2=1,所以ω=2π12=π6,故y =12cos π6t +1.(2)令y =12cos π6t +1>1,则2k π-π2<π6t <2k π+π2(k ∈Z ),所以12k -3<t <12k +3(k ∈Z ),又因为8<t <20,所以令k =1,可得9<t <15, 所以从9点到15点适合对冲浪爱好者开放,一共有6个小时.根据已知数据,借助散点图草图,确定解析式,利用三角不等式求范围,确定时间. 方法归纳解三角函数应用问题的基本步骤跟踪训练2 如图,游乐场中的摩天轮匀速旋转,每转一圈需要12分钟,其中心O 距离地面40.5米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时.请解答下列问题:(1)求出你与地面的距离y 与时间t 的函数关系式; (2)当你第四次距离地面60.5米时,用了多少时间?解析:(1)由已知可设y =40.5-40cos ωt (t ≥0),由已知周期为12分钟,可知ω=2π12,即ω=π6.所以y =40.5-40cos π6t (t ≥0).(2)令y =40.5-40cos π6t =60.5,得cos π6t =-12,所以π6t =23π或π6t =43π,解得t =4或t =8,故第四次距离地面60.5米时,用时为12+8=20(分钟).(1)由已知可得解析式. (2)利用y =60.5解t. 类型三 根据数据拟合函数例3 某港口水深y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ),下面是某日水深的数据.t /小时 0 3 6 9 12 15 18 21 24 y /米10.013.09.97.010.013.09.97.010.0(1)试根据以上数据,求出函数y =f (t )的近似解析式;(2)一般情况下,船舶航行时,船底高出海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,那么它至多能在港内停留多长时间(忽略进出港所需的时间)?【解析】 (1)由已知数据,描出曲线如图:易知函数y =f (t )的周期T =12,振幅A =3,b =10, ∴ω=2πT =π6,∴y =3sin π6t +10.(0≤t ≤24)(2)由题意,该船进出港时,水深应不小于5+6.5=11.5米, 由y ≥11.5,得3sin π6t +10≥11.5,∴sin π6t ≥12.①∵0≤t ≤24,∴0≤π6t ≤4π.②由①②得π6≤π6t ≤5π6或13π6≤π6t ≤17π6.化简得1≤t ≤5或13≤t ≤17.∴该船最早能在凌晨1时进港,下午17时出港,在港内最多可停留16小时. 由表格画出曲线图,由图可求A ,b ,由周期T 可求ω,即求y =A sin ωt+b. 方法归纳在处理曲线拟合和预测的问题时,通常需以下几个步骤 (1)根据原始数据,绘出散点图;(2)通过散点图,做出“最贴近”的直线或曲线,即拟合直线或拟合曲线; (3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式;(4)利用函数关系式,根据条件对所给问题进行预测和控制,以便为决策和管理提供依据.跟踪训练3 已知某海滨浴场的海浪高度y (米)是时间t (时)的函数,其中0≤t ≤24,记y =f (t ),下表是某日各时的浪高数据:t 0 3 6 9 12 15 18 21 24 y1.51.00.51.01.51.00.50.991.5经长期观测,y =f (x )的图象可近似地看成是函数y =A cos ωt +b 的图象. (1)根据以上数据,求其最小正周期、振幅及函数解析式;(2)根据规定,当海浪高度大于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的8:00到20:00之间,有多少时间可供冲浪者进行活动?解析:(1)由表中数据可知,T =12,所以ω=π6.又t =0时,y =1.5,所以A +b =1.5;t =3时,y =1.0,得b =1.0,所以振幅A 为12,函数解析式为y =12cos π6t +1(0≤t ≤24).(2)因为y >1时,才对冲浪爱好者开放,所以y =12cos π6t +1>1,cos π6t >0,2k π-π2<π6t <2k π+π2(k ∈Z ),即12k -3<t <12k +3(k ∈Z ).又0≤t ≤24.所以0≤t <3或9<t <15或21<t ≤24,所以在规定时间内只有6个小时可供冲浪爱好者进行活动,即9<t <15.根据表格,确立y =A cos ωt+b 的模型,求出A ,T ,b ,推出ω,利用t =0时,y 为1.5,t =3,y =1.0,求出b ,即可求出拟合模型的解析式.1.6[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.电流I (A)随时间t (s)变化的关系是I =3sin 100πt ,t ∈[0,+∞),则电流I 变化的周期是( )A.150B .50 C.1100D .100 解析:T =2π100π=150.答案:A2.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10解析:由图可知-3+k =2,则k =5,∴y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+5,∴y max=3+5=8.答案:C3.某市某房地产中介对某楼群在今年的房价作了统计与预测,发现每个季度的平均单价y (每平方米的价格,单位:元)与第x 季度之间近似满足y =500sin(ωx +φ)+9 500(ω>0),已知第1季度和第2季度的平均单价如下表所示.x 1 2 y10 0009 500则此楼群在第3季度的平均单价大约是( ) A .10 000元 B .9 500元 C .9 000元 D .8 500元解析:因为y =500sin(ωx +φ)+9 500(ω>0),所以当x =1时,500sin(ω+φ)+9 500=10 000;当x =2时,500sin(2ω+φ)+9 500=9 500,即⎩⎪⎨⎪⎧sin 2ω+φ=0,sin ω+φ=1,所以⎩⎪⎨⎪⎧2ω+φ=m π,m ∈Z ,ω+φ=π2+2n π,n ∈Z .易得3ω+φ=-π2+2k π,k ∈Z .又当x =3时,y =500sin(3ω+φ)+9 500,所以y =9 000. 答案:C4.如图,单摆离开平衡位置O 的位移s (单位:cm)和时间t (单位:s)的函数关系为s =6sin ⎝⎛⎭⎪⎫2πt +π6,则单摆在摆动时,从最右边到最左边的时间为( ) A .2 s B .1 s C.12 s D.14s 解析:由题意,知周期T =2π2π=1(s),从最右边到最左边的时间是半个周期,为12s.答案:C5.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f (x )=A sin(ωx +φ)+b ⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的模型波动(x 为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f (x )的解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+7(1≤x ≤12,x ∈N *)B .f (x )=9sin ⎝ ⎛⎭⎪⎫π4x -π4(1≤x ≤12,x ∈N *)C .f (x )=22sin π4x +7(1≤x ≤12,x ∈N *)D .f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +π4+7(1≤x ≤12,x ∈N *)解析:令x =3可排除D ,令x =7可排除B ,由A =9-52=2可排除C ;或由题意,可得A =9-52=2,b =7,周期T =2πω=2×(7-3)=8,∴ω=π4. ∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +φ+7.∵当x =3时,y =9, ∴2sin ⎝ ⎛⎭⎪⎫3π4+φ+7=9, 即sin ⎝⎛⎭⎪⎫3π4+φ=1.∵|φ|<π2,∴φ=-π4.∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+7(1≤x ≤12,x ∈N *).答案:A二、填空题(每小题5分,共15分)6.设某人的血压满足函数式p (t )=115+25sin(160πt ),其中p (t )的血压(mmHg),t 为时间(min),则此人每分钟心跳的次数是________.解析:T =2π160π=180(分),f =1T =80(次/分).答案:807.有一小球从某点开始来回摆动,离开平衡位置的距离s (单位:cm)关于时间t (单位:s)的函数解析式是s =A sin(ωt +φ),0<φ<π2,函数图象如图所示,则φ=________.解析:根据图象,知⎝ ⎛⎭⎪⎫16,0,⎝ ⎛⎭⎪⎫1112,0两点的距离刚好是34个周期,所以34T =1112-16=34. 所以T =1,则ω=2πT=2π.因为当t =16时,函数取得最大值,所以2π×16+φ=π2+2k π,k ∈Z ,又0<φ<π2,所以φ=π6.答案:π68.某城市一年中12个月的月平均气温y 与月份x 的关系可近似地用函数y =a +A cos ⎣⎢⎡⎦⎥⎤π6x -6(x =1,2,3,…,12)来表示.已知6月份的月平均气温最高,为28 °C,12月份的月平均气温最低,为18 °C,则10月份的月平均气温为________ °C.解析:根据题意得28=a +A,18=a +A cos ⎣⎢⎡⎦⎥⎤π612-6=a -A ,解得a =23,A =5,所以函数y =23+5cos ⎣⎢⎡⎦⎥⎤π6x -6,令x =10,得y =23+5cos ⎣⎢⎡⎦⎥⎤π610-6=23+5cos 2π3=20.5.答案:20.5三、解答题(每小题10分,共20分)9.弹簧振子以O 为平衡位置,在B ,C 两点间做简谐运动,B ,C 相距20 cm ,某时刻振子处在B 点,经0.5 s 振子首次到达C 点,求:(1)振动的振幅、周期和频率;(2)弹簧振子在5 s 内通过的路程及位移. 解析:(1)设振幅为A ,则2A =20 cm , 所以A =10 cm.设周期为T ,则T2=0.5 s ,所以T =1 s ,所以f =1 Hz.(2)振子在1 s 内通过的距离为4A ,故在5 s 内通过的路程s =5×4A =20A =20×10=200(cm).5 s 末物体处在B 点,所以它的位移为0 cm.10.交流电的电压E (单位:V)与时间t (单位:s)的关系可用E =2203sin (100πt +π6)来表示,求:(1)开始时电压;(2)电压值重复出现一次的时间间隔; (3)电压的最大值和第一次获得最大值的时间. 解析:(1)当t =0时,E =1103(V), 即开始时的电压为1103V.(2)T =2π100π=150(s),即时间间隔为0.02 s.(3)电压的最大值为2203V ,当100πt +π6=π2,即t =1300s 时第一次取得最大值.[能力提升](20分钟,40分)11.为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针位置为P (x ,y ).若初始位置为P 0⎝⎛⎭⎪⎫32,12,当秒针从P 0(注:此时t =0)开始走时,点P 的纵坐标y 与时间t 的函数解析式可以是( )A .y =sin ⎝ ⎛⎭⎪⎫π30t +π6B .y =sin ⎝ ⎛⎭⎪⎫-π60t -π6C .y =sin ⎝ ⎛⎭⎪⎫-π30t +π6D .y =sin ⎝ ⎛⎭⎪⎫-π30t -π3 解析:由题意知,函数的周期为T =60,∴|ω|=2π60=π30.设函数解析式为y =sin ⎝ ⎛⎭⎪⎫±π30t +φ.∵初始位置为P 0⎝⎛⎭⎪⎫32,12,∴t =0时,y =12,∴sin φ=12,∴φ可取π6,∴函数解析式可以是y =sin ⎝ ⎛⎭⎪⎫±π30t +π6.又由秒针顺时针转动可知,y 的值从t =0开始要先逐渐减小,故y =sin ⎝ ⎛⎭⎪⎫-π30t +π6,故选C.答案:C12.一半径为6米的水轮如图,水轮圆心O 距离水面3米,已知水轮每分钟转动4圈,水轮上点P 从水中浮现时开始到其第一次达到最高点的用时为________秒.解析:过O 作水平面的垂线,垂足为Q ,如图所示由已知可得OQ =3,OP =6, 则cos∠POQ =12,即∠POQ =60°,则水轮上点P 从水中浮现时开始到其第一次达到最高点要旋转120°,即13个周期,又由水轮每分钟转动4圈,可知周期是15秒,故水轮上点P 从水中浮现时开始到第一次达到最高点的用时为5秒. 答案:513.心脏跳动时,血压在增加或减少,血压的最大值、最小值分别称为收缩压、舒张压,血压计上的读数就是收缩压、舒张压,读数120/80 mmHg 为标准值,设某人的血压满足方程式P (t )=115+25sin(160πt ),其中P (t )为血压(mmHg),t 为时间(min),试回答下列问题:(1)求函数P (t )的周期; (2)求此人每分钟心跳的次数; (3)画出函数P (t )的草图;(4)求出此人的血压在血压计上的读数,并与标准值进行比较.解析:(1)由于ω=160π代入周期公式T =2πω,可得T =2π160π=180(min),所以函数P (t )的周期为180min.(2)函数P (t )的频率f =1T=80(次/分),即此人每分钟心跳的次数为80.(3)列表:t /min 0 1320 1160 3320 180 P (t )/mmHg11514011590115描点、连线并左右扩展得到函数P (t )的简图如图所示.(4)此人的收缩压为115+25=140(mmHg),舒张压为115-25=90(mmHg),与标准值120/80 mmHg 相比较,此人血压偏高.14.某帆板集训队在一海滨区域进行集训,该海滨区域的海浪高度y (米)随着时间t (0≤t ≤24,单位:时)呈周期性变化,每天t 时刻的浪高数据的平均值如下表:t (时) 0 3 6 9 12 15 18 21 24 y (米)1.01.41.00.61.01.40.90.51.0(2)从y =at +b ,y =A sin(ωt +φ)+b ;y =A tan(ωt +φ)中选一个合适的函数模型,并求出该模型的解析式;(3)如果确定在一天内的7时到19时之间,当浪高不低于0.8米时才进行训练,试安排恰当的训练时间.解析:(1)散点图如图所示,(2)由(1)知,选择y =A sin(ωt +φ)+b 较合适. 令A >0,ω>0,|φ|<π.由图知,A =0.4,b =1,T =12,所以ω=2πT =π6.把t =0,y =1代入y =0.4sin ⎝⎛⎭⎪⎫π6t +φ+1,得φ=0.故所求拟合模型的解析式为y =0.4sin π6t +1(0≤t ≤24).(3)由y =0.4sin π6t +1≥0.8,得sin π6t ≥-12,则-π6+2k π≤π6t ≤7π6+2k π(k ∈Z ),即12k -1≤t ≤12k +7(k ∈Z ),注意到t ∈[0,24],所以0≤t ≤7,或11≤t ≤19,或23≤t ≤24, 再结合题意可知,应安排在11时到19时训练较恰当.。
人教版高中数学【必修四】[三角函数模型的简单应用_知识点整理及重点题型梳理]_提高
![人教版高中数学【必修四】[三角函数模型的简单应用_知识点整理及重点题型梳理]_提高](https://img.taocdn.com/s3/m/91e75258580216fc700afdcc.png)
人教版高中数学必修四知识点梳理)巩固练习重点题型(常考知识点三角函数模型的简单应用【学习目标】1.熟练掌握三角函数的性质,会用三角代换解决代数、几何、函数等综合问题;2.利用三角形建立数学模型,解决实际问题,体会三角函数是描述周期变化现象的重要函数模型.【要点梳理】要点一:三角函数模型的建立程序收集数据画散点图选择函数模型检验求函数模型用函数模型解决实际问题要点二:解答三角函数应用题的一般步骤解答三角函数应用题的基本步骤可分为四步:审题、建模、解模、结论.(1)审题三角函数应用题的语言形式多为文字语言和图形语言,阅读材料时要读懂题目所反映的实际问题的背景,领悟其中的数学本质,在此基础上分析出已知什么,求什么,从中提炼出相应的数学问题.(2)建模根据搜集到的数据,找出变化规律,运用已掌握的三角知识、物理知识及其他相关知识建立关系式,在此基础上将实际问题转化为一个三角函数问题,实现问题的数学化,即建立三角函数模型.其中要充分利用数形结合的思想以及图形语言和符号语言并用的思维方式.(3)解模利用所学的三角函数知识,结合题目的要求,对得到的三角函数模型予以解答,求出结果.(4)结论将所得结论转译成实际问题的答案,应用题不同于单纯的数学问题,既要符合科学,又要符合实际背景,因此,有时还要对于解出的结果进行检验、评判.要点诠释:实际问题的背景往往比较复杂,而且需要综合应用多门学科的知识才能完成,因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助解决问题.【典型例题】类型一:三角函数周期性的应用例1.(2015春福建安溪县期末)某港口的水深y(米)时间t(0≤t≤24,单位:小时)的函数,下(∴b=13+7因此T=πω,6t+10(0≤t≤24)6t+10≥11.5面是每天时间与水深的关系表:经过长期观测,y=f(t)可近似的看成是函数y=Asinω+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以完全的进出该港?【思路点拨】(1)由表中数据可以看到:水深最大值为13,最小值为7,求出b和A;再借助于相隔9小时达到一次最大值说明周期为12求出ω即可求出y=f(t)的解析式;(2)把船舶安全转化为深度f(t)≥11.5,即3sin 出船舶在一天中的哪几段时间可以安全的进出该港.2π9t+10≥11.5;再解关于t的三角不等式即可求【答案】(1)f(t)=3sin π6t+10(0≤t≤24);(2)1∶00~5∶00),(13∶00~17∶00)【解析】(1)由表中数据可以看到:水深最大值为13,最小值为7,13-7=10,A==322且相隔9小时达到一次最大值说明周期为12,2π=12,ω=6故f(t)=3sinπ(2)要想船舶安全,必须深度f(t)≥11.5,即3sinπ∴sin π6t≥1ππ5π,2kπ+≤t≤+2kπ2666解得:12k+1≤t≤5+12k,k∈Z又0≤t≤24当k=0时,1≤t≤5;当k=1时,13≤t≤17;故船舶安全进港的时间段为(1∶00~5∶00),(13∶00~17∶00).【总结升华】本题主要考查三角函数知识的应用问题.解决本题的关键在于求出函数解析式.求三角函数的解析式注意由题中条件求出周期,最大最小值等.举一反三:【变式1】如图,某市拟在长为8km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=A s inωx(A>0,ω>0),x∈[0,4]的图象,且图象的最高点为S(3,23);赛道的后一部分为折线段MNP.为保护参赛运动员的安全,限定∠MNP=120°.求A,ω的值和M,P两点间的距离.ω,∴ω=6x,x∈[0,4].)【答案】(1)略(2)y=7sin ⎪+12.4(1≤x≤365,x∈N*)(3)121天【答案】23π56【解析】依题意,有A=23,T4精品文档用心整理=3,又T=2ππ6.∴y=23sinπ∴当x=4时,y=23sin2π3=3.∴M(4,3.又P(8,0),∴MP=(8-4)2+(0-3)2=42+32=5(km).类型二:三角函数模型在天气中的应用例2.下表是某地一年中10天测量的白昼时间统计表:(时间近似到0.1小时)日期日期位置序号x白昼时间y(小时)1月1日15.62月28日5910.23月21日8012.44月27日11716.45月6日12617.36月21日17219.48月13日22516.49月20日26312.410月25日2988.512月21日3555.4(1)以日期在365天中的位置序号x为横坐标,白昼时间y为纵坐标,在给定坐标(如下图)中画出这些数据的散点图;(2)试选用一个形如y=A s in(ωx+ϕ)+t的函数来近似描述一年中白昼时间y与日期位置序号x之间的函数关系;(注:①求出所选用的函数关系式;②一年按365天计算)(3)用(2)中的函数模型估计该地一年中大约有多少天白昼时间大于15.9小时?【思路点拨】先作散点图,结合图象求出y=A s in(ωx+ϕ)+t中的A,ω,ϕ,t,最后利用函数模型,解不等式可得.⎛2π⎝365x-323π730⎫⎭【解析】(1)如图所示.(2)由散点图知白昼时间与日期序号之间的函数关系近似为y=A s in(ωx+ϕ)+t,∴y=7sin ⎪+12.4(1≤x≤365,x∈N*).(3)由y>15.9,得sin ⎪>,12x-由题中图形知函数的最大值为19.4,最小值为5.4,即y max=19.4,y min=5.4,由19.4-5.4=14,得A=7;由19.4+5.4=24.8,得t=12.4.又T=365,∴ω=2π365.∴ϕ=-232π32π323π161π65π(ϕ等于-,-,-,-均可).73073730365146⎛2π⎝365x-323π730⎫⎭⎛2πx323π-⎝365730⎫1⎭2∴π6<2πx323π5π-<3657306,365323365⨯5323+<x<+1242⨯64,∴112≤x≤232.∴该地大约有121天白昼时间大于15.9小时.【总结升华】现实生产、生活中,周期现象广泛存在,三角函数还是刻画周期现象的重要数学模型,在解决实际问题时要注意搜集数据,作出相应的“散点图”,通过观察散点图并进行函数拟合,而获得具体的函数模型,最后利用这个函数模型来解决实际问题.举一反三:【变式1】(2015秋湖北荆门期末)通常情况下,同一地区一天的温度随时间变化的曲线接近于函数y=Asin(ωx+φ)+b的图象.2015年1月下旬荆门地区连续几天最高温度都出现在14时,最高温度为14℃;最低温度出现在凌晨2时,最低温度为零下2℃.(1)请推理荆门地区该时段的温度函数y=Asin(ωt+φ)+b(A>0,ω>0,|φ|<π,t∈[0,24))的表达式;(2)29日上午9时某高中将举行期末考试,如果温度低于10℃,教室就要开空调,请问届时学校后勤应该送电吗?【答案】(1)y=8sin(π2π3)+6;(2)应该开空调【解析】(1)∵最高温度为14℃,最低温度为零下2℃.∴A=11[14-(-2)]=8,b=[14+(-2)]=6,22∵函数的周期T=24,∴ω=2ππ= 2412ππ2π由⋅2+ϕ=-+2kπ,|ϕ|<π,可得ϕ=-1223π2π∴函数表达式为y=8sin(x-123)+6;π2ππ(2)当x=9时,y=8sin(⋅9-)+6=8sin+61231212<sins=4sin 2t+⎪,t∈[0,+∞).(1)将t=0代入s=4sin 2t+⎪,3=23cm.∵sinππ6,∴y=8sinπ12+6<8sinπ6+6=10,温度低于10℃,满足开空调的条件,所以应该开空调.类型三:三角函数模型在物理学中的应用例3.已知弹簧上挂着小球做简谐运动时,小球离开平衡位置的距离s(cm)随时间t(s)的变化规律为:⎛π⎫⎝3⎭用五点法作出这个函数在一个周期内的简图,并回答下列问题:(1)小球在开始运动(t=0)时,离开平衡位置的位移是多少?(2)小球上升到最高点、下降到最低点时离开平衡位置的位移分别是多少?(3)经过多少秒,小球往复运动一次?【答案】(1)23(2)-4(3)3.14【解析】列表如下:t0π12π37π125π62t+sπ3π323π24π3π2-42π0作图(如图).⎛⎝π⎫3⎭得s=4sinπ以竖直向上作为位移的正向,则小球开始运动时的位移是23cm,方向为正向.(2)由题图可知,小球上升到最高点离开平衡位置的位移是-4cm,负号表示方向竖直向下.(3)由于这个函数的周期T=2π=π,所以小球往复运动一次所需的时间为π≈3.14s.反映在图2象上,正弦曲线在每一个长度为π的区间上,都完整地重复变化一次.【总结升华】(1)注意简谐运动中自变量的范围为[0,+∞).α (t ) = sin ⎛ 2t + ⎪ .4 时, α 的值是多少?并指出小球的具体位置;= sin 2 ⨯ + ⎪ = sin π = 0 ,这时小球恰好在平衡位置; 4时, α⎝ 4 ⎭ 2 ⎝ 4 2 ⎭ 2(3)令 t=0,得 sin 2t +2 ⎭⎪ 的最大值为 1.故 α (t ) 有最大值 【答案】(1) I = 300sin 100π t + π ⎫⎪ (2)629-- ⎪ =ω = T ⇒ ω =(2)正确理解并识记简谐运动周期、频率、振幅的概念以及实际意义是解决本题的关键. 举一反三:【变式 1 】一个单摆,如图所示,小球偏离铅垂线方向的角为α rad , α 与时间 t 满足关系式1 π ⎫2 ⎝ 2 ⎭(1)当 t =π(2)单摆摆动的频率是多少?(3)小球偏离铅垂线方向的最大摆角是多少?【答案】(1)0(2)【解析】1 1 (3) π 2(1)当 t =π ⎛ π ⎫ 1 ⎛ π π ⎫ 1⎪(2)因为单摆摆动的周期T = 2π 1 1= π ,所以频率 f = = ;2 T π摆角是 12rad .⎛⎝π ⎫ 1 2 rad ,即小球偏离铅垂线方向的最大例 4.如图所示,表示电流 I 与时间 t 的关系式 I = A s in(ω t + ϕ)(A >0,ω > 0 )在一个周期内的图象.(1)试根据图象写出 I = A s in(ω t + ϕ) 的解析式;(2)为了使 I = A s in(ω t + ϕ) 中 t 在任意一段1100s 时间内 I 能同时取得最大值|A|和最小值-|A|,那么正整数 ω 的最小值为多少?【思路点拨】由图象,可求出 A, T , ω,φ ,因此可写出解析式.(2)要满足题意,则必须 T <1100,解之可得.⎛ ⎝3 ⎭【解析】(1)由图可知,A=300,周期 T =1 ⎛ 1 ⎫ 1 60 ⎝ 300 ⎭ 50,∴ 2π 2π T= 100π .当 t = -1ω t + ϕ = 0,即 ϕ = -ω t = -100π ⎛ ⎪= 故图象的解析式为 I = 300sin100π t + ⎪ . 精品文档 用心整理1 ⎫ π时, 300⎝ -300 ⎭3.⎛⎝π ⎫ 3 ⎭(2)要使 t 在任意一段 1 1s 的时间内能同时取得最大值和最小值,必须使得周期T < .100 100即 2π ω <1 100⇒ ω > 200π ⇒ ω > 628.3 .由于 ω 为正整数,故 ω 的最小值为 629.【总结升华】由三角函数的图象求解析式的方法是:根据函数图象性质,结合“五点法”作图时的对应关系,分别确定 A , ω , ϕ .。
必修四三角函数模型的简单应用(附答案)

三角函数模型的简单应用[学习目标] 1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型.知识点一 利用三角函数模型解释自然现象在客观世界中,周期现象广泛存在,潮起潮落、星月运转、昼夜更替、四季轮换,甚至连人的情绪、体力、智力等心理、生理状况都呈现周期性变化,而三角函数模型是刻画周期性问题的最优秀的数学模型.利用三角函数模型解决实际问题的具体步骤如下: (1)收集数据,画出“散点图”;(2)观察“散点图”,进行函数拟合,当散点图具有波浪形的特征时,便可考虑应用正弦函数和余弦函数模型来解决;(3)注意由第二步建立的数学模型得到的解都是近似的,需要具体情况具体分析. 思考1 三角函数的周期性y =A sin(ωx +φ) (ω≠0)的周期是T =2π|ω|;y =A cos(ωx +φ) (ω≠0)的周期是T =2π|ω|;y =A tan(ωx +φ) (ω≠0)的周期是T =π|ω|.思考2 如图,某地一天从6~14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b .根据图象可知,一天中的温差是 ;这段曲线的函数解析式是y = 答案 20℃ 10sin(π8x +3π4)+20,x ∈[6,14]知识点二 三角函数模型在物理学中的应用在物理学中,当物体做简谐运动时,可以用正弦型函数y =A sin(ωx +φ)来表示运动的位移y 随时间x 的变化规律,其中:(1)A 称为简谐运动的振幅,它表示物体运动时离开平衡位置的最大位移; (2)T =2πω称为简谐运动的周期,它表示物体往复运动一次所需的时间;(3)f =1T =ω2π称为简谐运动的频率,它表示单位时间内物体往复运动的次数.题型一 三角函数模型在物理中的应用例1 已知电流I 与时间t 的关系为I =A sin(ωt +φ).(1)如图所示的是I =A sin(ωt +φ)(ω>0,|φ|<π2)在一个周期内的图象,根据图中数据求I =A sin(ωt +φ)的解析式;(2)如果t 在任意一段1150秒的时间内,电流I =A sin(ωt +φ)都能取得最大值和最小值,那么ω的最小正整数值是多少?解 (1)由图知A =300,设t 1=-1900,t 2=1180,则周期T =2(t 2-t 1)=2⎝⎛⎭⎫1180+1900=175. ∴ω=2πT=150π.又当t =1180时,I =0,即sin ⎝⎛⎭⎫150π·1180+φ=0, 而|φ|<π2,∴φ=π6.故所求的解析式为I =300sin ⎝⎛⎭⎫150πt +π6. (2)依题意,周期T ≤1150,即2πω≤1150(ω>0),∴ω≥300π>942,又ω∈N *, 故所求最小正整数ω=943.跟踪训练1 一根细线的一端固定,另一端悬挂一个小球,小球来回摆动时,离开平衡位置的位移S (单位:cm)与时间t (单位:s)的函数关系是:S =6sin(2πt +π6).(1)画出它的图象; (2)回答以下问题:①小球开始摆动(即t =0),离开平衡位置是多少? ②小球摆动时,离开平衡位置的最大距离是多少?③小球来回摆动一次需要多少时间? 解 (1)周期T =2π2π=1(s).列表:(2)①小球开始摆动(t =0),离开平衡位置为3 cm. ②小球摆动时离开平衡位置的最大距离是6 cm. ③小球来回摆动一次需要1 s(即周期). 题型二 三角函数模型在生活中的应用例2 某港口水深y (米)是时间t (0≤t ≤24,单位:小时)的函数,下面是水深数据:+B 的图象.(1)试根据数据表和曲线,求出y =A sin ωt +B 的解析式;(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)解 (1)从拟合的曲线可知,函数y =A sin ωt +B 的一个周期为12小时,因此ω=2πT =π6.又y min =7,y max =13, ∴A =12(y max -y min )=3,B =12(y max +y min )=10.∴函数的解析式为y =3sin π6t +10 (0≤t ≤24).(2)由题意,得水深y ≥4.5+7, 即y =3sin π6t +10≥11.5,t ∈[0,24],∴sin π6t ≥12,π6t ∈⎣⎡⎦⎤2k π+π6,2k π+5π6,k =0,1, ∴t ∈[1,5]或t ∈[13,17],所以,该船在1∶00至5∶00或13∶00至17∶00能安全进港. 若欲于当天安全离港,它在港内停留的时间最多不能超过16小时.跟踪训练2 如图为一个缆车示意图,该缆车半径为4.8 m ,圆上最低点与地面距离为0.8 m,60秒转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面距离为h . (1)求h 与θ之间的函数关系式;(2)设从OA 开始转动,经过t 秒后到达OB ,求h 与t 之间的函数解析式,并求缆车第一次到达最高点时用的最少时间是多少?解 (1)以圆心O 为原点,建立如图所示的坐标系,则以Ox 为始边,OB 为终边的角为θ-π2.故B 点坐标为(4.8cos(θ-π2),4.8sin(θ-π2)).∴h =5.6+4.8sin(θ-π2),θ∈[0,+∞).(2)点A 在圆上转动的角速度是π30,故t 秒转过的弧度数为π30t ,∴h =5.6+4.8sin(π30t -π2),t ∈[0,+∞).到达最高点时,h =10.4 m.由sin(π30t -π2)=1.得π30t -π2=π2,∴t =30. ∴缆车到达最高点时,用的时间最少为30秒.利用三角函数线证明三角不等式例3 心脏跳动时,血压在增加或减少,血压的最大值、最小值分别称为收缩压、舒张压,血压计上的读数就是收缩压、舒张压,读数120/80 mmHg 为标准值,设某人的血压满足方程式P (t )=115+25sin(160πt ),其中P (t )为血压(mmHg),t 为时间(min),试回答下列问题: (1)求函数P (t )的周期; (2)求此人每分钟心跳的次数; (3)画出函数P (t )的草图;(4)求出此人的血压在血压计上的读数,并与标准值进行比较分析 (1)利用周期公式可以求出函数P (t )的周期;(2)每分钟心跳的次数即频率;(3)用“五点法”作出函数的简图;(4)此人的收缩压、舒张分别是函数P (t )的最大值和最小值,故可求出此人的血压在血压计上的计数.解 (1)由于ω=160π,代入周期公式T =2πω,可得T =2π160π=180(min),所以函数P (t )的周期为180min.(2)函数P (t )的频率f =1T =80(次/分),即此人每分钟心跳的次数为80.(3)列表:(4)此人的收缩压为115+25=140(mmHg),舒张压为115-25=90(mmHg),与标准值120/80 mmHg 相比较,此人血压偏高.1.函数y =|sin 12x +13|的最小正周期为( )A .2πB .πC .4π D.π22.一根长l cm 的线,一端固定,另一端悬挂一个小球,小球摆动时离开平衡位置的位移s (cm)与时间t (s)的函数关系式为s =3cos ⎝⎛⎭⎫g l t +π3,其中g 是重力加速度,当小球摆动的周期是1 s 时,线长l = cm.3.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6) (x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值为 ℃.4.如图所示,一个摩天轮半径为10 m ,轮子的底部在地面上2 m 处,如果此摩天轮按逆时针转动,每30 s 转一圈,且当摩天轮上某人经过点P 处(点P 与摩天轮中心高度相同)时开始计时.(1)求此人相对于地面的高度关于时间的关系式;(2)在摩天轮转动的一圈内,约有多长时间此人相对于地面的高度不小于17 m.一、选择题1.如图所示,单摆从某点开始来回摆动,离开平衡位置O 的距离s cm 和时间ts 的函数关系式为s =6sin(100πt +π6),那么单摆来回摆一次所需的时间为( )A.150 sB.1100s C .50 s D .100 s 2.电流强度I (A)随时间t (s)变化的关系式是I =5sin(100πt +π3),则当t =1200 s 时,电流强度I 为( )A .5 AB .2.5 AC .2 AD .-5 A3.如图所示,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是( )4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如图所示,则当t =1100秒时,电流强度是( )A .-5安B .5安C .5 3 安D .10安5.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )二、填空题6.函数y =2sin ⎝⎛⎭⎫m 3x +π3的最小正周期在⎝⎛⎭⎫23,34内,则正整数m 的值是 .7.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为 .8.某时钟的秒针端点A 到中心点O 的距离为5 cm ,秒针均匀地绕点O 旋转,当时间t =0时,点A 与钟面上标12的点B 重合,将A 、B 两点的距离d (cm)表示成t (s)的函数,则d = ,其中t ∈[0,60].9.已知f (x )=sin(ωx +π3)(ω>0),f (π6)=f (π3),且f (x )在区间(π6,π3)上有最小值,无最大值,则ω= . 三、解答题10.如图所示,某地夏天从8~14时的用电量变化曲线近似满足函数y =A sin(ωx +φ)+b (0<φ<π2).(1)求这一天的最大用电量及最小用电量; (2)写出这段曲线的函数解析式.11.如图,一个水轮的半径为4 m ,水轮圆心O 距离水面2 m ,已知水轮每分钟转动5圈,如果当水轮上点P 从水中浮现时(图中点P 0)开始计算时间.(1)将点P 距离水面的高度z (m)表示为时间t (s)的函数; (2)点P 第一次到达最高点大约需要多少时间?12.已知某海滨浴场海浪的高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作:y=f(t),下表是某日各时的浪高数据:(1)根据以上数据,求函数y=A cos ωt+b的最小正周期T,振幅A及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00时至晚上20∶00时之间,有多少时间可供冲浪者进行运动?当堂检测答案1.答案 A 2.答案g 4π2解析 T =2πg l=1,∴ g l =2π,∴l =g 4π2. 3.答案 20.5解析 由题意得⎩⎪⎨⎪⎧ a +A =28,a -A =18, ∴⎩⎪⎨⎪⎧a =23,A =5,∴y =23+5cos ⎣⎡⎦⎤π6(x -6),当x =10时,y =23+5×⎝⎛⎭⎫-12=20.5. 4.解 (1)设在t s 时,摩天轮上某人在高h m 处.这时此人所转过的角为2π30 t =π15 t ,故在t s 时,此人相对于地面的高度为h =10sinπ15t +12(t ≥0). (2)由10sin π15t +12≥17,得sin π15t ≥12,则52≤t ≤252.故此人有10 s 相对于地面的高度不小于17 m.课时精练答案一、选择题1.答案 A2.答案 B解析 当t =1200时,I =5sin(π2+π3)=5cos π3=2.5. 3.答案 C解析 d =f (l )=2sin l 2. 4.答案 A解析 由图象知A =10,T 2=4300-1300=1100, ∴ω=2πT=100π,∴I =10sin(100πt +φ). (1300,10)为五点中的第二个点, ∴100π×1300+φ=π2. ∴φ=π6,∴I =10sin(100πt +π6), 当t =1100秒时,I =-5安. 5.答案 C解析 ∵P 0(2,-2),∴∠P 0Ox =π4, 按逆时针转时间t 后得∠POP 0=t ,∠POx =t -π4, 此时P 点纵坐标为2sin(t -π4), ∴d =2|sin(t -π4)|.当t =0时,d =2,排除A 、D ; 当t =π4时,d =0,排除B. 二、填空题6.答案 26,27,28解析 ∵T =6πm ,又∵23<6πm <34, ∴8π<m <9π,且m ∈Z ,∴m =26,27,28.7.答案 34解析 取K ,L 中点N ,则MN =12, 因此A =12.由T =2得ω=π. ∵函数为偶函数,0<φ<π,∴φ=π2, ∴f (x )=12cos πx ,∴f (16)=12cos π6=34. 8.答案 10sin πt 60解析 将解析式可写为d =A sin(ωt +φ)的形式,由题意易知A =10,当t =0时,d =0,得φ=0;当t =30时,d =10,可得ω=π60,所以d =10sin πt 60. 9.答案 143解析 依题意,x =π6+π32=π4时,y 有最小值, ∴sin(π4·ω+π3)=-1, ∴π4ω+π3=2k π+3π2(k ∈Z ). ∴ω=8k +143(k ∈Z ),因为f (x )在区间(π6,π3)上有最小值,无最大值,所以π3-π4<πω, 即ω<12,令k =0,得ω=143. 三、解答题10.解 (1)最大用电量为50万kW·h ,最小用电量为30万kW·h.(2)观察图象可知从8~14时的图象是y =A sin(ωx +φ)+b 的半个周期的图象,∴A =12×(50-30)=10,b =12×(50+30)=40. ∵12×2πω=14-8,∴ω=π6.∴y =10sin ⎝⎛⎭⎫π6x +φ+40. 将x =8,y =30代入上式,又∵0<φ<π2,∴解得φ=π6. ∴所求解析式为y =10sin ⎝⎛⎭⎫π6x +π6+40,x ∈[8,14].11.解 (1)如图所示建立直角坐标系,设角φ⎝⎛⎭⎫-π2<φ<0是以Ox 为始边,OP 0为终边的角.OP 每秒钟内所转过的角为5×2π60=π6.则OP 在时间t (s)内所转过的角为π6t .由题意可知水轮逆时针转动,得z =4sin ⎝⎛⎭⎫π6t +φ+2.当t =0时,z =0,得sin φ=-12,即φ=-π6.故所求的函数关系式为z =4sin ⎝⎛⎭⎫π6t -π6+2.(2)令z =4sin ⎝⎛⎭⎫π6t -π6+2=6,得sin ⎝⎛⎭⎫π6t -π6=1,令π6t -π6=π2,得t =4,故点P 第一次到达最高点大约需要4 s.12.解 (1)由表中数据知周期T =12,∴ω=2πT =2π12=π6,由t =0,y =1.5,得A +b =1.5.由t =3,y =1.0,得b =1.0.∴A =0.5,b =1,∴y =12cos π6t +1.(2)由题意知,当y >1时才可对冲浪者开放,∴12cos π6t +1>1, ∴cos π6t >0,∴2k π-π2<π6t <2k π+π2,k ∈Z , 即12k -3<t <12k +3,k ∈Z .①∵0≤t ≤24,故可令①中k 分别为0,1,2,得0≤t <3或9<t <15或21<t ≤24.∴在规定时间上午8∶00至晚上20∶00之间,有6个小时时间可供冲浪者运动,即上午9∶00至下午3∶00.。
高考数学专题复习《三角函数模型》知识梳理及典型例题讲解课件(含答案)

√
解:根据 的部分图象,可得 , ,所以 .结合五点法作图,可得 ,所以 ,故 .由题意,把 图象上所有点的横坐标变为原来的 倍,再向右平移 个单位长度,可得 的图象,故 的最小正周期为 ,故A错误;当 时, , 不单调递减,故B错误;令 ,得 ,不是最值,故 的图象关于点 对称,但不关于直线 对称,故C错误,D正确.
考点三 函数 <m></m> 图象与性质的综合应用
命题角度1 函数零点问题
例3 已知函数 ,其中常数 .
(1)令 ,将函数 的图象向左平移 个单位,纵坐标变为原来的2倍,再向上平移1个单位,得到函数 的图象,求函数 的解析式;
(2) 若 在 上单调递增,求 的取值范围;
[答案] 由 , ,得 , ,因此函数 的单调递增区间为 , ,又 ,所以 ,即 解得 .所以 的取值范围是 .
1.函数
(1)匀速圆周运动的数学模型 如图,点 从 <m></m> 开始,逆时针绕圆周匀速运动 (角速度为 ),则点 距离水面的高度 与时间 的函数 关系式为 ________________.
4.5 三角函数模型 2023.10.30
√
√
变式1(2)(2021年全国乙卷)把函数 图象上所有点的横坐标缩短到原来的 <m></m> 倍,纵坐标不变,再把所得曲线向右平移 <m></m> 个单位长度,得到函数 的图象,则 ( )
A. B. C. D.
√
变式1(3)将函数 的图象向左平移 个单位,得到函数 的图象,函数 的图象关于直线 <m></m> 对称,记函数 .
2020版高中数学人教A版必修4 导学案 《三角函数模型的简单应用》(含答案解析)

1.6 三角函数模型的简单应用学习目标1.会用三角函数解决一些简单的实际问题.2.体会三角函数是描述周期变化现象的重要函数模型.知识点 利用三角函数模型解释自然现象在客观世界中,周期现象广泛存在,潮起潮落、星月运转、昼夜更替、四季轮换,甚至连人的情绪、体力、智力等心理、生理状况都呈现周期性变化.思考 现实世界中的周期现象可以用哪种数学模型描述? 答案 三角函数模型.梳理:(1)利用三角函数模型解决实际问题的一般步骤: 第一步:阅读理解,审清题意.读题要做到逐字逐句,读懂题中的文字,理解题目所反映的实际背景,在此基础上分析出已知什么、求什么,从中提炼出相应的数学问题. 第二步:收集、整理数据,建立数学模型.根据收集到的数据找出变化规律,运用已掌握的三角函数知识、物理知识及相关知识建立关系式,将实际问题转化为一个与三角函数有关的数学问题,即建立三角函数模型,从而实现实际问题的数学化.第三步:利用所学的三角函数知识对得到的三角函数模型予以解答. 第四步:将所得结论转译成实际问题的答案. (2)三角函数模型的建立程序 如图所示:类型一 三角函数模型在物理中的应用例1.已知电流I 与时间t 的关系为I=Asin(ωt+φ).(1)如图所示的是I=Asin(ωt+φ)(ω>0,|φ|<π2)在一个周期内的图象,根据图中数据求I=Asin(ωt+φ)的解析式;(2)如果t 在任意一段1150的时间内,电流I=Asin(ωt+φ)都能取得最大值和最小值,那么ω的最小正整数值是多少?此类问题的解决关键是将图形语言转化为符号语言,其中,读图、识图、用图是数形结合的有效途径.跟踪训练1.一根细线的一端固定,另一端悬挂一个小球,当小球来回摆动时,离开平衡位置的位移S(单位:cm)与时间t(单位:s)的函数关系是S=6sin(2πt+π6).(1)画出它的图象; (2)回答以下问题:①小球开始摆动(即t=0),离开平衡位置是多少? ②小球摆动时,离开平衡位置的最大距离是多少? ③小球来回摆动一次需要多少时间?类型二 三角函数模型在生活中的应用例2.某游乐园的摩天轮最高点距离地面108米,直径长是98米,匀速旋转一圈需要18分钟.如果某人从摩天轮的最低处登上摩天轮并开始计时,那么:(1)当此人第四次距离地面692米时用了多少分钟?(2)当此人距离地面不低于(59+4923)米时可以看到游乐园的全貌,求摩天轮旋转一圈中有多少分钟可以看到游乐园的全貌?解决三角函数的实际应用问题必须按照一般应用题的解题步骤执行: (1)认真审题,理清问题中的已知条件与所求结论; (2)建立三角函数模型,将实际问题数学化;(3)利用三角函数的有关知识解决关于三角函数的问题,求得数学模型的解; (4)根据实际问题的意义,得出实际问题的解; (5)将所得结论返回、转译成实际问题的答案.跟踪训练2.如图所示,一个摩天轮半径为10 m ,轮子的底部在距离地面2 m 处,如果此摩天轮按逆时针转动,每30 s 转一圈,且当摩天轮上某人经过点P 处(点P 与摩天轮中心高度相同)时开始计时.(1)求此人相对于地面的高度关于时间的关系式;(2)在摩天轮转动的一圈内,大约有多长时间此人相对于地面的高度不小于17 m.1.一根长l cm 的线,一端固定,另一端悬挂一个小球,小球摆动时离开平衡位置的位移s(cm)与时间t(s)的函数关系式为s=3cos ⎝ ⎛⎭⎪⎫g lt +π3,其中g 是重力加速度,当小球摆动的周期是1 s 时,线长l=________ cm.2.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y=a +Acos ⎣⎢⎡⎦⎥⎤π6(x -6)(x=1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温为________℃.3.一个单摆的平面图如图.设小球偏离铅锤方向的角为α(rad),并规定当小球在铅锤方向右侧时α为正角,左侧时α为负角.α作为时间t(s)的函数,近似满足关系式α=Asin(ωt+π2),其中ω>0.已知小球在初始位置(即t=0)时,α=π3,且每经过π s 小球回到初始位置,那么A=________;α关于t 的函数解析式是____________________.4.某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-2sin(π12t +π3),t∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?1.三角函数模型是研究周期现象最重要的数学模型.三角函数模型在研究物理、生物、自然界中的周期现象(运动)有着广泛的应用.2.三角函数模型构建的步骤(1)收集数据,观察数据,发现是否具有周期性的重复现象. (2)制作散点图,选择函数模型进行拟合. (3)利用三角函数模型解决实际问题.(4)根据问题的实际意义,对答案的合理性进行检验. 课时作业一、选择题1.如图所示为一简谐运动的图象,则下列判断正确的是( )A.该质点的振动周期为0.7 sB.该质点的振幅为-5 cmC.该质点在0.1 s 和0.5 s 时的振动速度最大D.该质点在0.3 s 和0.7 s 时的加速度为零2.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f(x)=Asin(ωx+φ)+b ⎝⎛⎭⎪⎫A>0,ω>0,|φ|<π2的模型波动(x 为月份), 已知3月份达到最高价9千元,7月份价格最低为5千元, 根据以上条件可确定f(x)的解析式为( )A.f(x)=2sin ⎝ ⎛⎭⎪⎫π4x -π4+7(1≤x≤12,x∈N *)B.f(x)=9sin ⎝ ⎛⎭⎪⎫π4x -π4(1≤x≤12,x∈N *)C.f(x)=22sin π4x +7(1≤x≤12,x∈N *)D.f(x)=2sin ⎝ ⎛⎭⎪⎫π4x +π4+7(1≤x≤12,x∈N *)3.商场人流量被定义为每分钟通过入口的人数,五一某商场的人流量满足函数:F(t)=50+4sin t2(t≥0),则人流量是增加的时间段为( )A.[0,5]B.[5,10]C.[10,15]D.[15,20]4.如图为一半径为3 m 的水轮,水轮圆心O 距离水面2 m ,已知水轮自点A 开始1 min 旋转4圈,水轮上的点P 到水面距离y(m)与时间x(s)满足函数关系y=Asin(ωx+φ)+2,则有( )A.ω=2π15,A=3 B .ω=152π,A=3 C.ω=2π15,A=5 D .ω=152π,A=55.如图,某港口一天6时到18时的水深变化曲线近似满足函数关系式y=3sin ⎝ ⎛⎭⎪⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A.5B.6C.8D.106.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32 m(即OM 长),巨轮的半径长为30 m ,AM=BP=2 m ,巨轮逆时针旋转且每12分钟转动一圈.若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为h(t) m ,则h(t)等于( )A.30sin(π12t -π2)+30B.30sin(π6t -π2)+30C.30sin(π6t -π2)+32D.30sin(π6t -π2)7.如图所示,单摆从某点开始来回摆动,离开平衡位置O 的距离s cm 和时间t s 的函数关系式为s=6sin(100πt+π6),那么单摆来回摆一次所需的时间为( )A.150 s B.1100s C.50 s D.100 s二、填空题8.电流强度I(安)随时间t(秒)变化的函数I=Asin(ωt+π6)(A>0,ω≠0)的图象如图所示,则当t=150秒时,电流强度是________安.9.设某人的血压满足函数式p(t)=115+25sin(160πt),其中p(t)为血压(mmHg),t 为时间(min),则此人每分钟心跳的次数是________.10.下图表示相对于平均海平面的某海湾的水面高度h(m)在某天0~24时的变化情况, 则水面高度h 关于时间t 的函数解析式为________________.11.某时钟的秒针端点A 到中心点O 的距离为5 cm ,秒针均匀地绕点O 旋转,当时间t=0时, 点A 与钟面上标12的点B 重合,将A 、B 两点的距离d(cm)表示成t(s)的函数,则d=________, 其中t∈[0,60].12.设偶函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML=90°,KL=1,则f(16)的值为________.三、解答题13.如图,一个水轮的半径为4 m ,水轮圆心O 距离水面2 m ,已知水轮每分钟转动5圈, 如果当水轮上点P 从水中浮现时(图中点P 0)开始计算时间.(1)将点P 距离水面的高度z(m)表示为时间t(s)的函数; (2)点P 第一次到达最高点大约需要多少时间?四、探究与拓展14.有一冲击波,其波形为函数y=-sin πx2的图象,若其在区间[0,t]上至少有2个波峰,则正整数t 的最小值是( )A.5B.6C.7D.815.如图所示,某地夏天从8~14时的用电量变化曲线近似满足函数y=Asin(ωx+φ)+b(0<φ<π2).(1)求这一天的最大用电量及最小用电量; (2)写出这段曲线的函数解析式.答案解析例1.根据图中数据求I=Asin(ωt+φ)的解析式;(2)解:(1)由图可知A=300,设t 1=-1900,t 2=1180,则周期T=2(t 2-t 1)=2⎝ ⎛⎭⎪⎫1180+1900=175.∴ω=2πT =150π.又当t=1180时,I=0,即sin ⎝ ⎛⎭⎪⎫150π·1180+φ=0,而|φ|<π2,∴φ=π6. 故所求的解析式为I=300sin ⎝⎛⎭⎪⎫150πt+π6. (2)依题意知,周期T≤1150,即2πω≤1150(ω>0),∴ω≥300π>942,又ω∈N *,故所求最小正整数ω=943.跟踪训练1.解:(1)周期T=2π2π=1(s).t 0 16 512 23 11121 2πt+π6 π6 π2 π 3π2 2π 2π+π66sin(2πt+π6)36-63描点画图:(2)①小球开始摆动(即t=0),离开平衡位置为3 cm. ②小球摆动时离开平衡位置的最大距离是6 cm. ③小球来回摆动一次需要1 s(即周期). 例2.解:(1)如图,建立平面直角坐标系,设此人登上摩天轮t 分钟时距地面y 米,则α=2π18t=π9t.由y=108-982-982cos π9t=-49cos π9t +59(t≥0).令-49cos π9t +59=692,得cos π9t=12,∴π9t=2kπ±π3,故t=18k±3,k∈Z ,故t=3,15,21,33.故当此人第四次距离地面692米时用了33分钟.(2)由题意得-49cos π9t +59≥59+4923,即cos π9t≤-32.故不妨在第一个周期内求即可,所以5π6≤π9t≤7π6,解得152≤t≤212,故212-152=3. 因此摩天轮旋转一圈中有3分钟可以看到游乐园的全貌.跟踪训练2.解:(1)设在t s 时,摩天轮上某人在高h m 处.这时此人所转过的角为2π30 t=π15t ,故在t s 时,此人相对于地面的高度为h=10sin π15t +12(t≥0).(2)由10sin π15t +12≥17,得sin π15t≥12,则52≤t≤252.故此人有10 s 相对于地面的高度不小于17 m.1.答案:g 4π2解析:∵T=2πgl=1,∴ g l =2π,∴l=g4π2.2.答案:20.5解析:由题意可知A=28-182=5,a=28+182=23,从而y=5cos ⎣⎢⎡⎦⎥⎤π6(x -6)+23. 故10月份的平均气温值为y=5cos ⎝ ⎛⎭⎪⎫π6×4+23=20.5.3.答案:π3,α=π3sin(2t +π2),t∈[0,+∞);解析:∵当t=0时,α=π3,∴π3=Asin π2,∴A=π3.又∵周期T=π,∴2πω=π,解得ω=2.故所求的函数解析式是α=π3sin(2t +π2),t∈[0,+∞).4.解:(1)因为f(t)=10-2sin(π12t +π3),又0≤t<24,所以π3≤π12t +π3<7π3,-1≤sin(π12t +π3)≤1.当t=2时,sin(π12t +π3)=1;当t=14时,sin(π12t +π3)=-1.于是f(t)在[0,24)上的最大值为12,最小值为8.故实验室这一天的最高温度为12℃,最低温度为8℃,最大温差为4℃. (2)依题意,当f(t)>11时实验室需要降温.由(1)得f(t)=10-2sin(π12t +π3),故有10-2sin(π12t +π3)>11,即sin(π12t +π3)<-12.又0≤t<24,因此7π6<π12t +π3<11π6,即10<t<18.故在10时至18时实验室需要降温.1.答案:D解析:该质点的振动周期为T=2×(0.7-0.3)=0.8(s),故A 是错误的;该质点的振幅为5 cm , 故B 是错误的;该质点在0.1 s 和0.5 s 时的振动速度是零,故C 是错误的.故选D. 2.答案:A解析:令x=3可排除D ,令x=7可排除B ,由A=9-52=2可排除C.或由题意,可得A=9-52=2,b=7,周期T=2πω=2×(7-3)=8,∴ω=π4.∴f(x)=2sin ⎝ ⎛⎭⎪⎫π4x +φ+7. ∵当x=3时,y=9,∴2sin ⎝ ⎛⎭⎪⎫3π4+φ+7=9,即sin ⎝ ⎛⎭⎪⎫3π4+φ=1. ∵|φ|<π2,∴φ=-π4.∴f(x)=2sin ⎝ ⎛⎭⎪⎫π4x -π4+7(1≤x≤12,x∈N *).3.答案:C解析:由2kπ-π2≤t 2≤2kπ+π2,k∈Z 知,函数F(t)的增区间为[4kπ-π,4kπ+π],k∈Z .当k=1时,t∈[3π,5π],而[10,15]⊆[3π,5π],故选C.4.答案:A解析:由题目可知最大值为5,所以5=A×1+2⇒A=3.T=15 s ,则ω=2π15.故选A.5.答案:C解析:由题干图易得y min =k -3=2,则k=5.∴y max =k +3=8. 6.答案:B解析:过点O 作地面的平行线作为x 轴,过点O 作x 轴的垂线,作为y 轴,过点B 作x 轴的垂线BN交x 轴于N 点,如图,点A 在圆O 上逆时针运动的角速度是2π12=π6,所以t 分钟转过的弧度数为π6t.设θ=π6t ,当θ>π2时,∠BON=θ-π2,h=OA +BN=30+30sin(θ-π2),当0<θ<π2时,上述关系式也适合.故h=30+30sin(θ-π2)=30sin(π6t -π2)+30.7.答案:A8.答案:5解析:由图象可知A=10,周期T=2×(4300-1300)=150, ∴ω=2πT =100π,∴I=10sin(100πt+π6),当t=150秒时,I=10sin(2π+π6)=5(安). 9.答案:80;解析:T=2π160π=180(分),f=1T=80(次/分). 10.答案:h=-6sin π6t ,t∈[0,24] 解析:根据题图设h=Asin(ωt+φ),则A=6,T=12,2πω=12,∴ω=π6. 点(6,0)为“五点”作图法中的第一点,∴π6×6+φ=0,∴φ=-π, ∴h=6sin(π6t -π)=-6sin π6t ,t∈[0,24]. 11.答案:10sin πt 60解析:将解析式可写为d=Asin(ωt+φ)的形式,由题意易知A=10,当t=0时,d=0,得φ=0;当t=30时,d=10,可得ω=π60,所以d=10sin πt 60. 12.答案:34解析:取K ,L 的中点N ,则MN=12,因此A=12.由T=2得ω=π. ∵函数为偶函数,0<φ<π,∴φ=π2,∴f(x)=12cos πx,∴f(16)=12cos π6=34. 13.解:(1)如图所示建立直角坐标系,设角φ⎝ ⎛⎭⎪⎫-π2<φ<0是以Ox 为始边,OP 0为终边的角.OP 每秒钟内所转过的角为5×2π60=π6,则OP 在时间t(s)内所转过的角为π6t. 由题意可知水轮逆时针转动,得z=4sin ⎝ ⎛⎭⎪⎫π6t +φ+2. 当t=0时,z=0,得sin φ=-12,即φ=-π6.故所求的函数关系式为z=4sin ⎝ ⎛⎭⎪⎫π6t -π6+2. (2)令z=4sin ⎝ ⎛⎭⎪⎫π6t -π6+2=6,得sin ⎝ ⎛⎭⎪⎫π6t -π6=1,令π6t -π6=π2,得t=4, 故点P 第一次到达最高点大约需要4 s.14.答案:C ;15.解:(1)最大用电量为50万kW·h,最小用电量为30万kW·h.(2)观察图象可知从8~14时的图象是y=Asin(ωx+φ)+b 的半个周期的图象,∴A=12×(50-30)=10,b=12×(50+30)=40. ∵12×2πω=14-8,∴ω=π6.∴y=10sin ⎝ ⎛⎭⎪⎫π6x +φ+40.将x=8,y=30代入上式, 又∵0<φ<π2,∴φ=π6. ∴所求解析式为y=10sin ⎝ ⎛⎭⎪⎫π6x +π6+40,x∈[8,14].。
人教A数必修4能力提升:1.6 三角函数模型的简单应用(含答案解析)[ 高考]
![人教A数必修4能力提升:1.6 三角函数模型的简单应用(含答案解析)[ 高考]](https://img.taocdn.com/s3/m/2c146ceb6137ee06eff9184d.png)
1.有一冲击波,其波形为函数y =-sin(π2x )的图象,若其区间[0,t ]上至少有2个波峰(图象的最高点),则正整数t 的最小值是( )A .5B .6C .7D .8解析:选C.由y =-sin(π2x )的图象知,要想在区间[0,t ]上至少有2个波峰,必须使区间[0,t ]的长度不小于2T -T 4=7T 4,即t ≥74·2πω=74·2ππ2=7,故选C. 2.据市场调查,某种商品每件的售价按月呈f (x )=A sin(ωx +φ)+B ⎝⎛⎭⎫A >0,ω>0,|φ|<π2的模型波动(x 为月份),已知3月份达到最高价8千元,7月份价格最低为4千元,则f (x )=________.解析:由题意得⎩⎪⎨⎪⎧A +B =8,-A +B =4,解得A =2, B =6. 周期T =2(7-3)=8,∴ω=2πT =π4. ∴f (x )=2sin ⎝⎛⎭⎫π4x +φ+6. 又当x =3时,y =8,∴8=2sin ⎝⎛⎭⎫3π4+φ+6.∴sin ⎝⎛⎭⎫3π4+φ=1,取φ=-π4. ∴f (x )=2sin ⎝⎛⎭⎫π4x -π4+6.答案:2sin ⎝⎛⎭⎫π4x -π4+63.已知方程sin(x +π3)=m 2在[0,π]上有两个解,求实数m 的取值范围. 解:函数y =sin(x +π3),x ∈[0,π]的图象如图所示,方程sin(x +π3)=m 2在[0,π]上有两个解等价于函数y 1=sin(x +π3),y 2=m 2在同一平面直角坐标系中的图象在[0,π]上有两个不同的交点, ∴32≤m 2<1,即实数的取值范围为3≤m <2. 4.已知某海滨浴场的海浪高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作:y =f (t )(1)根据以上数据,求出函数y =A cos ωt +b 的最小正周期T ,振幅A 及函数表达式;(2)根据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00时至晚上20∶00时之间,有多少时间可供冲浪者进行活动?解:(1)由表中数据,知周期T =12,∴ω=2πT =π6. 由t =0,y =1.5,得A +b =1.5.又由t =3,y =1.0,得b =1.0,∴A =0.5,b =1.0,即振幅为12. ∴y =12cos π6t +1. (2)由题意知,当y >1时才对冲浪者开放,∴12cos π6t +1>1,∴cos π6t >0, ∴2k π-π2<π6t <2k π+π2,即12k -3<t <12k +3. ∵0≤t ≤24,∴令k 分别为0,1,2,得0≤t <3或9<t <15或21<t ≤24,∴在规定时间上午8∶00时至晚上20∶00时之间有6个小时可供冲浪者进行活动,即上午9∶00至下午15∶00.。
高中奥数举一反三 三角函数问题

高中奥数举一反三三角函数问题高中奥数举一反三:三角函数问题介绍三角函数是数学中重要的概念,广泛应用于各个领域。
在高中奥数竞赛中,三角函数问题常常出现,考察学生对三角函数的理解和运用能力。
本文将重点讨论高中奥数中的三角函数问题,以便帮助学生更好地准备竞赛。
正文1. 三角函数的基本概念三角函数包括正弦、余弦和正切等基本函数。
其中,正弦函数(sin)表示一个角的正弦值,余弦函数(cos)表示一个角的余弦值,正切函数(tan)表示一个角的正切值。
这些函数与角的边长比例相关。
2. 三角函数的性质- 正弦函数和余弦函数是周期函数,周期为360度或2π弧度。
- 正弦函数在0度和180度时取最大值1,在90度时取最小值-1。
- 余弦函数在0度和360度时取最大值1,在180度时取最小值-1。
- 正切函数在0度和180度时无定义,其他角度的正切值可能是正数、负数或无穷大。
3. 常见的三角函数问题类型在高中奥数竞赛中,三角函数问题的形式多种多样,但常见的类型包括:- 求角度:已知三角函数值,求对应角度。
- 求三角函数值:已知角度,求对应的三角函数值。
- 利用三角函数的性质解题:根据已知条件,运用三角函数的性质求解。
4. 解决三角函数问题的方法解决三角函数问题的关键是要熟悉三角函数的定义和性质,并掌握解决不同类型问题的方法。
以下是一些解题策略:- 使用特殊角度的三角函数值,如30度、45度和60度等。
- 利用三角函数的定义和性质进行变形、代入和联立方程等运算。
- 利用三角恒等式简化复杂的三角函数表达式。
- 结合图形进行推理和解题。
5. 案例分析以下是一个三角函数问题的案例:已知正弦函数sin(x)在90度时取最小值-1,求角度x的值。
解答:根据问题中给出的信息,我们知道sin(90度) = -1。
由此可知,角度x为90度。
结论通过研究和讨论高中奥数中的三角函数问题,我们深入了解了三角函数的基本概念和性质,掌握了解决不同类型问题的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题1.6三角函数模型的简单应用重难点题型【举一反三系列】【知识点1 三角函数模型的建立程序】收集数据画散点图选择函数模型检验求函数模型用函数模型解决实际问题【知识点2 解答三角函数应用题的一般步骤】解答三角函数应用题的基本步骤可分为四步:审题、建模、解模、结论.(1)审题三角函数应用题的语言形式多为文字语言和图形语言,阅读材料时要读懂题目所反映的实际问题的背景,领悟其中的数学本质,在此基础上分析出已知什么,求什么,从中提炼出相应的数学问题.(2)建模根据搜集到的数据,找出变化规律,运用已掌握的三角知识、物理知识及其他相关知识建立关系式,在此基础上将实际问题转化为一个三角函数问题,实现问题的数学化,即建立三角函数模型.其中要充分利用数形结合的思想以及图形语言和符号语言并用的思维方式.(3)解模利用所学的三角函数知识,结合题目的要求,对得到的三角函数模型予以解答,求出结果.(4)结论将所得结论转译成实际问题的答案,应用题不同于单纯的数学问题,既要符合科学,又要符合实际背景,因此,有时还要对于解出的结果进行检验、评判.要点诠释:实际问题的背景往往比较复杂,而且需要综合应用多门学科的知识才能完成,因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助解决问题.【考点1 三角函数模型在航海中的应用】【例1】(2019秋•潮阳区期末)某港口的水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是每天时间与水深的关系表:t03691215182124y10139.97101310.1710经过长期观测,y=f(t)可近似的看成是函数y=A sinωt+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?【分析】(1)由表中数据可以看到:水深最大值为13,最小值为7,求出b和A;再借助于相隔12小时达到一次最大值说明周期为12求出ω即可求出y=f(t)的解析式;(2)把船舶安全转化为深度f(t)≥11.5,即;再解关于t的三角不等式即可求出船舶在一天中的哪几段时间可以安全的进出该港.【答案】解:(1)由表中数据可以看到:水深最大值为13,最小值为7,∴=10,且相隔9小时达到一次最大值说明周期为12,因此,,故(0≤t≤24)(2)要想船舶安全,必须深度f(t)≥11.5,即∴,解得:12k+1≤t≤5+12k k∈Z又0≤t≤24当k=0时,1≤t≤5;当k=1时,13≤t≤17;故船舶安全进港的时间段为(1:00﹣5:00),(13:00﹣17:00).【点睛】本题主要考查三角函数知识的应用问题.解决本题的关键在于求出函数解析式.求三角函数的解析式注意由题中条件求出周期,最大最小值等.【变式1-1】(2019•怀化二模)受日月引力的作用,海水会发生涨落,这种现象叫潮汐.在通常情况下,船在海水涨潮时驶进航道,靠近码头,卸货后返回海洋.某港口水的深度y(m)是时间t(0≤t≤24,单位:h)的函数,记作:y=f(t),下表是该港口在某季每天水深的数据:t(h)03691215182124y(m)10.013.19.97.010.113.010.07.010.0经过长期观察y=f(x)的曲线可以近似地看做函数y=A sinωt+k的图象.(Ⅰ)根据以上数据,求出函数y=f(t)的近似表达式;(Ⅱ)一般情况下,船舶航行时船底离海底的距离为5m或5m以上时认为是安全的(船舶停靠时,船底只需不碰到海底即可),某船吃水深度(船底离水面的距离)为6.5m,如果该船想在同一天内安全进出港,问它至多能在港内停留多长时间(忽略进出港所需时间)?【分析】(Ⅰ)函数y=f(t)可以近似地看做y=A sinωt+k,由数据知它的周期T=12,振幅A=3,k =10,从而可得函数解析式;(Ⅱ)该船进出港口时,水深应不小于6.5+5=11.5m,而在港口内,永远是安全的,由此可得结论.【答案】解:(Ⅰ)∵函数y=f(t)可以近似地看做y=A sinωt+k,∴由数据知它的周期T=12,振幅A=3,k=10…(3分)∵,∴.故…(6分)(Ⅱ)该船进出港口时,水深应不小于6.5+5=11.5m,而在港口内,永远是安全的,由得…(9分)∴,∴12k+1≤t≤12k+5(k∈N),在同一天内,取k=0.1,则1≤t≤5或13≤t≤17…(11分)故该船最早能在凌晨1时进港,最迟在下午17时离港,在港口内最多停留16小时.…(12分)【点睛】本题考查三角函数模型的建立,考查学生分析解决问题的能力,属于中档题.【变式1-2】(2019秋•涵江区校级月考)某港口的水深y(m)是时间t(0≤t≤24,单位:h)的函数,下表是该港口某一天从0:00时至24:00时记录的时间t与水深y的关系:t(h)0:003:006:009:0012:0015:00y(m)9.912.910.07.110.013.0(Ⅰ)经长时间的观察,水深y与t的关系可以用正弦型函数拟合,求出拟合函数的表达式;(Ⅱ)如果某船的吃水深度(船底与水面的距离)为7m,船舶安全航行时船底与海底的距离不少于4.5m.那么该船在什么时间段能够进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间(忽略离港所需时间);(Ⅲ)若某船吃水深度为8m,安全间隙(船底与海底的距离)为2.5.该船在3:00开始卸货,吃水深度以每小时0.5m的速度减少,该船在什么时间必须停止卸货,驶向较安全的水域?【分析】(Ⅰ)根据数据,,可得A=3,h=10,由T=15﹣3=12,可求ω=将点(3,13)代入可得ϕ=0,从而可求函数的表达式;(Ⅱ)由题意,水深y≥4.5+7,即3sin t+10≥11.5,从而可求t∈[1,5]或t∈[13,17];(Ⅲ)设在时刻x船舶安全水深为y,则y=10.5﹣0.5(x﹣3)(x≥3),若使船舶安全,则10.5﹣0.5(x﹣3)≥3sin x+10,从而可得3≤x≤7,即该船在7:00必须停止卸货,驶向较安全的水域.【答案】解:(Ⅰ)根据数据,,∴A=3,h=10,T=15﹣3=12,∴ω=,∴y=3sin(x+ϕ)+10将点(3,13)代入可得ϕ=0∴函数的表达式为y=3sin t+10(0≤t≤24)(Ⅱ)由题意,水深y≥4.5+7,即3sin t+10≥11.5,∴sin t≥0.5,∴t∈[1,5]或t∈[13,17];所以,该船在1:00至5:00或13:00至17:00能安全进港.若欲于当天安全离港,它在港内停留的时间最多不能超过16小时.(Ⅲ)设在时刻x船舶安全水深为y,则y=10.5﹣0.5(x﹣3)(x≥3),这时水深y=3sin x+10,若使船舶安全,则10.5﹣0.5(x﹣3)≥3sin x+10,∴3≤x≤7,即该船在7:00必须停止卸货,驶向较安全的水域.【点睛】本题以表格数据为载体,考查三角函数模型的构建,考查解三角不等式,同时考查学生分析解决问题的能力.【变式1-3】(2019秋•武汉校级期末)海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天时间与水深(单位:米)的关系表:时刻0:003:006:009:0012:0015:0018:0021:0024:00水深10.013.09.97.010.013.010.17.010.0(1)请用一个函数来近似描述这个港口的水深y与时间t的函数关系;(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上认为是安全的(船舶停靠时,船底只要不碰海底即可).某船吃水深度(船底离地面的距离)为6.5米.Ⅰ)如果该船是旅游船,1:00进港希望在同一天内安全出港,它至多能在港内停留多长时间(忽略进出港所需时间)?Ⅱ)如果该船是货船,在2:00开始卸货,吃水深度以每小时0.5米的速度减少,由于台风等天气原因该船必须在10:00之前离开该港口,为了使卸下的货物尽可能多而且能安全驶离该港口,那么该船在什么整点时刻必须停止卸货(忽略出港所需时间)?【分析】(1)设出函数解析式,据最大值与最小值的差的一半为A;最大值与最小值和的一半为h;通过周期求出ω,得到函数解析式.(2)Ⅰ)据题意列出不等式,利用三角函数的周期性及单调性解三角不等式求出t的范围.Ⅱ)设f(t)=3sin t+10,t∈[2,10],g(t)=11.5﹣0.5(t﹣2)(t≥2)对它们进行比较从而得到答案.【答案】(1)以时间为横坐标,水深为纵坐标,在直角坐标系中画出散点图.如图.根据图象,可考虑用函数y=A sin(ωt+φ)+h刻画水深与时间之间的对应关系.从数据和图象可以得出A=3,h=10,T=12,φ=0,由T==12,得ω=,所以这个港口水深与时间的关系可用y=3sin t+10近似描述…(4分)(2)Ⅰ)由题意,y≥11.5就可以进出港,令sin t=,如图,在区间[0,12]内,函数y=3sin t+10与直线y=11.5有两个交点,由t=或,得t A=1,t B=5,由周期性得t C=13,t D=17,由于该船从1:00进港,可以17:00离港,所以在同一天安全出港,在港内停留的最多时间是16小时…(8分)Ⅱ)设在时刻t货船航行的安全水深为y,那么y=11.5﹣0.5(t﹣2)(t≥2).设f(t)=3sin t+10,t∈[2,10],g(t)=11.5﹣0.5(t﹣2)(t≥2)由f(6)=10>g(6)=9.5且f(7)=8.5<g(7)=9知,为了安全,货船最好在整点时刻6点之前停止卸货…(13分)【点睛】本题考查通过待定系数法求函数解析式、利用三角函数的单调性及周期性解三角不等式.【考点2 三角函数模型在日常生活中的应用】【例2】(2019春•武邑县校级期中)一半径为2m的水轮如图所示,水轮圆心O距离水面1m;已知水轮按逆时针做匀速转动,每3s转一圈,如果当水轮上点p从水中浮现时(图中点p0)开始计算时间.(1)以水轮所在平面与水面的交线为x轴,以过点O且与水面垂直的直线为y轴,建立如图所示的直角坐标系,将点P距离水面的高度h(m)表示为时间t(s)的函数;(2)点P第一次到达最高点大约要多长时间?【分析】(1)先根据h的最大和最小值求得A和k,利用周期求得ω,当t=0时,h=0,进而求得φ的值,则函数的表达式可得;(2)令最大值为3,可得三角函数方程,进而可求点P第一次到达最高点的时间;【答案】解:(1)设水轮上圆心O正右侧的点为A,y轴与水面交点为B,∵OB=1,OP0=2,∴∠BOP0=,故∠AOP0=,设h=2sin(ωt﹣)+1,则T==3,∴ω=,∴h=2sin(t﹣)+1(t≥0).(2)令sin(t﹣)=1可得t﹣=+2kπ,k∈N,故t=1+3k,∴当k=0时,t=1,故点P第一次到达最高点大约要1秒.【点睛】本题以实际问题为载体,考查三角函数模型的构建,考查学生分析解决问题的能力,解题的关键是构建三角函数式,利用待定系数法求得.【变式2-1】(2018秋•常州期末)如图,某公园摩天轮的半径为40m,点O距地面的高度为50m,摩天轮做匀速转动,每10min转一圈,摩夭轮上的点P的起始位置在最低点处.(1)已知在时刻t(min)时点P距离地面的高度为f(t)=A sin(ωt+φ)+B,其中A>0,ω>0,﹣π≤φ<π,求f(t)的解析式;(2)在摩天轮转动的一圈内,有多长时间点P距离地面超过70m?【分析】(1)由题意求出A、B和φ的值,结合周期求出ω的值,写出函数f(x)的解析式,(2)f(t)=﹣40cos t+50>70求出t的取值范围,再由t的区间端点值的差求得一圈中可以得到P 距离地面超过70m.【答案】解:(1)由题意可得A=40,B=50,φ=﹣,∵T==10,∴ω=,∴f(t)=40sin(t﹣)+50,即f(t)=﹣40cos t+50.(2)由f(t)=﹣40cos t+50>70,得cos t<﹣,∴2kπ+<t<2kπ+,k∈Z,解得10k+<t<10k+,∴(10k+)﹣(10k+)=,故天轮转动的一圈内,有min点P距离地面超过70m.【点睛】本题考查了y=A sin(ωx+φ)型函数解析式的求法与三角不等式的解法问题,是综合题.【变式2-2】(2018春•新罗区校级期中)已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24单位:小时)的函数,记作y=f(t).如表是某日各时的浪高数据:t(小时)03691215182124y(米) 1.5 1.00.5 1.0 1.5 1.00.50.99 1.5经长期观测,y=f(t)的曲线可近似地看成是函数y=A cosωt+b的图象,根据以上数据,求在一日(持续24小时)内,该海滨浴场的海浪高度超过1.25米的时间.【分析】求出f(t)的解析式,根据余弦函数的性质求出t的范围.【答案】解:由表格数据可知f(t)的周期为12,即=12,∴ω=.∵y=A cos t+b,可知f(t)的最大值为1.5,最小值为0.5,∴,∴A=0.5,b=1,∴f(t)=0.5cos+1,令f(t)>1.25可得cos>0.5,∴﹣+2kπ<<+2kπ,解得:﹣2+12k<t<2+12k,k∈Z.又0≤t≤24,∴0≤t<2或10<t<14或22<t≤24.【点睛】本题考查了余弦函数的性质,属于中档题.【变式2-3】(2018秋•南通期末)图为大型观览车主架示意图.点O为轮轴中心,距地面高为32m(即OM=32m).巨轮半径为30m,点P为吊舱与轮的连结点,吊舱高2m(即PM=2m),巨轮转动一周需15min.某游人从点M进入吊舱后,巨轮开始按逆时针方向匀速转动3周后停止,记转动过程中该游人所乘吊舱的底部为点M'.(1)试建立点M'距地面的高度h(m)关于转动时间t(min)的函数关系,并写出定义域;(2)求转动过程中点M'超过地面45m的总时长.【分析】(1)以O为坐标原点,建立平面直角坐标系xOy,以Ox为始边,按逆时针方向转动至终边OP′,写出点P′的纵坐标,计算M′点距地面的高度;(2)利用点M′超过地面45m时得出不等式,求出时间t的取值范围即可.【答案】解:(1)如图所示,以O为坐标原点,建立平面直角坐标系xOy,设以Ox为始边,按逆时针方向经过时间t(min)转动至终边OP′所形成的角为t﹣,则点P′的纵坐标为30sin(t﹣),所以M′点距地面的高度为h=30sin(t﹣)+32﹣2=30(1﹣cos t),t∈[0,45];(2)当点M′超过地面45m时,h=30(1﹣cos t)>45,即cos t<﹣,所以+2kπ<t<+2kπ,k∈Z,即5+15k<t<10+15k,k∈Z;因为t∈[0,45],所以t∈(5,10)∪(20,25)∪(35,40),所以总时长为15分钟,即点M′超过地面45m的总时长为15分钟.【点睛】本题考查了三角函数模型的应用问题,是中档题.【考点3 三角函数模型在气象学中的应用】【例3】(2019•江西模拟)根据市气象站对春季某一天气温变化的数据统计显示,气温变化的分布与曲线拟合(0≤x<24,单位为小时,y表示气温,单位为摄氏度,|ϕ|<π,A>0),现已知这天气温为4至12摄氏度,并得知在凌晨1时整气温最低,下午13时整气温最高.(1)求这条曲线的函数表达式;(2)这天气温不低于10摄氏度的时间有多长?【分析】(1)根据气温为4至12摄氏度,我们可以求得振幅A,利用凌晨1时整气温最低,下午13时整气温最高,可求得周期及φ的值,从而求得函数表达式;(2)利用(1)中求出的函数表达式,我们可建立表达式,解之即可.【答案】解:(1)b=(4+12)÷2=8,A=12﹣8=4,,,所以这条曲线的函数表达式为:.(2)令y≥10,则,∴sin(,0≤x<24.∴,∴,∴9≤x≤17,∴17﹣9=8.故这天气温不低于10摄氏度的时间有8小时.【点睛】本题以实际问题为载体,考查三角函数模型的构建,考查三角不等式的求解,解题的关键是从实际问题中抽象出函数的模型,求出相应的参数.【变式3-1】(2019秋•荆门期末)通常情况下,同一地区一天的温度随时间变化的曲线接近于函数y=A sin (ωx+φ)+b的图象.2013年1月下旬荆门地区连续几天最高温度都出现在14时,最高温度为14℃;最低温度出现在凌晨2时,最低温度为零下2℃.(Ⅰ)请推理荆门地区该时段的温度函数y=A sin(ωt+φ)+b(A>0,ω>0,|φ|<π,t∈[0,24))的表达式;(Ⅱ)29日上午9时某高中将举行期末考试,如果温度低于10℃,教室就要开空调,请问届时学校后勤应该送电吗?【分析】(I)根据函数最大、最小值的和与差,算出A=8且b=6,由函数的周期为24算出ω=,再根据当x=2时函数有最小值,算出即可得到所求温度函数的表达式;(II)算出函数当x=9时的函数值f(9),利用特殊三角函数值算出f(9)<10,得到此时满足开空调的条件,所以应该开空调.【答案】解:(I)∵最高温度为14℃,最低温度为零下2℃.∴A==8,b==6,∵函数的周期T=24,∴ω==由,可得(5分)∴函数表达式为(6分);(II)当x=9时,(8分)∵,∴,(11分)温度低于10℃,满足开空调的条件,所以应该开空调.(12分)【点睛】本题给出实际应用问题,求函数表达式并确定某个时刻能否开空调.着重考查了三角函数的图象与性质和三角函数在实际生活中的应用等知识,属于中档题.【变式3-2】(2019秋•宁波期末)2010年的元旦,宁波从0时到24时的气温变化曲线近似地满足函数y =A sin(ωx+φ)+b(A,ω>0,|φ|≤π).从天气台得知:宁波在2010的第一天的温度为1到9度,其中最高气温只出现在下午14时,最低气温只出现在凌晨2时.(Ⅰ)求函数y=A sin(ωx+φ)+b的表达式;(Ⅱ)若元旦当地,M市的气温变化曲线也近似地满足函数y=A1sin(ω1x+φ1)+b1,且气温变化也为1到9度,只不过最高气温和最低气温出现的时间都比宁波迟了四个小时.(ⅰ)求早上七时,宁波与M市的两地温差;(ⅱ)若同一时刻两地的温差不差过2度,我们称之为温度相近,求2010年元旦当日,宁波与M市温度相近的时长.【分析】(Ⅰ)由已知可得,b=5,A=4,T=24,从而可确定ω,又最低气温只出现在凌晨2时,可求φ,从而可求函数表达式;(Ⅱ)由已知得M市的气温变化曲线近似地满足函数,从而问题得解.【答案】解:(Ⅰ)由已知可得,b=5,A=4,T=24,∴ω=,∵最低气温只出现在凌晨2时,∴2ω+φ=,∵|φ|≤π),∴φ=,则所求函数为(Ⅱ)由已知得M市的气温变化曲线近似地满足函数,y﹣y2=4sin(x﹣π)+5﹣4sin(x﹣π)﹣5=4sin(x﹣π)(ⅰ)当x=7,(ⅱ)由,解得2≤x≤6或14≤x≤18,则10年后元旦,宁波与M市温度相近的时长为8小时.【点睛】本题主要考查三角函数模型的运用,关键是挖掘问题的本质,确定三角函数的模型,进而表达出函数模型,解决实际问题【变式3-3】某地一天的温度(单位:℃)随时间t(单位:小时)的变化近似满足函数关系:f(t)=24﹣8sin(ωt+),t∈[0,24),ω∈(0,),且早上8时的温度为24℃.(1)求函数的解析式,并判断这一天的最高温度是多少?出现在何时?(2)当地有一通宵营业的超市,为了节省开支,规定在环境温度超过28℃时,开启中央空调降温,否则关闭中央空调,问中央空调应在何时开启?何时关闭?【分析】(1)根据题意求出ω的值,确定函数的解析式,利用正弦函数的图象与性质求得出现最高温时t的值;(2)令f(t)=28,求出t的值即可得出结论.【答案】解:(1)∵f(t)=24﹣8sin(ωt+),且早上8时的温度为24℃,即f(8)=24,∴sin(8ω+)=0,∴8ω+=kπ,k∈Z,解得ω=(k﹣)π,k∈Z;又ω∈(0,),∴k=1时,ω=;∴函数f(t)=24﹣8sin(t+),t∈(0,24];又sin(t+)=﹣1时,f(t)取得最大值,且t+∈(,],∴令t+=,解得t=14,即这一天在14时(也是下午2时)出现最高温度,最高温度是32℃;(2)依题意:令24﹣8sin(t+)=28,可得sin(t+)=﹣,∵(t+)∈(,),∴t+=或t+=,解得t=10或t=18,即中央空调应在上午10时开启,下午18时(即下午6时)关闭.【点睛】本题考查了三角函数在实际应用中的问题,解题时应建立数学模型,利用三角函数解决实际问题,是基础题目.【考点4 三角函数模型在物理学中的应用】【例4】单摆从某点开始来回摆动,它相对于平衡位置O的位移S(厘米)和时间t(秒)的函数关系为:S =A sin(ωt+φ)(A>0,ω>0,0<φ<),已知单摆每分钟摆动4次,它到平衡位置的最大位移为6厘米,摆动起始位置相对平衡位置的位移为3厘米.求:(1)S和t的函数关系式;(2)第2.5秒时单摆的位移.【分析】(1)利用已知条件求出函数的周期,振幅,利用函数的图象上的特殊点求出初相,即可得到S 和t的函数关系式.(2)代入t=2.5,求出S即可.【答案】解:(1)单摆每分钟摆动4次,函数的周期为:25s.,解得:ω=,它到平衡位置的最大位移为6厘米,A=6,摆动起始位置相对平衡位置的位移为3厘米.说明函数的图象经过(0,3),∴3=6sin(×0+φ),(0<φ<),∴φ=.S和t的函数关系式:S=6sin(t+).(2)第2.5秒时单摆的位移S=6sin(×2.5+)=6×=3.第2.5秒时单摆的位移为:3.【点睛】本题考查三角函数的解析式的求法与应用,考查分析问题解决问题的能力.【变式4-1】若弹簧挂着的小球做简谐运动,时间t(s)与小球相对于平衡位置(即静止时的位置)的高度h(cm)之间的函数关系式是h=2sin(ωt+),t∈[0,+∞),其图象如图所示.(1)求ω(ω>0)的值;(2)小球开始运动(即t=0)时的位置在哪里?(3)小球运动的最高点、最低点与平衡位置的距离分别是多少?【分析】(1)根据函数h(t)的图象与性质,求出周期T与ω的值;(2)计算t=0时h(0)的值即可;(3)求出小球运动到最高点时h1与最低点时h2的值,再计算绝对值即可.【答案】解:(1)根据函数h=2sin(ωt+),t∈[0,+∞)的图象知,=π﹣=π,∴周期T=2π,∴=2π,又ω>0,∴ω=1;(2)当t=0时,h(0)=2sin=,∴小球开始运动(即t=0)时,位置在点(0,)处;(3)小球运动的最高点时h1=2,最低点时h2=﹣2,∴小区在最高点与最低点处与平衡位置的距离分别是|h1|=2和|h2|=2.【点睛】本题考查了三角函数的图象与性质的应用问题,也考查了数形结合的解题思想,是基础题目.【变式4-2】(2019秋•江宁区校级期末)已知交流电的电流强度I(安培)与时间t(秒)满足函数关系式I=A sin(ωt+φ),其中A>0,ω>0,0≤φ<2π.(1)如右图所示的是一个周期内的函数图象,试写出I=A sin(ωt+φ)的解析式.(2)如果在任意一段秒的时间内电流强度I能同时取得最大值A和最小值﹣A,那么正整数ω的最小值是多少?【分析】(1)结合三角函数的图象求出A,周期,过的平衡点,利用三角函数的周期公式求出ω,将平衡点的坐标代入整体角求出φ.(2)将问题转化为三角函数的周期范围,利用周期公式求出ω的最小值.【答案】解:(1)由图知函数的最大值为300所以A=300由图知函数的最小正周期为T=2()=,又T=∴ω=150π当t=时,I=0所以解得所以;(2)据题意知又∴ω≥300πωmin=943.【点睛】本题考查知三角函数的图象求解析式:其中A由图象的最值点求得;ω由周期确定;φ由特殊点确定.【变式4-3】如图,单摆从某点开始来回摆动,离开平衡位置的距离s(cm)和时间t(s)的函数关系是s =A sin(ωt+φ),0<φ<,根据图象,求:(1)函数解析式;(2)单摆摆动到最右边时,离开平衡位置的距离是多少?(3)单摆来回摆动一次需要多长时间?【分析】(1)求出解析式中的参数,即可求出函数解析式;(2)A=6,可得单摆摆动到最右边时,离开平衡位置的距离;(3)T=1,可得单摆来回摆动一次需要的时间.【答案】解:(1)由题意,﹣=T,∴T=1,∴=1,∴ω=2π,∵t=,s最大,∴2π•+φ=,∴φ=,∵t=0,s=3,∴A=6,∴s=6sin(2πt+);(2)A=6,单摆摆动到最右边时,离开平衡位置的距离是6cm;(3)T=1,单摆来回摆动一次需要1s.【点睛】本题考查三角函数的解析式的求法与应用,考查分析问题解决问题的能力.。