高数无穷小比较的教案

合集下载

高等数学(同济大学版) 课程讲解 1.6-1.7 两个重要极限 无穷小比较

高等数学(同济大学版) 课程讲解 1.6-1.7 两个重要极限 无穷小比较

课时授课计划课次序号:05一、课题:§1.6极限存在准则两个重要极限§1.7 无穷小的比较二、课型:新授课三、目的要求:1.了解极限的两个存在准则,并会利用它们求极限;2.掌握利用两个重要极限求极限的方法;3.掌握无穷小阶的概念以及利用等价无穷小替换求极限的方法.四、教学重点:利用两个重要极限以及等价无穷小替换求极限.教学难点:利用极限的存在准则求极限.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合.六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–6 1(1)(6),2(3);习题1–7 1,4(3)八、授课记录:九、授课效果分析:复习1.无穷小与无穷大的概念以及它们之间的关系;2.极限运算法则:无穷小运算法则、四则运算法则、复合函数极限运算法则. 有些函数的极限不能(或者难以)直接应用极限运算法则求得,往往需要先判定极限存在,再用其他方法求得.下面先介绍判定函数极限存在的两个准则,然后介绍两个重要极限.在此基础上,进一步介绍无穷小的比较与等价无穷小的性质.第六节 极限存在准则 两个重要极限一、极限存在准则1. 夹逼准则定理1 如果数列{}{}n n y x 、及{}n z 满足下列条件: (1)()...321,,=≤≤n z x y nn n , (2),,a z a y n n n n ==∞→∞→lim lim 那么数列{}n x 的极限存在,且a x n n =∞→lim 。

证 ,,a z a y n n →→ 使得,0,0,021>>∃>∀N N ε1,n n N y a ε>-<当时,恒有 2,n n N z a ε>-<当时,恒有},,max{21N N N =取上两式同时成立, ,εε+<<-a y a n 即 ,εε+<<-a z a n所以恒有时当,N n >,εε+<≤≤<-a z x y a n n n ,成立即ε<-a x n.lim a x n n =∴∞→例1 求⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim 解11112222+<++++<+n n nn n nn n ,而 11limlim22=+=+∞→∞→n n nn n n n , 所以原式极限为1.定理1/ 设在点x 0的某去心邻域有12()()()F x f x F x ≤≤, 且0lim x x →F 1(x )= 0lim x x →F 2(x )=A ,则0lim ()x x f x →=A .证 由已知条件, ∃δ1>0,当x ∈0U (x 0,δ1)时, 12()()()F x f x F x ≤≤.又由0lim x x →F 1(x )=0lim x x →F 2(x )=A 知: ∀ε>0,∃δ2>0,当x ∈0U (x 0,δ2)时,|F 1(x )-A |<ε,∃δ3>0,当x ∈0U (x 0,δ3)时,|F 2(x )-A |<ε.取δ=min(δ1,δ2,δ3),则当x ∈0U (x 0,δ)时,得 A -ε<12()()()F x f x F x ≤≤<A +ε.由极限定义可知,0lim ()x x f x A →=.夹逼定理虽然只对x →x 0的情形作了叙述和证明,但是将x →x 0换成其他的极限过程,定理仍成立,证明亦相仿.例如,若∃X >0使x >X 时有12()()()F x f x F x ≤≤,且lim x →+∞F 1(x )=lim x →+∞F 2(x )=A , 则lim x →+∞f (x )=A.2. 单调有界准则定义 数列{}n x 的项若满足x 1≤x 2≤…≤x n ≤x n +1≤…,则称数列{}n x 为单调增加数列;若满足x 1≥x 2≥…≥x n ≥x n +1≥…,则称数列{}n x 为单调减少数列.当上述不等式中等号都不成立时,则分别称{}n x 是严格单调增加和严格单调减少数列.定理2 单调有界数列必有极限.该准则的证明涉及较多的基础理论,在此略去.例2 证明数列11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭收敛.证 只需证明11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭单调增加且有上界.当a >b >0时,有 a n +1-b n +1=(a -b )(a n +a n -1b +…+ab n -1+b n )<(n +1)(a -b )a n , 即a n [(n +1)b -na ]<b n +1. (8)取a =1+1n ,b =1+11n +代入(8)式,得 11n n ⎛⎫+ ⎪⎝⎭<1111n n +⎛⎫+ ⎪+⎝⎭,即数列11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是单调增加的.取a =1+12n ,b =1代入(8)式,得 112nn ⎛⎫+ ⎪⎝⎭<2,从而2112nn ⎛⎫+ ⎪⎝⎭<4,n =1,2,…,又由于 211121n n -⎛⎫+ ⎪-⎝⎭<2112nn ⎛⎫+ ⎪⎝⎭<4,所以11nn ⎛⎫+ ⎪⎝⎭<4对一切n =1,2,…成立,即数列11n n ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭有界,由收敛准则可知11n n ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭收敛.我们将11n n ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭的极限记为e ,即 1l i m 1nn n →∞⎛⎫+ ⎪⎝⎭=e .二、两个重要极限利用夹逼定理,可得两个非常重要的极限.1. 第一个重要极限 0sin lim1x x x→=我们首先证明0sin lim1x x x+→=.因为x →0+,可设x ∈(0,2π).如图1-35所示,其中, EAB为单位圆弧,且OA =OB =1,∠AOB =x ,则OC =cos x ,AC =sin x ,DB =tan x ,又△AOC 的面积<扇形OAB 的面积<△DOB 的面积, 即 cos x sin x <x <tan x .因为x ∈(0,2π),则cos x >0,sin x >0,故上式可写为cos x <sin x x<1cos x.由0lim cos 1x x →=,01lim1cos x x→=,运用夹逼定理得 0sin lim 1x x x+→=. 注意到sin x x是偶函数,从而有0sin sin()sin limlim lim 1x x z x x z xxz--+→→→-===-.图1-35综上所述,得 0s i n l i m1x x x →=.例3 证明0tan lim1x x x→=.证 0tan sin 1limlimcos x x x x xxx→→=⋅sin 1limlim1cos x x x xx→→=⋅=.例4 求21cos limx xx→-.解 22220002(sin )sin1cos 1122lim lim lim 222x x x xx x xx x →→→⎛⎫ ⎪-=== ⎪⎪⎝⎭. 例5 求3tan sin lim x x xx →-.解 33tan sin sin (1cos )limlimcos x x x xx x xx x→→--=20s i n 1c o s 11l i m c o s 2x x x x x x→-=⋅⋅=.例6 求1lim sinx x x→∞.解 令u =1x,则当x →∞时,u →0,故01sin lim sinlim1x u u x x u→∞→==.从以上几例中可以看出,0sin lim1x x x→=中的变量可换为其他形式的变量,只要在极限过程中,该变量趋于零.即如果在某极限过程中有lim ()0u x =(()u x ≠0),则sin ()lim1()u x u x =.2.第二个重要极限 1lim (1)e x x x→∞+=前面我们已证明了1lim (1)e nn n→∞+=.对于任意正实数x ,总存在n ∈N ,使n ≤x <n +1,故有1+11n +<1+1x≤1+1n,及1111(1)(1)(1)1nxn n xn++<+<++.由于x →+∞时,有n →∞,而11(1)11lim (1)lime 1111n nn n n n n +→∞→∞+++==+++,1111lim (1)lim (1)(1)e n nn n nnn+→∞→∞+=++= ,由夹逼定理使得1lim (1)e xx x→+∞+=.下面证1lim (1)e xx x→-∞+=.令x =-(t +1),则x →-∞时,t →+∞,故(1)(1)11lim (1)lim (1)lim ()11xt t x t t t xt t -+-+→-∞→+∞→+∞+=+=++lim ()()e 11tt t t t t →+∞==++.综上所述,即有 1l i m (1)e xx x→∞+=.在上式中,令z =1x,则当x →∞时,z →0,这时上式变为1lim (1)e z z z →+=.为了方便地使用以上公式,常将它们记为下列形式:(1) 在某极限过程(x →x 0,x →∞,x →-∞,x →+∞)中,若lim ()u x =∞,则()1lim 1e ()u x u x ⎡⎤+=⎢⎥⎣⎦;(2) 在某极限过程中,若lim ()0u x =,则 []1()lim 1()e u x u x +=.例7 求lim (1)xx k x→∞+(k ≠0).解 l i m (1)l i m (1)xkxk x x k k xx →∞→∞+=+ l i m (1)ekx kkx k x →∞⎡⎤=+=⎢⎥⎣⎦. 例8 求1lim 2xx x x →∞+⎛⎫⎪+⎝⎭. 解 22111lim lim 1lim 1222xxx x x x x x x x +-→∞→∞→∞+--⎛⎫⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭22111lim 1lim 1e22x x x x x +--→∞→∞--⎛⎫⎛⎫=++= ⎪ ⎪++⎝⎭⎝⎭ .例9 求0ln(1)limx x x→+.解 1ln(1)limlim ln(1)ln e =1x x x x x x→→+=+=.例10 求0e 1limxx x→-.解 令u =e x -1,则x =ln (1+u ),当x →0时,u →0,故e 11limlimlim1ln(1)ln(1)xx u u u u xu u→→→-===++.例11 求ln ln limx ax a x a→--(a >0).解 令u =x -a ,则x =u +a ,当x →a 时,u →0,故ln ln ln()ln limlimx au x a u a ax au→→-+-=-011limln(1)au u u aaa→=+=.第七节 无穷小的比较同一极限过程中的无穷小量趋于零的速度并不一定相同,研究这个问题能得到一种求极限的方法,也有助于以后内容的学习.我们用两个无穷小量比值的极限来衡量这两个无穷小量趋于零的快慢速度.一、无穷小阶的概念定义 设(),()x x αβ是同一极限过程中的两个无穷小量:lim ()0,lim ()0x x αβ==.若()lim0()x x αβ=,则称()x α为()x β的高阶无穷小,记为α(x )= o (β(x )). 若()lim()x x αβ=∞,则称()x α为()x β的低阶无穷小,记为β(x )= o (α(x )). 若()lim ()x A x αβ=(A ≠0),则称()x α是()x β的同阶无穷小. 特别地,当A =1时,则称α(x )与β(x )是等价无穷小,记为α(x )~β(x ). 若在某极限过程中,α是βk的同阶无穷小量(k >0),则称α是β的k 阶无穷小. 例如:因为01cos lim0x xx →-=,所以当x →0时,1-cos x 是x 的高阶无穷小量,即1-cos x =o (x ) (x →0).因为21cos 1lim2x xx→-=,所以当x →0时,1-cos x 是x 2的同阶无穷小量,即1-cos x =O (x 2)(x →0).因为0sin lim1x x x→=,所以当x →0时,与sin x 与x 是等价无穷小量,即sin x x (x →0).二、等价无穷小的性质等价无穷小在极限计算中有重要作用.定理1 设α ,β为同一极限过程的无穷小量,则()o αββαα⇔=+ .定理2 设,,,ααββ''为同一极限过程的无穷小量,,ααββ'' ,若limαβ存在,则 limlimααββ'='.证 因为,ααββ'' ,则lim1αα'=,lim1ββ'=,由于αααββαββ'''=',又limαβ存在,所以 l i m l i m l i ml i m l i m αααβαβαβββ''==''. 定理2表明,在求极限的乘除运算中,无穷小量因子可用其等价无穷小量替代,这个结论可写为以下的推论.推论1 设,ααββ'',若()lim f x αβ存在或为无穷大量,则 ()()limlimf x f x ααββ'='.推论2 设αα' ,若lim ()f x α存在或为无穷大,则 lim ()lim ()f x f x αα'=. 在极限运算中,常用的等价无穷小量有下列几种:当x →0时,sin ,tan ,arcsin ,arctan ,x x x x x x x x ,1-cos x ~212x ,ex-1~x ,ln (1+x )~x,1~2x ,(1)a x +-1~αx (α∈R ).例1 当x →0时,22~2x x x -,232~x x x -, 2sin ~x x x +, c o s ~2x x .例2 求0tan 7limsin 5x x x→.解 因为x →0时,tan7x ~7x ,sin5x ~5x ,所以 00tan 777limlimsin 555x x x x xx→→==.例3 求0eelimsin sin axbxx ax bx→-- (a ≠b ).解 ()0e ee [e 1]limlimsin sin 2cossin22axbxbx a b xx x a ba b ax bxx x-→→--=+--()0e e1limlim cos2sin22bx a b xx x a b a b xx-→→-=+- 0()lim1()22x a b x a b x→-==- .例4 求223lim ln(1)x x x→∞+. 解 当x →∞时,2233ln(1)xx+,故222233lim ln(1)lim 3x x x x xx→∞→∞+== .例5 当x →0时,tan x -sin x 是x 的几阶无穷小量?解 23330tan sin tan (1cos )12limlimlim2x x x xx x xx x xxx →→→⋅--===, 所以,当x →0时,tan x -sin x 是x 的三阶无穷小量. 例6求21limsin 2x x x→+.解211~()~22x x x +,2sin 2~sin 2~2x x x x +,所以20112limlim sin 224x x xx xx →→==+. 课堂总结1.极限的存在准则:夹逼准则、单调有界准则;2.两个重要极限:1sin 1lim1,lim (1)e lim (1)e xx x x x x x xx→→∞→=+=+=或;3.无穷小的比较:高阶、低阶、同阶、等价、k 阶;4.等价无穷小替换求极限的方法.。

高数教案_无穷小比较7

高数教案_无穷小比较7

课 题: 无穷小量的比较 目的要求:了解高阶,同阶,等价,k 阶无穷小量的定义熟练掌握等价无穷小量的应用掌握x 0时,常用的等价无穷小量 教学重点:熟练掌握等价无穷小量的定义与应用 教学难点:熟练掌握等价无穷小量的定义与应用 教学课时: 2教学方法:讲练结合 教学内容与步骤:无穷小的比较:同一极限过程中的无穷小量趋于零的速度不一相同,我们用两个无穷小量的比值的极限来衡量这两个无穷小量趋于零的快慢速度。

同时,研究这个问题能得到一种求极限的方法 一般, 无穷小量的商有下列几种情形设α(x )与β(x )是同一极限过程中的两个无穷小量:lim α(x )=0, lim β(x )=0. 定义 设lim α(x )=0, lim β(x )=0. ()(1) lim0,()x x αβ=若则称α(x )是比β(x )高阶的无穷小量, 记作, α(x )=o (β(x )) 或称β(x )是比α(x )低阶的无穷小量, ()lim()x x βα=∞若,则称β(x )是比α(x )低阶的无穷小量.()(2) lim,(0)()x A A x αβ=≠若,则称α(x )是β(x )的同阶无穷小量,记作, α(x )=O (β(x )),特别的,当A=1时,则称α(x )与β(x )是等价无穷小量,记作:α(x )~ β(x ) 例如,0sin lim1x xx→=即sin ~(0)x x x →;201cos lim 12x x x →-=即21cos ~(0)2x x x -→. 定理 设(1)~,~a a ββ'';(2)lim(),A a β'=∞'或 则limlim()A aa ββ'==∞'或.证:limlim lim lim lim lim ().a a A a a a a a a ββββββββ'''''⎛⎫==⋅⋅==∞ ⎪'''''⎝⎭或 推论:设~,~a a ββ'',若()lim f x αβ存在或为无穷大,则:''()lim f x αβ=()lim f x αβ推论:设~a a ',若lim ()f x α存在或为无穷大,则:'lim ()f x α= lim ()f x α 总结:无穷小量的运算过程中,运算式先化为乘积形式,再用等价无穷小量去代换。

高数教案 两个重要极限及无穷小的比较

高数教案 两个重要极限及无穷小的比较
授课题目
两个重要极限和无穷小的比较
授课类型
理论课
首次授课时间
年 月 日
学时
2
教学目标
1、掌握两个重要极限的一般形式及特点
2、会运用两个重要极限求相关极限
3、理解等价,同阶,高阶无穷小
重点与难点
重要极限的运用
教学手段与方法
1 、多媒体 PPT 教学 2 、课堂讲解3 、学生练习
教学过程:(包括授课思路、过程设计、讲解要点及各部分具体内容、时间分配等)
说明:(1)这个重要极限主要解决含有三角函数的 型极限.
(2)为了强调其一般形式,我们把它形象地写成 (方框□代表同一变量).
例6求 .

例7求 .
解 .
例8 求 .

由例7知

2. EMBED Equation.3 .
解释说明:列出 的数值表(如下表),观察其变化趋势.
1
2
3
4
5
10
100
1000
(2)若 ,则称 与 是同阶无穷小,特别地,若 ,则称 与 是等价无穷小,记为 .
例如, 即 ;

定理 设 ;
则 .
例12求 .
解当 时, , ,
所以
例13 求
解 因为当 时, ,
,所以
常用的几个等价无穷小代换
当 时,有
小结:一、两个重要极限
二、无穷小的比较
思考题、讨论题、作业
思考题1.下列运算错在何处:
10000
…….
2
2.250
2.370
2.441
2.488
2.594
2.705
2.717
2.718

无穷小的比较

无穷小的比较
方法,会用等价无穷小求极限。
教学重点:用等价无穷小求极限
教学过程:
一、讲授新课:
在第三讲中我们讨论了无穷小的和、差、积的情况,对于其商会出现不同的情况,例如: ( 为常数, 为自然数)
可见对于 取不同数时, 与 趋于0的速度不一样,为此有必要对无穷小进行比较或分类:
定理4:设函数 在点 连续,且 ,函数 在 点连续,那么,复合函数 在点 处连续。
注3:定理3、4说明 与 的次序可交换。
注4:在定理3中代入 ,即得定理4。
【例1】 由于 ( 为正整数)在 上严格单调且连续,由定理2,其反函数 在 上也严格单调且连续,进而:对于有理幂函数 ( 为正整数)在定义上是连续的。
综合以上结果,得:基本初等函数在其定义域内都是连续的,由基本初等函数的连续性,及定理1~4,即得:
结论:一切初等函数在其定义区间内都是连续的。
注1:定义区间为包含在定义域内的区间;
2:在§1.9,我们是用极限来证明连续,现在可利用函数的连续来求极限。
【例3】 。
【例4】 。
【例5】

三、课堂练习:
四、布置作业:
定理2(反函数的连续性):如果 在区间 上单值,单增(减),且连续,那么其反函数 也在对应的区间 上单值,单增(减),且连续。
注1: 亦为 的反函数,如上知: 在 上有上述性质。
定理3:设 当 时的极限存在且等于 ,即 ,又设 在 处连续,那么,当 时,复合函数 的极限存在,且等于 ,即 。
注2:可类似讨论 时的情形。
6:用等价无穷小可以简化极限的运算,事实上,有:
定理:若 均为 的同一变化过程中的无穷小,且 ,及 ,那么 。
【例2】求 。
解:因为当 时,

高等数学的教学课件1-7无穷小的比较

高等数学的教学课件1-7无穷小的比较

0
0
定义3 如果x 时 ( x)是无穷小, 且lim ( x) L 0,
1 xk
则x 时 ( x)是关于 1 x的k阶的无穷小;
二、等价无穷小的性质
性质1 ~ o( ).
证 lim 1 lim( 1) lim
lim 1 lim 0
~ o( ).
v
1 v1
lim lim u1 lim 1
1
v 1
lim u1 . v 1
说明: 在求极限的过程中,分子或分母中的因子, 可用其等价无穷小替换。
常用等价无穷小:
假设( x)是不取0值的无穷小,则:
~ sin ~ tan ~ arcsin ~ arctan, ~ e 1 ~ ln(1 ), (1 ) 1 ~ , 1 cos ~ 1 2.
x0
sin 3x
解 tan 5x ~ 5x, sin 3x ~ 3x, 1 cos x ~ 1 x2.
2
原式 lim tan 5x lim1 cos x
x0 sin 3x x0 sin 3x
lim
5x
lim
1 2
x2
5 0 5.
x0 3x x0 3x 3
3
原式X
5x lim
x0
1 2
3x
x2
5 3
例4 求 lim ln(e x sin2 x) x . x0 ln(e 2 x x 2 ) 2 x
解 ln(e x sin2 x) x ln e x (1 ex sin2 x) x ln(e2x x 2 ) 2 x ln e2x (1 e2x x 2 ) 2 x
2
例1 求 lim tan2 2x . x0 1 cos x

大一高数课件 ch2-6无穷小的比较

大一高数课件 ch2-6无穷小的比较

三、小结
1. 无穷小的比较
反映了同一过程中, 反映了同一过程中 两无穷小趋于零的速度 快慢, 但并不是所有的无穷小都可进行比较. 快慢 但并不是所有的无穷小都可进行比较 阶无穷小; 高(低)阶无穷小 等价无穷小 无穷小的阶 低 阶无穷小 等价无穷小; 无穷小的阶.
2. 等价无穷小的代换 等价无穷小的代换:
(1 + ax ) − 1 6. lim =_________. x →0 x 3 时 7. 当x → 0时, a + x − a ( a > 0) _______阶无穷小 对于 x 是_______阶无穷小 . n 等价, 8. 当x → 0时, 无穷小 1 − cos x 与 mx 等价,则 时 m = _______, n _______ .
tan 2 x 例3 求 lim . x →0 1 − cos x
1 2 解 当x → 0时, 1 − cos x ~ x , tan 2 x ~ 2 x . 2 2 (2 x ) 原式 = lim = 8. x→0 1 → 2 x 2
若未定式的分子或分母为若干个因子的乘积, 若未定式的分子或分母为若干个因子的乘积,则 可对其中的任意一个或几个无穷小因子作等价无 穷小代换,而不会改变原式的极限. 穷小代换,而不会改变原式的极限.
2
( x + 1) sin x . 例4 求 lim x → 0 arcsin x

当x → 0时, sin x ~ x , arcsin x ~ x . ( x + 1) x = lim( x + 1) = 1. 原式 = lim x →0 x →0 x
不能滥用等价无穷小代换. 注意 不能滥用等价无穷小代换 切记,只可对函数的因子作等价无穷小代换, 切记,只可对函数的因子作等价无穷小代换, 因子作等价无穷小代换 对于代数和中各无穷小不能分别代换. 对于代数和中各无穷小不能分别代换.

高等数学:无穷小的比较

高等数学:无穷小的比较

《高等数学》 1.7.2 无穷小的比较
【例1】当x→1时,将无穷小量 x3 3x 2 与x-1进行比较。
解:因为
lim x3 3x 2 lim (x 1)2 (x 2) lim (x 1)(x 2) 0
x1 x 1
x1
x 1
x1
所以,当x→1时,无穷小量 x3 3x 2 是x-1的高阶无穷小。

积:
数乘,仍为无穷小。

有界乘,仍为无穷小。 (常用)

C≠0, 同阶结源自0C=1, 等价“商”:
0
0,
分子是分母的高阶
∞,
分子是分母的低阶
《高等数学》
《高等数学》 1.7.2 无穷小的比较
【练习1】设
(x)
1 1
x x
, (x) 1 3 x
,则当x→1时,φ(x)是ψ(x)的(
)无穷小。
A. 高阶;
B. 低阶;
C. 同阶但不等价
D. 等价
《高等数学》 1.7.2 无穷小的比较
无穷小的和、差、积、“商”
和、差: “有限个”,仍为无穷小。
“有限个”,仍为无穷小。
x2 3x 2 1
lim
(非零常数)
x1 x 2 1
2
lim (x 1)2 0 x1 x 2 1
lim x2 3x 2 x1 (x 1)2
1
lim x sin x lim sin 1
x0 x
x0 x
(极限不存在,但不为∞)
针对两个无穷小的商出现不同的情况,给出如下无穷小比较的概念。
《高等数学》 1.7.2 无穷小的比较
定义1 设α、β是自变量同一变化过程中的两个无穷小,且β≠0.若

1.6无穷小的比较

1.6无穷小的比较


宁夏大学民族预科教育学院数学教学部
结束
例7 求 lim ln(1 x) . x0 x
解:
lim
x0
ln(1 x
x)

lim
x0
1 x
ln(1

x)
1
lim ln(1 x) x
x0
= lne
=1
宁夏大学民族预科教育学院数学教学部
例8.

lim
x0
e
xx
1.
解: 令u=ex– 1 , 则x=ln(1+u), 当x0时, u0.
所以当x3时 x2-9与x-3是同阶无穷小
宁夏大学民族预科教育学院数学教学部
下页
阶的比较举例
例例43 因 为 lim 1- c os x 1
x0 x2
2
所以当x0时 1-cos x 是关于x 的二阶无穷小
例例54 因 为 lim sin x 1 x0 x
所以当x0时 sin x 与x是等价无穷小 即sin x~x(x0)
如果
lim
b a
1

就说b与a是等价无穷小
记为a~b
宁夏大学民族预科教育学院数学教学部
下页
阶的比较举例 例例11 因 为 lim 3x2 0 x0 x
所以当x0时 3x2是比x高阶的无穷小 即3x2o(x)(x0) 例例32 因 为 lim x2 - 9 6 x3 x-3
宁夏大学民族预科教育学院数学教学部
下页
关于等价无穷小的定理
•定理
设a~a b~b

lim
b a




则 lim b a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第13、14、15、16课时:
【教学目的】
1、 掌握无穷小的比较方法,会用等价无穷小求极限;
2、 熟记一些常见的等价无穷小;
3、 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型;
4、 了解连续函数的性质与初等函数的连续性。

【教学重点】
1、常见的等价无穷小的推导;
2、等价无穷小求极限;
3、函数连续性的概念(含左连续与右连续)及函数间断点的类型。

【教学难点】
判断间断点的类型。

§1. 7 无穷小的比较
1.定义:
(1)如果0lim

β,就说β是比α高阶的无穷小,记作)(αβ =; (2)如果∞=α
βlim ,就说β是比α低阶的无穷小, (3)如果0lim ≠=c α
β,就说β是比α同阶的无穷小, (4)如果0,0lim >≠=k c k α
β,就说β是关于α的k 阶的无穷小, (5)如果1lim =αβ,就说β与α是等价的无穷小,记作βα~ 这些中重要的是等价无穷小,结合例题要让学生特别熟练
的记住一些常见的等价无穷小。

例1.证明:当0→x 时,x n x n 1~
1+ 2.定理1.β与α是等价无穷小的充分必要条件为)(ααβ +=
例2.因为当0→x 时,x x ~sin ,x x ~tan ,x x ~arcsin ,22
1~cos 1x x -, 所以当0→x 时有)(sin x x x +=,)(tan x x x +=,)(arcsin x x x +=,)(2
1cos 122x x x +=- 定理2 设αα'~,ββ'~,且αβ'
'lim 存在,则 αβαβ'
'=lim lim
例3求x x x 3tan 2tan lim 0→,例4求x x x x 3sin lim 30+→,例5求1cos 1)1(lim 3
120--+→x x x 注:求极限过程中,一个无穷小量可以用与其等价的无穷 小量代替,但只能在因式情况下使用,和、差情况不能用。

教学小结与学法建议
学完本节课要理解无穷小比较的定义,要牢记课上总结的常见等价无穷小,等价无穷小替换时求极限的一种重要方法,做题时要注意正确的替换方法,在加减法中千万不能用等价无穷小替换,要结合例题和习题掌握牢固和熟练。

师生活动设计P59:1,2,3,4(1)(2)
作业:P59:4(3)(4)。

相关文档
最新文档