DW01+技术参数
DW01中文资料

精心整理DW01锂电池保护IC一、主要特性静态电流待机电流(检测到过放之后)过充检测精度(Topt=25℃)过充检测精度(Topt=0到50℃)过放检测精度过放检测电压过流保护过充延迟(VDD=4.4V)过放延迟(VDD=2.2V带有内置电容)封装典型值:4.0uA典型值:0.2uA±50mV±60mV±100mV2.0V到3.0V,每步0.005V 0.04V到0.32V,每步0.04V 110mS22mS(最小值)SOT23-6/6-pin二、基本描述DW01是一款单节可充电锂电池保护集成电路,具有过充、过放、过流及短路保护功能。
IC内部包含:三个电压检测电路、一个基准电路、一个延迟电路、一个短路保护电路和一个逻辑电路。
当充电电压逐渐增大超过过充检测电路的阈值VDET1时,Cout Pin的输出电压即过充检测电路的输出电压VD1会变到低电位,也就是充电器负端的电位。
在进入过充保护状态后,当VDD电压降低到VREL1下方或者当电池组脱离充电器而接一个负载,且VDD介于VDET1与VREL1之间时VD1可以复位,即CoutPin输出变为高电位。
当放电电压低于过放检测电路的阈值VDET2时,经过一段固定的延迟时间,Dout Pin的输出即过放检测电路的输出VD2会变为低电位。
这时,若给电池充电,当电池电压上升到过放检测电路的阈值电压之上时,VD2恢复,Dout的输出电压变为高电平。
当有过流情况出现时,内部过流检测电路会检测到,经过一段固定的延迟时间后,VD3和Dout变为低电平,放电回路被切断。
这时,若将电池组从负载系统中分开,VD3会恢复使Dout 变为高电平。
当有外部短路电流时,短路保护电路会立即使Dout变为低电位,当外部短路电流消失后,Dout会转换为高电位。
在检测到过放之后,会通过关闭一些内部电路使电源电流非常低。
IC过充检测电路的延迟时间可以通过连接外部电容进行设置。
DW01产品说明书中文版

DW 01
十、封装尺寸(单位:毫米)
SOT-23-6
锂电池保护 IC
6
最小值 1.5 4.25 4.24 4.05 80 2.30 2.90 22 0.12 5 1.20
3.4
3.4
典型值
4.30
4.30
4.10 110 2.40 3.00
0.15 10 1.35 10 0.35 3.7 0.2 3.7 4 0.2
最大值 10 4.35
4.36
4.15 140 2.50 3.10
二、基本描述
DW01 是一款单节可充电锂电池保护集成电路,具有过充、过放、过流及短路保护功能。 IC 内部包含:三个电压检测电路、一个基准电路、一个延迟电路、一个短路保护电路和一 个逻辑电路。当充电电压逐渐增大超过过充检测电路的阈值 VDET1 时,Cout Pin 的输出电压 即过充检测电路的输出电压 VD1 会变到低电位,也就是充电器负端的电位。在进入过充保护状 态后,当 VDD 电压降低到 VREL1 下方或者当电池组脱离充电器而接一个负载,且 VDD 介于 VDET1 与 VREL1 之间时 VD1 可以复位,即 Cout Pin 输出变为高电位。 当放电电压低于过放检测电路的阈值 VDET2 时,经过一段固定的延迟时间,Dout Pin 的 输出即过放检测电路的输出 VD2 会变为低电位。这时,若给电池充电,当电池电压上升到过放 检测电路的阈值电压之上时,VD2 恢复,Dout 的输出电压变为高电平。 当有过流情况出现时,内部过流检测电路会检测到,经过一段固定的延迟时间后,VD3 和 Dout 变为低电平,放电回路被切断。这时,若将电池组从负载系统中分开,VD3 会恢复使 Dout 变为高电平。
当有外部短路电流时,短路保护电路会立即使Dout变为低电位,当外部短路电流消失后, Dout 会转换为高电位。在检测到过放之后,IC 会通过关闭一些内部电路使电源电流非常低。 过充检测电路的延迟时间可以通过连接外部电容进行设置。Cout Pin 和Dout Pin的输出类型 是CMOS。封装形式为SOT23-6。
8205A和DW01

8205A和DW01电池保护板工作原理2013-06-08锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,常用的保护IC有8261,DW01+,CS213,GEM5018等,其中精工的8261系列精度更好,当然价钱也更贵。
后面几种都是台湾出的,国内次级市场基本都用DW01+和CS213了,下面以DW01+ 配MOS管8205A (8pin)进行讲解:锂电池保护板其正常工作过程为:当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。
2.保护板过放电保护控制原理:当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的放电回路被切断,电芯将停止放电。
保护板处于过放电状态并一直保持。
等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。
3.保护板过充电保护控制原理:当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。
DW01D中文版

DW01D(文件编号:S&CIC0701) 锂电池保护电路一、描述DW01D是一个锂电池保护电路,为避免锂电池因过充电、过放电、电流过大导致电池寿命缩短或电池被损坏而设计的。
它具有高精确度的电压检测与时间延迟电路。
二、主要特点工作电流低;过充检测4.3V,过充释放4.05V;过放检测2.4V,过放释放3.0V;过流检测0.15V,短路电流检测1.0V;充电器检测;过电流保护复位电阻;工作电压范围广;小封装。
三、应用单一锂电池保护电路。
四、内部框图DW01D(文件编号:S&CIC0701) 锂电池保护电路五、极限参数六、电气特性参数(除非特别指定,Tamb=25℃)DW01D(文件编号:S&CIC0701) 锂电池保护电路七、管脚排列图八、功能描述正常条件如果VODL>VDD>VOCU,并且VCH<VCSI<VOI1,那么M1和M2都开启(见典型应用电路图)。
此时充电和放电均可以正常进行。
过充电状态当从正常状态进入充电状态时,可以通过VDD检测到电池电压。
当电池电压进入到这充电状态时,VDD 电压大于VOCU,迟延时间超过TOC,M2关闭。
释放过充电状态进入过记电状态后,要解除过记电状态,进入正常状态,有两种方法。
●如果电池自我放电,并且VDD<VOCR,M2开启,返回到正常状态。
●在移去充电器,连接负载后,如果VOCR<VDD<VOCU,VCSI>VOI1,M2开启,返回到正常模式。
过放电检测当由正常状态进入放电状态时,可以通过VDD检测到电池电压。
当电池电压进入过放电状态时,VDD电压小于VODL,迟延时间超过TOD,则M1关闭。
此时CSI管脚通过内部电阻RCSID拉到VDD。
如果VCSI>VOI2,则电路进入断电模式(电流小于0.3uA)。
释放断电模式当电池在断电模式时,若连接入一个充电器,并且此时VCH<VCSI<VOI2,VDD<VODR,M1仍旧关闭,但是释放断电模式。
锂电池过充电、过放电、短路保护电路详解

锂电池过充电、过放电、短路保护电路详解时间:2012-04-23 12:27:18来源:作者:该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N 沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。
充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。
在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。
放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。
二次锂电池的优势是什么?1. 高的能量密度2. 高的工作电压3. 无记忆效应4. 循环寿命长5. 无污染6. 重量轻7. 自放电小锂聚合物电池具有哪些优点?1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。
2. 可制成薄型电池:以3.6V400mAh的容量,其厚度可薄至0.5mm。
3. 电池可设计成多种形状4. 电池可弯曲变形:高分子电池最大可弯曲900左右5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。
7. 容量将比同样大小的锂离子电池高出一倍IEC规定锂电池标准循环寿命测试为:电池以0.2C放至3.0V/支后1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环)反复循环500次后容量应在初容量的60%以上国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准).电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量什么是二次电池的自放电不同类型电池的自放电率是多少?自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。
DW01 锂电池保护 中文版

一、主要特性静态电流待机电流(检测到过放之后)过充检测精度(Topt=25℃)过充检测精度(Topt=0 到50℃)过放检测精度过放检测电压过流保护过充延迟(VDD=4.4V)过放延迟(VDD=2.2V 带有内置电容)封装典型值:4.0uA典型值:0.2uA±50mV±60mV±100mV2.0V 到3.0V,每步0.005V 0.04V 到0.32V,每步0.04V 110mS22mS(最小值)SOT23-6/6-pin二、基本描述DW01 是一款单节可充电锂电池保护集成电路,具有过充、过放、过流及短路保护功能。
IC 内部包含:三个电压检测电路、一个基准电路、一个延迟电路、一个短路保护电路和一个逻辑电路。
当充电电压逐渐增大超过过充检测电路的阈值VDET1 时,Cout Pin 的输出电压即过充检测电路的输出电压VD1 会变到低电位,也就是充电器负端的电位。
在进入过充保护状态后,当VDD 电压降低到VREL1 下方或者当电池组脱离充电器而接一个负载,且VDD 介于VDET1 与VREL1 之间时VD1 可以复位,即Cout Pin 输出变为高电位。
当放电电压低于过放检测电路的阈值VDET2 时,经过一段固定的延迟时间,Dout Pin 的输出即过放检测电路的输出VD2 会变为低电位。
这时,若给电池充电,当电池电压上升到过放检测电路的阈值电压之上时,VD2 恢复,Dout 的输出电压变为高电平。
当有过流情况出现时,内部过流检测电路会检测到,经过一段固定的延迟时间后,VD3 和Dout 变为低电平,放电回路被切断。
这时,若将电池组从负载系统中分开,VD3 会恢复使Dout 变为高电平。
当有外部短路电流时,短路保护电路会立即使Dout变为低电位,当外部短路电流消失后,Dout 会转换为高电位。
在检测到过放之后,会通过关闭一些内部电路使电源电流非常低。
IC 过充检测电路的延迟时间可以通过连接外部电容进行设置。
S和DWA主流锂电池保护板原理图说明修订稿
S和D W A主流锂电池保护板原理图说明公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]S8261和DW01-8205A主流锂电池保护板原理图说明锂电池保护板的主要参数锂电池保护板主要由保护IC和MOS管构成(1)保护IC主要参数1)封装2)过充电压3)过充释放电压4)过放电压5)过放释放电压6)耐压(2) MOSFET主要参数1) N沟、P沟2)内阻3)封装(TSSOP8 <简称薄片>、SOP8<简称厚片>、SOT23-6等)4)耐电流5)耐电压6)内部是否连通锂电池保护板的工作原理锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFET串在主充放电回路中担当高速开关,执行保护动作。
下面以DW01配MOS管8205A进行讲解:激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS开关。
1.锂电池保护板其正常工作过程为:当电芯电压在至之间时,DW01的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。
2.保护板过放电保护控制原理:当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约时DW01将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。
S8261和DW01-8205A主流锂电池保护板原理图说明
S8261和DW01-8205A主流锂电池保护板原理图说明锂电池保护板的主要参数锂电池保护板主要由保护IC和MOS管构成(1)保护IC主要参数1)封装2)过充电压3)过充释放电压4)过放电压5)过放释放电压6)耐压(2) MOSFET主要参数1) N沟、P沟2)内阻3)封装(TSSOP8 <简称薄片>、SOP8<简称厚片>、SOT23-6等)4)耐电流5)耐电压6)内部是否连通锂电池保护板的工作原理锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFET串在主充放电回路中担当高速开关,执行保护动作。
下面以DW01配MOS管8205A进行讲解: 激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS开关。
1.锂电池保护板其正常工作过程为:当电芯电压在至之间时,DW01的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。
2.保护板过放电保护控制原理:当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约时DW01将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的放电回路被切断,电芯将停止放电。
保护板处于过放电状态并一直保持。
S8261和DW01
S8261和DW01锂电池保护板的主要参数锂电池保护板主要由保护IC和MOS管构成(1)保护IC主要参数1) 封装2) 过充电压3) 过充释放电压4) 过放电压5) 过放释放电压6) 耐压(2) MOSFET主要参数1) N沟、P沟2) 内阻3) 封装(TSSOP8 <简称薄片> 、SOP8<简称厚片>、SOT23-6等)4) 耐电流5) 耐电压6) 内部是否连通锂电池保护板的工作原理锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFET 串在主充放电回路中担当高速开关,执行保护动作。
下面以DW01 配MOS管8205A进行讲解: 激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS 开关。
1.锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A 内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。
2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
DW01、8205A锂电池保护板工作原理及过放过充短路保护解析之欧阳家百创编
锂电池保护板工作原理及过放过充短路保护解析欧阳家百(2021.03.07)锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解:锂电池保护板其正常工作过程为:当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。
此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。
此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。
2.保护板过放电保护控制原理:当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的放电回路被切断,电芯将停止放电。
保护板处于过放电状态并一直保持。
等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。
4.保护板过充电保护控制原理:当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。
此时电芯的B-与保护板的P-之间处于断开状态。
即电芯的充电回路被切断,电芯将停止充电。
保护板处于过充电状态并一直保持。
等到保护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V 时,DW01 停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
REV. 1.0 DW01-G-DS-10_EN JUN 2009DatasheetDW01-GOne Cell Lithium-ion/Polymer Battery Protection ICF SC ’ P ro p e r t i e s F or Re f e r e n c e O n l yFortune Semiconductor Corporation 富晶電子股份有限公司28F., No.27, Sec. 2, Zhongzheng E. Rd., Danshui Town, Taipei County 251, Taiwan Tel.:886-2-28094742 Fax :886-2-28094874 This manual contains new product information. Fortune Semiconductor Corporation reserves the rights to modify the product specification without further notice. No liability is assumed by Fortune Semiconductor Corporation as a result of the use of this product. No rights under any patent accompany the sale of the product.F SC ’ P ro p e r t i e s F or Re f e r e n c e O n l y1. General DescriptionThe DW01-G battery protection IC is designed to protect lithium-ion/polymer battery from damage or degrading the lifetime due to overcharge, overdischarge, and/or overcurrent for one-cell lithium-ion/polymer battery powered systems, such as cellular phones.The ultra-small package and less required external components make it ideal to integrate the DW01-G into the limited space of battery pack. The accurate ±50mV overcharging detection voltage ensures safe and full utilization charging. The very low standby current drains little current from the cell while in storage.2. Featuresz Reduction in Board Size due to Miniature Package SOT-23-6.z Ultra-Low Quiescent Current at 3μA (Vcc=3.9V).z Ultra-Low Power-Down Current at 0.1μA (Vcc=2.0V).z Precision Overcharge Protection Voltage 4.25V ± 50mVz Load Detection Function during Overcharge Mode.z Two Detection Levels for Overcurrent Protection.z Delay times are generated by internal circuits. No external capacitors required.3. Ordering InformationDW01-GPACKAGE TYPESOT-23-6(G stands for Green-Package)TEMPERATURE RANGE -40°C~+85°COVERCHARGE PROTECTION 4.25V± 50mV4. ApplicationszProtection IC for One-Cell Lithium-Ion / Lithium-Polymer Battery PackF SC ’ P ro p e r t i e s F or Re f e r e n c e O n l y5. Product Name ListPackage ModelSOT-23-6Overchargedetection voltage[VOCP] (V)Overcharge release voltage [VOCR] (V)Overdischarge detection voltage [VODP] (V)Overdischarge release voltage [VODR] (V)Overcurrent detectionvoltage [VOI1] (mV)DW01-G DW01-G 4.250±0.050 4.050±0.050 2.40±0.100 3.0±0.100 150±306. Pin Configuration and Package Marking InformationPin No. Symbol Description1 OD MOSFET gate connection pin for discharge control2 CSInput pin for current sense, charger detect3OC MOSFET gate connection pin for charge control4 TD Test pin for reduce delay time5 VCC Power supply, through a resistor (R1)6 GND Ground pinTop Point :Lot No.Bottom Point :Year w : week, A~Z & A ~ ZF SC ’ P ro p e r t i e s F or f e r e n c e O n l y7. Functional Block Diagram8. Typical Application Circuitr F or9. Absolute Maximum Ratings(GND=0V, Ta=25°C unless otherwise specified)Item SymbolRating UnitInput voltage between VCC and GND * VCC GND-0.3 to GND+10 V OC output pin voltage VOC VCC -24 to VCC +0.3 V OD output pin voltage VOD GND-0.3 to VCC +0.3 V CS input pin voltageVCSVCC -24 to VCC +0.3VOperating Temperature Range TOP -40 to +85°C Storage Temperature RangeTST-40 to +125°CNote: DW01-G contains a circuit that will protect it from static discharge; but please take special care that noexcessive static electricity or voltage which exceeds the limit of the protection circuit will be applied to it.F SC ’ P ro p e r t i e s F or Re f e r e n c e O n l y10. Electrical Characteristics(Ta=25°C unless otherwise specified)PARAMETER TEST CONDITIONS SYMBOL Min Typ Max UNITSupply CurrentVCC=3.9V ICC 3.0 6.0 μA Power-Down CurrentVCC = 2.0V IPD 0.1μA Overcharge Protection Voltage DW01-G VOCP 4.20 4.25 4.30 V Overcharge Release VoltageVOCR 4.00 4.05 4.10 VOverdischarge Protection Voltage VODP 2.30 2.40 2.50 V Overdischarge Release VoltageVODR 2.90 3.00 3.10 VOvercurrent Protection VoltageVOIP (VOI1)120 150 180 mV Short Current Protection Voltage VCC=3.6V VSIP (VOI2)1.00 1.35 1.70 VOvercharge Delay TimeTOC80200msOverdischarge Delay TimeVCC=3.6V to 2.0VTOD40100msOvercurrent Delay Time (1) VCC=3.6V TOI1 10 20msOvercurrent Delay Time (2)VCC=3.6V TOI2550μsCharger Detection Threshold VoltageVCHA -1.2 -0.7 -0.2 V OD Pin Output “H” VoltageVDHVCC-0.1VCC-0.02VOD Pin Output “L” VoltageVDL0. 10.5VOC Pin Output “H” VoltageVCH VCC-0.1VCC-0.02 V OC Pin Output “L” Voltage VCL 0.1 0.5 VF SC ’ P ro p e r t i e s F or Re f e r e n c e O n l y11. Description of Operation11.1 Normal ConditionIf VODP<VCC<VOCP and VCH<VCS<VOI1, M1 and M2 are both turned on. The charging and discharging processes can be operated normally.11.2 Overcharge ProtectionWhen the voltage of the battery cell exceeds the overcharge protection voltage (VOCP) beyond the overcharge delay time (TOC) period, charging is inhibited by turning off of the charge control MOSFET. The overcharge condition is released in two cases:The voltage of the battery cell becomes lower than the overcharge release voltage (VOCR) through self-discharge.The voltage of the battery cell falls below the overcharge protection voltage (VOCP) and a load is connected.When the battery voltage is above VOCP , the overcharge condition will not release even a load is connected to the pack.11.3 Overdischarge ProtectionWhen the voltage of the battery cell goes below the overdischarge protection voltage (VODP) beyond the overdischarge delay time (TOD) period, discharging is inhibited by turning off the discharge control MOSFET.The default of overdischarge delay time is 10ms. Inhibition of discharging is immediately released when the voltage of the battery cell becomes higher than overdischarge release voltage (VODR) through charging.11.4 Overcurrent ProtectionIn normal mode, the DW01-G continuously monitors the discharge current by sensing the voltage of CSpin. If the voltage of CS pin exceeds the overcurrent protection voltage (VOIP) beyond the overcurrent delay time (TOI1) period, the overcurrent protection circuit operates and discharging is inhibited by turning off the discharge control MOSFET. The overcurrent condition returns to the normal mode when the load is released or the impedance between BATT+ and BATT- is larger than 500k Ω. The DW01-G provides two overcurrent detection levels (0.15V and 1.35V) with two overcurrent delay time (TOI1 and TOI2) corresponding to each overcurrent detection level.11.5 Charge Detection after OverdischargeWhen overdischarge occurs, the discharge control MOSFET turns off and discharging is inhibited. However, charging is still permitted through the parasitic diode of MOSFET. Once the charger is connected to the battery pack, the DW01-G immediately turns on all the timing generation and detection circuitry. Charging progress is sensed if the voltage between CS and GND is below charge detection threshold voltage (VCH).11.6 Power-Down after OverdischargeWhen overdischarge occurs, the DW01-G will enter into power-down mode, turning off all the timing generation and detection circuitry to reduce the quiescent current to 0.1μA (VCC=2.0V). At the same time, the CS pin is pull-up to VCC through an internal resistor.Note: When a battery is connected to DW01-G for the first time, it may not enter the normal condition (dischargeable may not be enabled). In this case, short the CS and VSS pins or connect to a charger to restore to the normal condition.F SC ’ P ro p e r t i e s F or Re f e r e n c e O n l y12. Design Guide12.1 Selection of External Control MOSFETBecause the overcurrent protection voltage is preset, the threshold current for overcurrent detection is determined by the turn-on resistance of the charge and discharge control MOSFETs. The turn-on resistance of the external control MOSFETs can be determined by the equation: RON=VOIP/ (2 x IT) (IT is the overcurrent threshold current). For example, if the overcurrent threshold current IT is designed to be 3A, the turn-on resistance of the external control MOSFET must be 25m Ω. Be aware that turn-on resistance of the MOSFET changes with temperature variation due to heat dissipation. It changes with the voltage between gate and source as well. (Turn-on resistance of MOSFET increases as the voltage between gate and source decreases).As the turn-on resistance of the external MOSFET changes, the design of the overcurrent threshold current changes accordingly.12.2 Suppressing the Ripple and Disturbancefrom ChargerTo suppress the ripple and disturbance from charger, connecting R1 and C1 to VCC is recommended.12.3 Protection the CS pinR2 is used for latch-up protection when charger is connected under overdischarge condition and overstress protection at reverse connecting of a charger.F SC ’ P ro p e r t i e s F or Re f e r e n c e O n l y13. Timing Diagram13.1 Overcharge Condition ÆLoad Discharging Æ Normal ConditionVV V V B a t t e r y V o l t a g eO C P i nO D P i nC S P i nVF or Rn l y13.2 Overdischarge Condition Æ Charging by a Charger ÆNormal ConditionVV V V B a t t e r y V o l t a g eO C P i nO D P i nC S P i nVF or Re O n l y13.3 Over Current Condition Æ Normal ConditionVV V V B a t t e r y V o l t a g eO C P i nO D P i nC S P i nF or Re O n l y14. Package OutlineDimension (Package A)DETAIL AUnit : mmDimension (Package B)DETAIL AF erFceOnly15. Revision HistoryVersion Date Page Description 1.0 2008/12/22 ALL Officially released nversion 1.0 1.1 2009/3/23 3、7 Overcharge Release Voltage 4.05±50mVF SC ’ P ro p e r t i e s F or Re f e r e n c e O n l y。