减振器类型及原理

合集下载

汽车减震器手册

汽车减震器手册

汽车减震器手册汽车减震器是汽车悬挂系统中的重要组成部分,它的主要作用是减少车身在行驶过程中的震动和颠簸,提高车辆的稳定性和舒适性。

本手册将介绍汽车减震器的基本原理、分类、维护和更换等方面的知识,帮助车主更好地了解和使用汽车减震器。

一、汽车减震器的基本原理汽车减震器的基本原理是利用液体的阻尼作用来减少车身的震动和颠簸。

当车辆行驶时,车轮会受到路面的颠簸和震动,这些震动会传递到车身上,影响车辆的稳定性和舒适性。

减震器通过将液体压缩和释放来消耗这些震动的能量,从而减少车身的震动和颠簸。

二、汽车减震器的分类根据结构和工作原理的不同,汽车减震器可以分为液压式减震器、气压式减震器、液氮式减震器和电子控制减震器等几种类型。

其中,液压式减震器是最常见的一种,它通过液体的阻尼作用来减少车身的震动和颠簸。

气压式减震器则是利用气体的压缩和释放来实现减震效果,它的优点是可以根据需要进行调节。

液氮式减震器则是将氮气和液体混合在一起,通过气压和液压的双重作用来实现减震效果。

电子控制减震器则是利用电子控制系统来调节减震器的阻尼,从而实现更加精准的减震效果。

三、汽车减震器的维护汽车减震器是汽车悬挂系统中的重要组成部分,它的维护对于车辆的稳定性和舒适性至关重要。

一般来说,汽车减震器的寿命为5年左右,如果使用时间过长或者出现异常情况,就需要进行更换。

在平时的使用中,车主可以通过以下几个方面来保养汽车减震器:1.定期检查减震器的工作状态,如果出现异常情况,及时进行维修或更换。

2.避免过度载重和超速行驶,这样会增加减震器的负荷,缩短其使用寿命。

3.避免在恶劣路况下行驶,这样会增加减震器的工作强度,加速其磨损。

4.定期更换减震器的橡胶垫和弹簧等配件,以保证其正常工作。

四、汽车减震器的更换当汽车减震器出现严重的磨损或故障时,就需要进行更换。

一般来说,汽车减震器的更换需要在专业的汽车维修店进行,具体步骤如下:1.将车辆抬起,拆卸旧的减震器。

减震器工作原理详解

减震器工作原理详解

减震器工作原理详解减震器是一种常用的汽车部件,它的作用是减少车辆行驶过程中由于路面不平造成的震动和颠簸,提高乘坐舒适性和操控稳定性。

本文将详细介绍减震器的工作原理及其相关知识。

一、减震器的基本结构减震器一般由缸筒、活塞、活塞杆、密封装置、阻尼液体等部分组成。

1. 缸筒:减震器的外壳,通常由钢材制成,具有足够的强度和刚度。

2. 活塞:位于缸筒内部,与缸筒形成密闭的工作腔,通过活塞与活塞杆连接。

3. 活塞杆:连接活塞和车身,起到传递减震力的作用。

4. 密封装置:用于防止阻尼液体泄漏,通常采用O型圈等密封结构。

5. 阻尼液体:减震器内的液体介质,一般采用特殊的油液,具有较高的黏度和耐高温性能。

二、减震器的工作原理减震器的工作原理主要基于液体的阻尼作用和弹簧的回弹力。

当车辆行驶过程中遇到路面不平或颠簸时,车轮将受到冲击力,这些冲击力会通过悬挂系统传递到减震器上。

减震器的缸筒内充满了阻尼液体,当冲击力传递到减震器时,活塞杆会向下受力,将冲击力传递给阻尼液体。

阻尼液体的黏度和流动阻力会阻碍活塞杆的运动,从而减缓冲击力的传递速度。

同时,阻尼液体也会通过缸筒的小孔进行流动,从而产生一定的阻尼力,减少车辆的震动。

当冲击力减弱或消失时,减震器中的弹簧起到回弹的作用,将活塞杆推回到初始位置。

这样,减震器就能够保持车辆的稳定性和舒适性。

三、减震器的分类根据工作原理和结构特点,减震器可以分为液压式减震器、气压式减震器和电磁式减震器等几种类型。

1. 液压式减震器:是最常见的减震器类型,通过阻尼液体的流动来实现减震效果。

液压式减震器具有结构简单、可靠性高的特点,广泛应用于各类汽车。

2. 气压式减震器:通过气体的压缩和释放来实现减震效果。

气压式减震器具有调节性能好、适应性强的特点,适用于高级轿车和运动型车辆。

3. 电磁式减震器:利用电磁力来调节减震器的阻尼效果。

电磁式减震器具有调节范围广、响应速度快的特点,适用于高级豪华车型。

减震设计入门知识点

减震设计入门知识点

减震设计入门知识点减震设计是工程领域中一个重要的技术领域,它应用于建筑、桥梁、航空航天等领域,旨在减轻结构在地震、风力、振动等外部力作用下的损伤及破坏。

本文将介绍减震设计的入门知识点,包括减震器的类型、减震设计的原理和方法,以及减震设计在不同领域的应用。

一、减震器的类型减震器是减震设计中常用的装置,其作用是通过吸收和转换结构振动能量,减小建筑物和结构物的震动反应。

常见的减震器类型包括:1. 液压减震器:通过液压作用原理实现减震效果,其结构简单、可靠性高,被广泛应用于建筑和桥梁工程中。

2. 摩擦减震器:利用材料摩擦特性以吸收和消散振动能量,具有较好的耐久性和自适应性能。

3. 弹性减震器:采用高弹性材料作为减震元件,通过弹性变形来吸收和分散振动能量,适用于小型结构和设备。

二、减震设计的原理和方法减震设计的基本原理是通过减小结构的刚度和增加其阻尼,从而降低结构对地震等外部力的响应。

根据减震设计的具体要求和结构特点,常用的减震设计方法包括:1. 质量削减法:通过减小结构的质量,降低其对外部力的响应。

该方法适用于小型结构,如航空航天器和桥梁的设计中。

2. 刚度调整法:通过增加或减小结构的刚度,改变其固有频率,从而减小振动响应。

可通过杆件增加或减少、调整连接节点的刚度等方法实现。

3. 阻尼调整法:通过增加结构的阻尼,增强其耗能能力和减震效果。

可采用液压减震器、摩擦减震器和阻尼器等实现。

三、减震设计的应用领域减震设计广泛应用于建筑、桥梁、航空航天等领域,以提高结构的抗震性能和安全性。

以下是几个常见的减震设计应用领域:1. 高层建筑:在高层建筑中,减震设计能够有效减小地震对建筑物的影响,提高其抗震性能,保障人员的生命财产安全。

2. 桥梁工程:对于长跨度桥梁,减震设计能够降低桥梁的振动响应,提高其行驶的舒适性和安全性。

3. 车辆工程:在汽车和轨道交通等车辆工程中,减震设计能够减小车辆的振动响应,改善乘坐舒适性和行驶稳定性。

减震器工作原理详解

减震器工作原理详解

减震器工作原理详解减震器是一种机械装置,广泛应用于汽车、建造、桥梁等领域,其主要功能是减少震动和冲击,提高设备和结构的稳定性和安全性。

本文将详细解释减震器的工作原理及其在不同领域的应用。

一、减震器的工作原理减震器的工作原理基于阻尼效应,通过将能量转化为其他形式来减少震动和冲击。

减震器通常由弹簧和阻尼器两部份组成。

1. 弹簧部份:减震器的弹簧部份负责吸收和储存能量。

当外部力作用于减震器时,弹簧会被压缩或者拉伸,从而吸收能量。

弹簧的刚度决定了减震器的硬度和弹性。

较硬的弹簧可以提供更好的支撑力和稳定性,但较软的弹簧可以提供更好的减震效果。

2. 阻尼器部份:减震器的阻尼器部份负责将储存的能量转化为其他形式,如热能或者声能,以减少震动和冲击。

阻尼器可以通过液体、气体或者电磁力来实现。

常见的阻尼器类型包括液压减震器、气压减震器和电磁减震器。

液压减震器是最常见的类型,其工作原理基于液体阻尼。

液压减震器内部有一个活塞和一个密封的液体腔室。

当外部力作用于减震器时,液体味通过小孔流动,从而产生阻尼效应。

液压减震器可以根据需要调节阻尼力的大小,以适应不同的工作环境。

气压减震器是使用气体阻尼来减震的装置。

它们通常包含一个气体腔室和一个活塞。

当外部力作用于减震器时,气体味通过阀门流动,产生阻尼效应。

气压减震器具有较高的耐用性和稳定性,适合于高速运动和重载环境。

电磁减震器是使用电磁力来减震的装置。

它们包含一个电磁线圈和一个磁铁。

当外部力作用于减震器时,电磁线圈会产生磁场,吸引或者排斥磁铁,从而产生阻尼效应。

电磁减震器具有快速响应和精确控制的优势,在高精度的应用中广泛使用。

二、减震器的应用领域1. 汽车工业:减震器在汽车工业中起着至关重要的作用。

它们被安装在车辆的悬挂系统中,用于减少车辆行驶过程中的震动和冲击。

减震器可以提高乘坐舒适性、悬挂稳定性和操控性能,保护车辆和乘客的安全。

2. 建造工程:减震器在建造工程中用于减少地震和风力对建造物的影响。

减震器的构成及工作原理

减震器的构成及工作原理

减震器的构成及工作原理
减震器是一种用来减少机械振动和冲击的装置,常见于车辆、建筑物和工业设备中。

下面是减震器的基本构成和工作原理:
1. 弹簧:弹簧是减震器的关键组件,它能够吸收和分散来自外部冲击和振动的能量。

弹簧一般由钢或橡胶等材料制成,具有良好的弹性和耐用性。

2. 缓冲剂:为了增加减震器的效果,常在弹簧中加入一层缓冲剂,如橡胶或液体。

这种缓冲剂能够进一步吸收和分散振动能量,减少机械部件的损坏。

3. 活塞:活塞是减震器内的一个移动部件,通常由金属材料制成。

它与减震器内部的液体或气体相互作用,通过运动来减少机械振动和冲击。

4. 液体或气体:减震器内的液体或气体被称为工作介质,它们被封存在减震器的密封容器内。

当机械部件受到振动或冲击时,液体或气体会在减震器内部产生压力和流动,从而减少振动和冲击的传递。

工作原理:
当机械部件受到振动或冲击时,减震器会通过以下步骤减少振动和冲击的传递:
1. 压缩阶段:当机械部件受到振动或冲击时,活塞会被迫向减震器内移动。

这会使液体或气体被压缩,从而产生压力。

2. 流动阶段:在压缩阶段结束后,液体或气体开始通过减震器内部的通道流动。

这些通道通常由小孔或密封阀门组成,能够控制流体的流量和速度。

3. 膨胀阶段:当液体或气体在流动过程中遇到较低的压力区域时,它们会膨胀回到初始状态,准备下一次振动或冲击的减缓。

通过以上这些步骤,减震器能够有效地吸收和分散机械振动和冲击的能量,保护机械部件不受损坏,并提供平稳的运行环境。

不同类型的减震器可能使用不同的工作原理和构成,但基本原理是相似的。

减震器工作原理及类型

减震器工作原理及类型

减震器工作原理及类型减震器是一种用于减少或抑制振动和冲击的设备,广泛应用于车辆、建筑、机械设备等领域。

减震器的工作原理和类型多种多样,下面将详细介绍。

减震器的工作原理主要有两种,一种是通过减振材料的吸能特性来消耗能量,减少振动和冲击的传导;另一种是通过改变振动传导路径,将振动转化为其他形式的能量。

具体来说,减震器在接受振动或冲击时,会使减震器内部材料发生相对移动或变形,从而消耗掉一部分能量。

通常,减震器内部有减振材料,如:弹簧、橡胶、液体、气体等,这些材料具有弹性或吸能特性,能够有效减轻振动和冲击。

减震器的类型包括:机械减震器、弹簧减震器、液压减震器、空气减震器等。

机械减震器是一种基本的减振装置,它通过刚性或柔性连接件连接和支撑振动的两个装置,通过限制和分散振动的传递路径来减少振动和冲击。

常见的机械减震器包括橡胶垫片、弹性支撑座等。

弹簧减震器主要利用弹性材料的弹性特性来吸收和分散振动能量。

它由弹簧和阻尼装置组成。

弹簧负责支撑载荷和吸收小幅振动,阻尼装置则用于吸收大幅振动和冲击。

常见的弹簧减震器有螺旋弹簧减震器、弹簧阻尼器等。

液压减震器利用液体的可压缩特性和流动阻力来减轻振动和冲击。

它由活塞、缸筒、液体等组成。

当受到振动或冲击时,活塞在缸筒内运动,通过液体的流动和粘滞阻力来吸收和减轻振动能量。

液压减震器可以根据需要,调节液体的流动阻力和压力,以适应不同的振动和冲击条件。

空气减震器利用气体的压缩和膨胀特性来减少振动和冲击。

它由气体室、气压控制装置等组成。

当受到振动或冲击时,气体室内的气体会产生压缩和膨胀,通过气压的调节来减轻振动和冲击能量。

空气减震器具有可调节性好的特点,适用于一些需要精确控制振动和冲击的场合。

除了上述减震器类型外,还有一些其他特殊的减震器,如:液气混合减震器、磁流变减震器等。

这些减震器在特定的领域和需求下,具有特殊的减震性能和优势。

综上所述,不同类型的减震器有各自的工作原理和特点,可以根据实际需求选择适合的减震器,以减少振动和冲击对设备和结构的损伤,提高安全性和舒适性。

减震器工作原理详解

减震器工作原理详解

减震器工作原理详解减震器是一种常见的汽车零部件,它的主要作用是减少车辆在行驶过程中由于路面不平造成的震动和颠簸,提供更加舒适和稳定的乘坐体验。

本文将详细解释减震器的工作原理,并介绍几种常见的减震器类型。

一、减震器的工作原理减震器的工作原理基于液压阻尼的原理。

它通过控制液体的流动来减缓车辆的震动。

减震器的主要组成部份包括活塞、缸筒、阻尼液和弹簧。

当车辆行驶时,车轮经过不平的路面,会产生上下颠簸的运动。

这些运动通过减震器传递到车辆的悬挂系统上。

减震器内部的活塞与缸筒相连,并通过阻尼液来进行运动阻尼。

当车轮上下颠簸时,活塞也会上下运动。

活塞上的阻尼液会通过阻尼孔流动,从而产生阻尼力。

这种阻尼力会减缓车辆的震动,使车辆更加稳定。

减震器还配备了弹簧,它的作用是支撑车辆的分量,并提供一定的弹性。

当车辆行驶时,弹簧会被压缩或者拉伸,从而吸收车辆的震动能量。

减震器的弹簧刚度会影响车辆的悬挂系统的硬度和舒适性。

二、常见的减震器类型1. 液压减震器:液压减震器是最常见的减震器类型之一。

它通过阻尼液的流动来减缓车辆的震动。

液压减震器具有结构简单、可靠性高的特点,适合于大多数汽车。

2. 气压减震器:气压减震器是一种特殊类型的减震器,它通过气体的压缩和释放来减缓车辆的震动。

气压减震器具有调节性能好、响应速度快的特点,适合于高性能和豪华汽车。

3. 磁流变减震器:磁流变减震器是一种基于磁流变液体的减震器。

它通过控制磁场来改变液体的流动特性,从而实现对车辆震动的控制。

磁流变减震器具有调节性能优异、响应速度快的特点,适合于高端汽车和赛车。

三、减震器的维护和保养减震器是车辆悬挂系统中的重要组成部份,它的正常工作对于车辆的行驶稳定性和乘坐舒适性至关重要。

为了确保减震器的正常工作,需要进行定期的维护和保养。

1. 定期检查:定期检查减震器的工作状态,包括是否有漏油、是否有异常声音等。

如果发现问题,应及时进行修理或者更换。

2. 清洁保养:定期清洁减震器表面的尘土和污垢,以保持其散热性能和工作效果。

最新摩托车减震器结构类型及工作原理

最新摩托车减震器结构类型及工作原理

摩托车减震器结构类型及工作原理------------------------------------------作者xxxx------------------------------------------日期xxxx摩托车减震器结构类型及工作原理为了缓和与衰减摩托车在行驶过程中因道路凹凸不平受到的冲击和震动,保证行车的平顺性与舒适性,有利于提高摩托车的使用寿命和操纵的稳定性,摩托车上均设置有减震器装置。

本文拟对常见的减震器结构类型、工作原理,以及减震器油的技术要求和如何调配、更换等进行探讨,供广大摩托车用户和车迷朋友们参考。

一、减震器的分类减震器有许多种类,摩托车中绝大多数采用筒式减震器,只有极少数采用钢板弹簧结构。

筒式减震器的型式和品种很多,大体上有以下几种类型:1、根据安装位置分,有前减震器和后减震器;2、按结构形式分,有(a)伸缩管式前叉液力减震器(这是目前摩托车中使用最多的前减震器);(b)摇臂式减震器;(c)摇臂杠杆垂直式中心减震器;(d)摇臂杠杆倾斜式中心减震器。

3、按油缸工作位置分,有(a)倒置式减震器(即油缸位置在上方,活塞杆在下方);(b)正置式减震器(油缸位置在下方,活塞杆在上方)。

4、按工作介质分,有(a)弹簧式减震器;(b)弹簧—空气阻尼式减震器(因空气的阻尼力有限,减震效果也不太理想,一般只用于速度不高的轻便摩托车作后减震器);(c)液力阻尼式减震器;(d)油—气组合式前叉减震器。

(e)充氮气液压减震器。

5、按衰减力方向分,有(a)单向作用减震器;(b)双向作用减震器。

6、按负载调节式分,有(a)弹簧初始压力调节式;(b)气簧式;(c)安装角度调节式。

世界各国摩托车厂家在相互竞争中,对摩托车的前悬挂装置和后悬挂装置的设计,投入较大且十分考究,采用了更为新颖的变直径和变节距的弹性元件,如油压阻尼器、油—气调节装置、负载调节装置、摇臂杠杆式中心减震装置等先进结构。

这些新技术的普及,能迅速衰减因车速、负载及多种路况变化所带来的冲击和震动,将振抗自动地调节到最佳的技术状态,极大地改善了摩托车的减震性能,不同程度地提高了摩托车乘骑的适应性、舒适性、平稳性和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

减振器类型为加速车架与车身振动的衰减,以改善汽车的行驶平顺性(舒适性),在大多数汽车的悬架系统内部装有减震器。

减震器从产生阻尼的材料这个角度划分主要有液压和充气两种,还有一种可变阻尼的减震器。

液压汽车悬架系统中广泛采用液力减震器。

其原理是,当车架与车桥做往复相对运动儿活塞在减震器的缸筒内往复移动时,减震器壳体内的油液便反复地从内腔通过一些窄小的孔隙流入另一内腔。

此时,液体与内壁的摩擦及液体分子的内摩擦便形成对振动的阻尼力。

充气式减震器充气式减震器是60年代以来发展起来的一种新型减震器。

其结构特点是在缸筒的下部装有一个浮动活塞,在浮动活塞与缸筒一端形成的一个密闭气室种充有高压氮气。

在浮动活塞上装有大断面的O型密封圈,它把油和气完全分开。

工作活塞上装有随其运动速度大小而改变通道截面积的压缩阀和伸张阀。

当车轮上下跳动时,减震器的工作活塞在油液种做往复运动,使工作活塞的上腔和下腔之间产生油压差,压力油便推开压缩阀和伸张阀而来回流动。

由于阀对压力油产生较大的阻尼力,使振动衰减。

阻力可调式减震器装有阻力可调式减震器的汽车的悬架一般用刚度可变的空气弹簧作为弹性元件。

其原理是,空气弹簧若气压升高,则减震器气室内的压力也升高,由于压力的改变而使油液的节流孔径发生改变,从而达到改变阻尼刚度的目的。

工作原理悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中采用减振器多是液力减振器,其工作原理是当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。

此时孔壁与油液间的摩擦和油液分子间的内摩擦对振动形成阻尼力,使汽车振动能量转化为油液热能,再由减振器吸收散发到大气中。

在油液通道截面和等因素不变时,阻尼力随车架与车桥(或车轮)之间的相对运动速度增减,并与油液粘度有关。

减振器与弹性元件承担着缓冲击和减振的任务,阻尼力过大,将使悬架弹性变坏,甚至使减振器连接件损坏。

因面要调节弹性元件和减振器这一矛盾。

(1) 在压缩行程(车桥和车架相互靠近),减振器阻尼力较小,以便充分发挥弹性元件的弹性作用,缓和冲击。

这时,弹性元件起主要作用。

(2) 在悬架伸张行程中(车桥和车架相互远离),减振器阻尼力应大,迅速减振。

(3) 当车桥(或车轮)与车桥间的相对速度过大时,要求减振器能自动加大液流量,使阻尼力始终保持在一定限度之内,以避免承受过大的冲击载荷。

在汽车悬架系统中广泛采用的是筒式减振器,且在压缩和伸张行程中均能起减振作用叫双向作用式减振器,还有采用新式减振器,它包括充气式减振器和阻力可调式减振器。

1. 活塞杆;2. 工作缸筒;3. 活塞;4. 伸张阀;5. 储油缸筒;6. 压缩阀;7. 补偿阀;8. 流通阀;9. 导向座;10. 防尘罩;11. 油封双向作用筒式减振器工作原理说明。

在压缩行程时,指汽车车轮移近车身,减振器受压缩,此时减振器内活塞3向下移动。

活塞下腔室的容积减少,油压升高,油液流经流通阀8流到活塞上面的腔室(上腔)。

上腔被活塞杆1占去了一部分空间,因而上腔增加的容积小于下腔减小的容积,一部分油液于是就推开压缩阀6,流回贮油缸5。

这些阀对油的节约形成悬架受压缩运动的阻尼力。

减振器在伸张行程时,车轮相当于远离车身,减振器受拉伸。

这时减振器的活塞向上移动。

活塞上腔油压升高,流通阀8关闭,上腔内的油液推开伸张阀4流入下腔。

由于活塞杆的存在,自上腔流来的油液不足以充满下腔增加的容积,主使下腔产生一真空度,这时储油缸中的油液推开补偿阀7流进下腔进行补充。

由于这些阀的节流作用对悬架在伸张运动时起到阻尼作用。

由于伸张阀弹簧的刚度和预紧力设计的大于压缩阀,在同样压力作用下,伸张阀及相应的常通缝隙的通道载面积总和小于压缩阀及相应常通缝隙通道截面积总和。

这使得减振器的伸张行程产生的阻尼力大于压缩行程的阻尼力,达到迅速减振的要求。

下图表示了奥迪100轿车前、后悬架减振器结构图。

其作用原理如前所述。

电磁减震器电磁减振系统是一种可选装的配置。

它的使用可以说解决了长期以来在舒适性和运动性之间的矛盾。

作为一种连续的自适应系统,它能在几毫秒内调整阻尼特性使其更加适应路面情况和驾驶员的习惯。

而减震器内采用的不是普通油,而是一种称作电磁液的特殊液体,它是由合成碳氢化合物以及3至10微米大小的磁性颗粒组成。

一旦控制单元发出脉冲信号,线圈内便会产生电压,从而形成一个磁场,并改变粒子的排列方式。

这些粒子马上会按垂直于压力的方向排列,阻碍油在活塞通道内流动的效果,从而提高组尼系数。

与传统的减震器相比,在舒适模式下,减震器油较黏稠,吸震效果较显著。

这种模式适合普通道路行驶。

而在运动模式下,减震器会直率地传递道路表面的状况。

这两种模式会带给驾者截然不同的感受。

[编辑本段]【原理】电磁减震器(Electromagnetic Absorber)是利用电磁反应的一种新型智能化独立悬架系统。

它利用多种传感器检测路面状况和各种行驶工况,传输给电子控制器ECU,控制电磁减震器瞬间做出反应,抑制振动,保持车身稳定,特别是在车速很高,突遇障碍物时更能显出它的优势。

电磁减震器的反应速度高达1000 Hz,比传统减震器快5倍,彻底解决了传统减震器存在的舒适性和稳定性不能兼顾的问题,并能适应变化的行驶工况和任意道路激励,即使是在最颠簸的路面,电磁减震器也能保证摩托车平稳行驶,代表了减震器发展的方向。

以日本日立制作所研制的电磁减震器为例,这款是电磁减震器由传感器、电子控制器ECU、圆筒型线性电动机和弹簧液压减震器4大部分组成的有源悬架系统。

系统中的传感器有加速度传感器和悬架行程传感器。

加速度传感器用来检测路面凹凸不平的程度,输送给电子控制器ECU,发出指令控制线性电动机产生与减震器运动方向完全相反的反作用力运动行程,减轻车辆上下的振动。

悬挂行程传感器用来检测减震器的实际运动行程,然后反馈给电子控制器ECU适时修正线性电动机的反作用力运动行程。

系统中的核心部件是线性电动机和电子控制器ECU,线性电动机实际上就是由定子线圈和运动磁铁组成的直线电动机,其工作原理与普通旋转式电动机相同。

普通旋转式电动机是利用电流的变化,使电动机的定子线圈产生旋转磁场,感应转子磁铁转动。

直线电动机可视为将普通旋转式电动机从圆心沿半径切开后,平直展开而成,这样原本旋转的磁场就变成了直线方向行进的磁场,而转子的转动也变成直线移动。

安装在弹簧液压减震器下部的线性电动机,其定子线圈固定在减震器缸体上,线圈中的电流强度直接由电子控制器ECU控制,电子控制器ECU根据加速度传感器检测到的路面实际状况和悬架行程传感器检测到的实际运动行程,发出指令精确控制输入定子线圈的电流强度,从而精确控制直线电动机的反方向运动阻尼力和减振力,缓和路面的冲击与振动。

输入的电流越大,定子线圈中产生的磁场就越强,直线电动机产生反方向的阻尼力和减振力也就越大,由此可见,系统对电流大小的控制完全与行驶加速度及路面颠簸状况相适应。

这就意味着可以根据各种路况和载荷情况选择最佳的减振力。

当车辆在凹凸不平的恶劣路面上行驶或由单人驾驶改为双人骑乘,车轮剧烈地跳动时,系统自动控制定子线圈输入更大的电流,使直线电动机产生与减震器运动方向完全相反的更大阻尼力和减振力,抵消缓冲减震器的剧烈振动。

电子控制器ECU可在1 S时间内让减震器的阻力和减振力连续改变1 000次,与单独使用弹簧液压减震器相比,既提高响应速度,又可提高舒适性,堪称全球动作最快、最先进的智能悬架系统。

使用线性电动机与不使用线性电动机相比可将振动频率在1.5 Hz附近的振动减轻8 dB。

目前,该电磁减震器已经安装在SUV (Sports Utility Vehicles)运动型多用途车上进行了实验,获得了大量的实际行驶数据。

预计到2009年可小批量安装到SUV 汽车和大排量运动型摩托车上。

[编辑本段]【不同类型的电磁减震器】日立制作所研制的电磁减震器日本日立制作所研制的电磁减震器是由传感器、电子控制器ECU、圆筒型线性电动机和弹簧液压减震器4大部分组成的有源悬架系统。

日立制作所研制的电磁减震器与单用弹簧液压减震器对比试验结果,红线为使用线性电动机控制时车身垂直振动加速度随振动频率的变化曲线,黑线为单独使用弹簧液压减振,即不使用线性电动机时的变化曲线。

可见,使用线性电动机与不使用线性电动机相比可将振动频率在1.5Hz附近的振动减轻8dB。

目前,该电磁减震器已经安装在SUV(Sports utility Vehicles)运动型多用途车上进行了实验,获得了大量的实际行驶数据。

预计到2009年可小批量安装到SUV汽车和大排量运动型摩托车上。

发电减震器PGSA美国博斯(BOSE)公司研制成功的动力—发电减震器PGSA(Power-Generating Shock Absorber。

)与日本日立制作所研制的电磁减震器的不同点是取消了弹簧液压减震器,完全由线性电动机电磁系统LMES(Linear Motion Electromagnetic System)组成电磁减震器。

不仅进一步简化了系统的结构,而且可在正常行驶工况下,具有发电功能,每个PGSA可产生至少25 w的功率为电动车电池充电,这对于完全依靠电力驱动的电动车来说是非常有利的,可以较大幅度地增加蓄电池的电力,延长电动车的续驶里程。

美国博斯公司是世界上著名的立体音响制造商,线性电动机技术早已运用于硬盘机读取头(也称激光头)上,在制造线性电动机方面积累了丰富的实践经验。

公司设计大师盖瑞.马歇尔(Garry Marshall)通过多年的努力,设计开发出一种全新的完全可用于电动车上的动力一发电减震器PGSA,其外形尺寸和安装方式与传统弹簧液压减震器完全相同,安装到普通电动车上不需要任务改装,使用非常方便,其结构如图6所示。

高密度永久磁铁组镶嵌在运动活塞上,活塞杆通过两端尼龙滑动轴承固定在减震器缸体上,缸体与活塞之间留有适当的间隙,从而使永久磁铁活塞可以在缸体内自由往复滑动;缸体上的定子线圈通过连接导线与外界电子控制器ECU相连。

当电动车在减振性能良好的路面上行驶时,由于减震器下端直接与车轮或摇架相连,因此带动减震器内的永久磁铁活塞上下往复运动,高密度永久磁铁形成的强大磁场不断切割定子线圈,从而使定子线圈产生感应交流电,经整流后变成直流电,输送电子控制开关。

由电子控制器ECU直接控制的电子开关,将每个电磁减震器上产生的感生电动势(平均每个大干25 w)及其它电子装置上产生的感生电动势(例如制动再生电流)收集起来,输送给蓄电池,为蓄电池充电,达到增大电动车蓄电池电力的目的。

当电动车在凹凸不平的恶劣路面上行驶或由单人驾驶改为双人骑乘,车轮剧烈地跳动时,电子控制器ECU通过加速度传感器和其它传感器立即感知到这一变化,于是控制电子开关切断动力—发电减震器的输出回路,接通定子线圈的输入回路,为定子线圈输入外加电流,动力-发电减震器瞬间便变成线性电动机,产生反方向阻力和减振力,缓和路面的冲击与振动。

相关文档
最新文档