常用天线、无源器件介绍
WLAN天线各种天线介绍

WLAN天线各种天线介绍1 什么是天线WLAN作为一项无线技术,其信号以电磁波形式在空气中传播。
而能够有效的向空间中某个方向辐射电磁波,或者能从空间某特定方向接收电磁波的器件,我们称之为天线。
天线是发射和接收电磁波的设备,是WLAN的基础。
2 天线相关技术点2.1 振子当导线上有交变电流流动时,就可以形成电磁波的辐射。
辐射的能力与导线的长短和形状有关。
如图1 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,电场就散播在周围空间,因而辐射增强。
通常将此装置称为振子。
两臂长度相等的振子叫做对称振子,对称振子是一种经典的、迄今为止使用最广泛的天线。
每臂长度为四分之一波长、的振子,称半波对称振子,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。
图2:半波对称振子组成的经典天线2.2 方向性发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。
垂直放置的半波对称振子具有平放的“面包圈” 形的立体方向图。
在振子的轴线方向上辐射为零,最大辐射方向在水平面上;在水平面上各个方向上的辐射一样大。
若干个对称振子组阵,能够控制辐射,产生“扁平的面包圈” ,把信号进一步集中到在水平面方向上。
也可以利用反射板可把辐射能控制到单侧方向平面反射板放在阵列的一边构成扇形区覆盖天线。
下面的水平面方向图说明了反射面的作用------反射面把功率反射到单侧方向,提高了增益。
2.3 增益天线通常是无源器件,它并不放大电磁信号。
天线的增益是指:将天线辐射的电磁波进行聚束以后,比起理想的参考天线,在输入功率相同的条件下,在空间同一点上接收功率的比值。
增益定量地描述了一个天线把输入功率集中辐射的程度。
一般,增益的定义是:增益=输出功率(W)/输入功率(W),是一个无量纲参数。
dB是增益取对数底再乘以10的结果:增益(dB)=10×log(增益)。
天线和无源模块培训资料

10dB波瓣宽度 - 顾名思义,它是方向图中辐射强度降低 10dB (功率密度降至十分之一) 的两个点间的夹角。
波束宽度
0.5 极坐标方向图 直角坐标方向图 10dB 0.5 波束宽度示意图
增益
天线最大辐射强度与平均辐射强度之比。代表了天线辐射能量集中的程度。 增益G = 物理含义:为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需 100 / 20 = 5W 。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。
方向图
场强方向图:用辐射的电场强度表示的方向图
功率方向图:用辐射的功率表示的方向图
归一化方向图:用最大值除以其余各项得到的方向图
(E平面和H平面称为方向图的主平面)
E面方向图:与电场平行平面内的图形
H面方向图:与电场垂直平面内的图形
常用的方向图术语:
直角坐标
极坐标
三维方向图
辐射方向图表达
方向图描述示例
波束宽度
极化形式
方向图
输入阻抗
增益
前后比(F/B)
旁瓣电平
3.天线主要技术指标
01
02
距天线某一固定距离上(一般指远场区),天线辐射电磁场随角度坐标在空间分布的图形。
远场条件:L > 2D2/(例如,若测试口径为1m、f0=1GHz抛物面天线的方向图,因为=c/f0=0.3m,所以测试方向图时天线与发射源间的距离L > 2D2/ = 212/0.3 = 6.7m)
天线辐射通用计算式
按用途分类:通信天线、电视天线、雷达天线、导航天线等。
天线基本原理及常用天线介绍

25
电压驻波比(VSWR)对网络的影响:
VSWR 反射功率比 辐射功率减少 减少百分比
3.0
25%
2.15dB
40%
2.0
11%
0.86dB
18%
1.8
8%
0.67dB
14%
1.5
4%
0.36dB
8.0%
1.4
2.8%
0.21dB
4.7%
1.3
1.7%
0.13dB
2.9%
1.2
0.8%
0.07dB
三个及三个以上工作频段(不同制式)的宽频
天线。正如前边所介绍的:
806~869 824~896 870~960
806~960MHz 一副天线
1710~1880 1850~1990 1920~2170
1710~2170MHz 一副天线
31
806~960MHz的超宽频天线
现在的一副天线相当于原来的三副天线, 并且具备电调功能,既提高了产品性能,又在很大程度上降低了天线的生产3成2 本
峰值
- 3dB点
Peak - 3dB
15° (eg)
Peak
10dB 波束宽度
- 10dB点
120° (eg)
峰值 - 10dB点 Peak - 10dB
32° (eg)
Peak
Peak - 3dB
俯仰面即垂直面方向图
Peak - 10dB 16
方向图旁瓣显示
上旁瓣抑制 下旁瓣抑制
17
8、方向图在移动组网中的应用
1.1%
26
多径传播与反射
27
用分集接收改善信号电平
28
二、几种常用天线的介绍
工程师必须要掌握的常用天线无源器件原理及功能

工程师必须要掌握的常用天线无源器件原理及功能工程师在无线通信系统的设计和维护中,需要了解天线和无源器件的原理和功能。
天线是将电磁能量从导线传输到自由空间的装置,而无源器件是在电路中不需要供电的元器件。
下面是工程师必须要掌握的常用天线和无源器件的原理和功能的介绍。
一、常用天线的原理和功能:1.简单天线:如半波长偶极子天线和单极天线。
原理是电流通过导线会在空间产生辐射,仿佛天线是一个辐射源。
常见于Wi-Fi路由器和收音机。
2. 方向性天线:如小型喇叭天线和Yagi天线。
原理是通过设计天线的形状和构造来实现特定的辐射方向性。
常见于通信基站和无线电测量设备。
3. 宽频带天线:如Vivaldi天线和螺旋天线。
原理是通过特殊的天线结构和构造实现宽频带的传输和接收功能。
常见于雷达和宽带通信系统。
4.衍射天线:如带状天线和光纤天线。
原理是利用天线和介质的交互作用,实现辐射和接收无线信号。
常见于射频传输和微波通信系统。
5.平面天线:如微带天线和贴片天线。
原理是将导体片固定在平面表面上,实现辐射和接收电磁波的功能。
常见于移动通信设备和卫星通信终端。
6.捕捉天线:如磁环天线和弹性天线。
原理是通过改变天线的物理位置或形状,实现对特定频段的信号捕捉和过滤。
常见于无线电接收器和RFID读写器。
二、常用无源器件的原理和功能:1.电阻器:原理是通过电阻材料的电阻值限制电流的流动,用于电路的调节和阻抗匹配。
2.电容器:原理是利用电场作用储存电荷,用于能量存储和电路的频率响应调节。
3.电感器:原理是利用电磁感应作用储存磁能,用于滤波和电路的频率响应调节。
4.变压器:原理是通过线圈的磁场耦合实现输入和输出电压的变化,用于电压转换和隔离。
5.二极管:原理是利用半导体的PN结实现单向电流导通,用于电流控制和电路开关。
6.晶体管:原理是利用半导体材料的输运特性实现电流放大,用于信号放大和电路控制。
7.三极管:原理是在晶体管的基础上添加了一个控制接口,实现电流的放大和控制功能。
微波无源器件的研究与应用

微波无源器件的研究与应用微波无源器件是目前电子通信领域中应用广泛的一种器件,在天线设计、射频信号放大、高频测量等领域都有着重要的应用。
本文将对微波无源器件的研究与应用进行探讨。
一、微波无源器件的基本原理微波无源器件是指不需要电源驱动和功率放大的微波器件,主要用于信号分配和频率选择。
它采用无源元件的特性,如反射、耦合和分配等,实现微波信号的处理和控制。
这种器件主要有以下几种类型:1. 方向耦合器方向耦合器是一种被广泛应用的无源器件,主要用于频率分配和功率分配。
它的工作原理是将输入信号分为两个输出端,其中一个输出端用于采样,另一个输出端则输出信号的一部分。
2. 功率分配器功率分配器是一种被广泛应用的无源器件,主要用于接收和分配微波信号。
它的工作原理是将一个输入端的信号分为多个输出端,每个输出端的功率相等。
3. 线性耦合器线性耦合器是一种无源器件,主要用于将微波信号在两个传输线之间进行转移,同时可以实现向不同方向的耦合和不同大小的功率分配。
以上三种器件是常用的无源器件,它们共同的特点是不需要电源驱动和功率放大,且具有高度的可靠性和长寿命。
这些特性使得微波无源器件在各种应用场合中具备重要的地位。
二、微波无源器件的应用领域微波无源器件广泛用于天线设计、射频信号放大、高频测量、信号分配和频率选择等领域。
下面分别介绍一下这些应用场景。
1. 天线设计在天线设计中,微波无源器件被广泛应用于辐射模式的测量和角度测量。
人造卫星和通信地面站的收发天线中,均采用方向耦合器、功率分配器和线性耦合器等无源器件,用于实现辐射模式的测量和天线角度的控制。
2. 射频信号放大在射频信号放大中,微波无源器件被广泛应用于射频功率的分配和控制。
由于微波无源器件具有高度的可靠性和长寿命,可以减少系统故障率和维修成本。
3. 高频测量在高频测量领域中,微波无源器件可以用于信号分配和频率选择。
例如,在频率分析和谐波振荡器测量中,需要使用功率分配器将信号分配到多个检测器上进行分析。
《无源器件介绍》课件

结论
无源器件是电子电路的基础,了解无源器件对于理解电路原理很有帮助。 通过学习无源器件的概念、分类和特点,我们可以更好地应用它们于实际电 路设计中。
匹配网络
无源器件可用于匹配电路的阻抗,提高信号 传输效率。
振荡电路
无源器件可用于构建振荡电路,产生稳定的 振荡信号。
无源器件的优缺点
优点:低噪声,不需要电源,稳定性强
无源器件具有低噪声、不需要外部电源供电以 及稳定性强等优点。
缺点:之前的结果要正确,不提供放 大作用,不能操控能量的流动
无源器件的缺点是对之前的信号结果要求较高, 无法提供放大作用和直接操控能量的流动。
பைடு நூலகம்
无源器件的特点
1 没有增益
无源器件本身不具备能量的放大作用,只能对电路中的信号进行传输和转换。
2 能量的传输和转换
无源器件在电路中起着传输和转换能量的作用,相当于信号的“传输媒介”。
无源器件的应用
信号滤波
无源器件可用于滤除电路中的噪声和干扰, 保持纯净的信号。
信号耦合
无源器件可用于将信号从一个电路传递到另 一个电路,实现信号的耦合。
电感
电感是一种储存磁能的无源器件,常用于电路中对于电流变化的响应。
电阻
电阻是一种用来限制电流流动的无源器件。根据电阻值的大小,可以将电流 限制在特定的范围内。
电容
电容是一种储存电荷的无源器件。当电容器极板之间施加电压时,可储存和释放电能。
电感
电感是一种储存磁能的无源器件。当电流变化时,电感器产生电磁感应,从而对电流进行调节。
无源器件介绍
无源器件是电子电路的基础,了解无源器件对于理解电路原理很有帮助。
什么是无源器件
无源器件是指在电路中不提供能量放大作用的器件,例如电阻、电容和电感。
常用天线、无源器件汇总!

常用天线、无源器件汇总!
一、天线原理
1.1天线的定义:
O能够有效地向空间某特定方向辐射电磁波或能够有效的接收空间某特定方向来的电磁波的装置。
1.2天线的功能:
O能量转换-导行波和自由空间波的转换;
O定向辐射(接收)-具有一定的方向性。
1.3天线辐射原理
�i i i i l i) Array
电场
一一一令1/2波长
---------I-----------
1.4天线参数
u辐射参数
O半功率波束宽度、前后比;
O极化方式交叉极化鉴别率;
O方向性系数、天线增益
O主瓣副瓣旁瓣抑制、零点填充、波束下倾…
u电路参数
O电压驻波比VSW R、反射系数仁回波损耗RL;
7.1衰减器
•0衰减器是二端口互易元件
•0衰减器最常用的是吸收式衰减器.
•0工程中通常使用的是同轴型衰减器,由'1t"型或'T"型衰减网络组成。
•0同轴衰减器通常有固定及可变衰减两种。
•0衰减器主要用千检测系统中控制微波信号传输能量、消耗超额能量,因而扩展信号测量的动态范围,诸如功率计,频谱分析仪,放大器,接收器等。
常用天线和无源器件技术参数

常用天线和无源器件技术参数天线是将电磁能转换为电信号或将电信号转换为电磁能的一种设备。
无源器件是指不含有源(电源)的电子元件,如电阻、电容、电感等。
在通信领域中,常用的天线和无源器件具有一系列的技术参数,下面将对其进行详细介绍。
1.天线技术参数(1) 增益(Gain):天线的增益是指天线辐射功率与理想点源辐射功率之比,单位为dBi。
增益越大,天线辐射的信号强度越大,接收到的信号质量也越好。
(2) 频率范围(Frequency Range):天线的频率范围是指天线能够工作的频带范围。
通常以最小和最大工作频率来表示。
(3)驻波比(VSWR):驻波比是指由于天线阻抗与信号源或负载阻抗不匹配而产生的反射信号的大小。
驻波比越小,表示天线与信号源或负载的匹配度越好,信号损耗越小。
(4) 角度范围(Vertical and Horizontal Beamwidth):天线的角度范围是指天线在水平和垂直方向上能够辐射或接收信号的范围。
角度范围越大,表示天线的辐射范围越广。
(5) 前后比(Front-to-Back Ratio):前后比是指天线在主导方向上的辐射功率与在反向方向上的辐射功率之比。
前后比越大,表示天线在主导方向上的信号强度越大,抗干扰能力越强。
(1) 电阻值(Resistance):电阻值是指无源器件电阻的数值。
通常用欧姆(Ω)来表示。
(2) 电容值(Capacitance):电容值是指无源器件电容的数值。
通常用法拉德(F)来表示。
(3) 电感值(Inductance):电感值是指无源器件电感的数值。
通常用亨利(H)来表示。
(4) 响应频率范围(Frequency Response):响应频率范围是指无源器件在频率范围内的响应情况。
通常以最小和最大工作频率来表示。
(5) 损耗(Loss):无源器件的损耗是指无源器件在信号传输过程中产生的能量损失。
损耗越小,信号传输效率越高。
以上是常用天线和无源器件的一些常见技术参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、无源器件概述
线性互易元件树状图
三、功分器介绍
功分器
➢ 功分器是一种将一路输出信号能量分成两路或多路输出 的器件。本质上是一个阻抗变换器。
➢ 是否可以将功分器逆用以取代合路器呢? ➢ 在做为合成器使用时,不仅需要高隔离,低驻波比,更
耦合器分类比较
插损 驻波比 方向性
功率容量
微带线耦合器 大 较差 较好 小
端口匹配 所有端口阻抗匹配
内部结构 焊接方式
可靠性
中
腔体定向耦器 较小 较好 较好 中
同轴腔体耦合器 小 差 不作为声明值 大
所有端口阻抗匹配 有隔离电阻 中
输入口匹配
空气介质,无焊 点 高
四、耦合器介绍
定向耦合器
➢ 定向耦合器常用与对规定流向微波信号进行取样,主要目 的是分离及隔离信号,或是相反地混合不同的信号,在无 内负载时,定向耦合器往往是一四端口网络.
200W 1.5kW 50Ω
N-K 88×87×20mm
0.2kg -55℃~+125℃
≤95%
五、3dB电桥介绍
功分器VS耦合器
功分器
特 点
输出同相位; 两路以上输出; 等分输出;
耦合器
输出相位差90度; 两路输 出 ;可灵活实现不同的差值 输出;
பைடு நூலகம்
在工程应用中,当需要对不 应 同区域进行等功率覆盖时, 如不然,则先选用耦合器,再 用 如各区域与分配点等距离, 用功分器实现多区域的覆盖.
水仙花型
标准型
壁画型
二、天线产品-室外天线
施主天线
➢窄波束、方向性强 ➢高前后比
八木天线
角反射天线
抛物面天线
二、天线产品-室外天线
用户天线
宽频全向天线
对数周期天线
板状天线
三、无源器件概述
微波无源器件概述
➢ 无源器件分为线性器件与非线性器件。 ➢ 线形无源器件又有互易与非互易之分。 ➢ 线形互易元件只对微波信号进行线形变换而不改变频率特
频率范围
800~2500MHz
分配损耗
3 dB
4.8 dB
6 dB
插损
≤0.2 dB
≤0.2dB
≤0.2 dB
驻波比(输入端口)
≤1.2 :1
功率容量
200W
阻抗
50Ω
接头
N-K
体积
210×61×25mm 233×61×25mm 233×61×43mm
重量
0.3 kg
0.44 kg
0.50 kg
环境温度
三、功分器介绍
功分器分类比较
插损 输出口驻波 输出隔离 功率容量
可靠性 三阶互调失真
对终端要求 应用
微带线 相对稍大
小 保证一定程度隔离
小 相对稍差 典型值-140dBC 要求负载驻波小 室内中小功率场合
同轴腔体 小
不作为声明值 不作为声明值
大 高可靠,长寿命 典型值-150dBC
无 所有场合
三、功分器介绍
➢ 定向耦合器常有两种方法实现
耦合线定向耦合器
输出端与耦合端结构 上不相临
分支线定向耦合器
输出端与耦合端结构 上相临
四、耦合器介绍
腔体耦合器
特点:承载大功率,表现低损耗。 原因: 1、腔体内部填充介质为空气,在传输过程中,因空气介质
原因引起的介质耗散要低得多。 2、其耦合线带一般采用导电性良好的导体(如铜表面镀银)
一、天线原理-电路参数
隔离度 : 是某一极化接收到的另一极化信号的比例
1000mW (即 1W)
该例子中,隔离度为: 10log(1000mW/1mW) = 30dB
1mW
一、天线原理-电路参数
无源交调(PIM):
当两个频率f1和f2输入到天线,由于非线性效应,天线辐射的信号 除频率 f1 和 f2 外,还包括有其他频率,如 2f1-f2 和 2f2-f1 (3阶 ) 等。
五、3dB电桥介绍
主要工程应用
主要应用于同频段内不同载波间的合路应用。 由于电路和加工装配上的离散性,电桥耦合器输入端口 的隔离度比较低,不建议应用在不同频段间的合路应用。 综上,在异频合路应用时,除了同频段内相临载频(如 GSM下行频段内的相临载频)等只能采用3dB电桥而不适 用双工/多工合路器情况外,建议在使用中优先选用双工/ 多工合路器,以改善系统的性能指标,增加可靠性.
多选用功分器。
七、合路器介绍
合路器
➢ 作用:将多路信号合成一路信号输出 ➢ 分类:按实际合路频段进行分类
七、合路器介绍
合路器VS电桥VS功分器
如图所示,1口可测得驻波比;2,3口可测得插入损耗,而 由于腔体功分器本身的器件特点,输出口驻波以及输出口 的隔离不作为声明值提出。
可测指标:驻波
可测指标:插 损
可测指标:插 损
三、功分器介绍
功分器
三、功分器介绍
RD-52( 3/4) N/NP名-称F2
宽频腔体功分器
型号
RD-52N/NP-F2 RD-53N/NP-F2 RD-54N/NP-F2
二、天线产品
天线命名方式
ODP-065R15DB(III-V)
天线类别 水平半功率角 极化方式 增益 接头类型 频段 规格代码
天线类别:ODP( 室外定向板状天线),OOA( 室外全向天线),IXD( 室内吸顶天线),OCS(室外双 向天线),OCA( 室外集束天线),OYI( 室外八木天线),ORA( 室外抛面天线),IWH(室内壁 挂天线) 等等
腔体功分器特点
➢ 腔体功分器,采用优质合金作为导体,填充介质为空气; ➢ 能承受比较大的功率,最大可达200W;而介质损耗,导体
损耗基本上可忽略不计,插入损耗小,能做到0.1dB以下。 ➢ 但由于没有隔离电阻,输出端口隔离度很小,因此腔体功分
器不能作为功率合成器使用.
三、功分器介绍
功分器测试指标示意图
xxF名1称
型号 频率范围
宽频腔体耦合器 RC-5NK/NK/NK-xxF1
800-2500MHz 6dB:6± 0.6dB; 10dB:10 ± 0.8dB
耦合度
15dB:15 ± 0.8dB; 20dB:20 ± 0.8dB
30dB:30 ± 1.0dB
6dB :< 1.7dB; 10dB :< 0.7dB
耦合器
同轴腔体 耦合器
腔体定向 耦合器
带状线结构 耦合器
产品代表:
RC-5NK/NK/NK-06F1 (耦合度可选,此处以 6dB耦合器为例)
产品代表:
RC-5NK-06F3 (耦合度可选,此处以 6dB耦合器为例)
产品代表:
RC-5NK-06F (耦合度可选,此处以 6dB耦合器为例)
四、耦合器介绍
半功率角:032,065,090,105,360(基站天线) 020,030,040,050,060,075,090,120,160,360(直放站天线)
极化方式:R (双极化),V (单极化) 增益:按照实际指标,目前最大为21dBi 接头类型:D(Din头),N(N 型头),S(SMA头),T(TNC 头)等等 频段: G(GSM), A(CDMA),B(GSM+CDMA),C(GSM1800),F(3G),K(DCS+3G),W(2G+GSM 1800+3G),N( 824-2500),D(DB+GSM1800), L(WLAN) 规格代码:罗马字母表示第几代产品
一、天线原理-辐射参数
极化:指电场矢量在空间运动的轨迹或变化的状态。
垂直方式
水平方式
+ 45斜角
- 45斜角
回波损耗
一、天线原理-电路参数
50 欧姆
前向: 10W 回波: 0.5W
80 欧姆
9.5 W
此例中,回波损耗为 10log(10/0.5) = 13dB VSWR (驻波比) 是对此现象的另一种度量方法
五、3dB电桥介绍
电桥
五、3dB电桥介绍
RB-NKF0
名称 型号 频率范围 耦合度 频带波动 插损 驻波比 输入隔离度 功率容量 峰值功率 阻抗 接头 体积 重量 环境温度 相对湿度
大功率电桥 RB-NKF0 1710-2200 MHz 3dB(nominal) ±0.25dB <0.2dB <1.2∶1 >30dB
3dB电桥耦合器是定向耦合器的一种。 作为功率合成器使用时,两路输入信号接入互为隔离
端口,而耦合输出和直通输出端口互易.如作为两路输出, 不考虑损耗,则输入信号功率之和平分于两输出口。
而当作为单端口输出使用时,另一输出端必须连接匹配功 率负载以吸收该端口的输出功率,否则将严重影响到系统 传输特性,而这同时,也带来了附加的3dB损耗,这对于 系统应用来说,对其有源部分的成本和可靠性都会有影 响.
后面字母和数字表示电调下倾角、赋形、电调等信息 F :赋形;V :电调;RV :远程电调等等
二、天线产品-基站天线
三 频 天 线
电 调 天 线 全向天线 薄型天线 双频天线 高增益天线
二、天线产品-分布系统天线
室内吸顶天线
超薄吸顶天线
烟感器型吸顶天线
灯型吸顶天线
二、天线产品-分布系统天线
室内壁挂天线
后向功率
前向功率
前后比(dB) = 10 log 前向功率 ,典型值约为25dB
后向功率
目的是尽可能减少后向辐射功率
一、天线原理-天线参数
增益和天线尺寸及波束宽度的关系
将“轮胎”压扁,信号就越集中,增益就越高,天线尺寸就越大, 波束宽度越窄;
一、天线原理-天线参数