自动控制原理实验三控制系统的稳定性和稳态误差.1
自动控制原理--控制系统的稳态误差

二、给定作用下的稳态误差
设系统开环传递函数为:
其中K为开环增益,v为系统中含有的积分环节数 对应于v=0,1,2的系统分别称为0型,Ⅰ型和Ⅱ型系统。
稳态误差的定义
• 误差定义为输入量与反馈量的差值
• 稳态误差为误差的稳态值 • 如果需要可以将误差转换成输出量的量纲
• 稳态误差不仅与其传递函数有关,而且与输入 信号的形式和大小有关。其终值为:
稳态误差计算
误差的定义:
E(s) R(s) B(s)
lim ess ()
( L1[ E ( s )])
(1)系统是稳定的; (2)所求信号的终值要存在。
例27 已知系统如图3-36所示。当输入信号 rt ,1干t扰信 号 n时t,求1t系 统的总的稳态误差。
Ns
Rs
Es
K1
K2 s
Y s
Bs
图3-36 例3-15系统结构图
解:⑴对于本例,只要参数 K1, K均2大于零,则系统一定是稳 定的。
⑵在r t 信1t号 作用下(此时令 n)t 0
s0
s0
1 s K1K2
K2 s K1K2
1 s
1 K1
由以上的分析和例题看出,稳态误差不仅与系统本身
的结构和参数有关,而且与外作用有关。利用拉氏变换
的终值定理求得的稳态误差值或者是零,或者是常数,
或者是无穷大,反映不出它随时间的变化过程。另外,
对于有些输入信号,例如正弦函数,是不能应用终值定
最后由终值定理求得稳态误差 ess
ess
自动控制原理(3-4)

式中Φn(s)——系统的扰动误差传递函数。
Φn
(s)
=
1+
Gc
Go (s) (s)Go (s)H
(s)
=
Go (s) 1+ G(s)
五、给定稳态误差终值的计算
Er
(s)
1
1 G(
s)
R(s)
esr
lim e(t)
t
lim
s0
sEr
(s)
lim s s0 1 G(s)
R(s)
esr为给定稳态误差的终值;G(s)为开环传递函数。
Er
(
s)
1
1 G(s)
R(s)
e
(s)R(s)
假定输入信号r(t)是任意分段连续函数,则可以利用
卷积公式计算给定误差:
式中
t
er (t) 0e (t) r(t ) d
er
(t)
1
2
j
c j
E c j r
(
s)
e
st
ds
e
(t)
1
2
j
c j
3.对于给定输入为抛物线函数时
r(t) Rt 2 2
R R(s) s3
则
esr
lim
s0
1
s G(s)
R(s)
lim
s0
s2
R s2G(s)
R Ka
式中
Ka
lim s2 G(s) s0
Ka为加速度误差系数,或称抛物线误差常数。
《自动控制原理》第三章 3-5 稳态误差计算

R(s) E(s)
k
C(s)
--
s(s 2)
(参考答案:
kt s
k 355.6, kt 0.094; k 44.4, kt 0.055;)
能源与动力学院 第三章 线性系统的时域分析法
26
二、系统的闭环特征方程为, s33 s22sk0
试确定使系统稳定的k值范围以及系统产生等幅振荡的 频率。
能源与动力学院 第三章 线性系统的时域分析法
21
渐进稳定:若线性控制系统在初始扰动的影响下, 其动态过程随时间的推移逐渐衰减并趋于零(原平衡 工作点)。 不稳定:若在初始扰动影响下,系统的动态过程随 时间的推移而发散。
临界稳定:若系统的响应随时间的推移而趋于常值 或等幅正弦振荡
能源与动力学院 第三章 线性系统的时域分析法
第三章 线性系统的时域分析法
25
一、系统结构如图
(1)当kt 0,k9 且r(t)1(t) ,求系统的调节时 t s
间 和超调量% (;n 3 , 1 /3 ,ts 3 .5 ,% 3 .9 2 % 3
(2)若要求阶跃响应的峰值时t间p 0.5 秒,单位斜
坡响应的稳态误差ess 0.1 ,求k,k t 。
N(s)
C(s)
G2 (s)
H (s)
输出端误差定义
E'n
(s)
Cn(s)
G2(s)
1G1(s)G2(s)H(s)
N(s)
输入端误差定义
En(s)
Cn(s)H(s)
G2(s)H(S) 1G1(s)G2(s)H(s)
N(s)
能源与动力学院 第三章 线性系统的时域分析法
15
4. 扰动作用下稳态误差…
自动控制原理实验实验指导书

自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。
二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。
1.比例(P)环节的模拟电路及其传递函数示于图1-1。
2.惯性(T)环节的模拟电路及其传递函数示于图1-2。
3.积分(I)环节的模拟电路及其传递函数示于图1-3。
4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。
5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。
6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。
三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。
2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。
附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
《自动控制原理》第三第讲

误差系数 Kp Kv Ka
单位阶跃 输入
r(t) = u(t)
单位速度 输入
r(t) = t
单位加速 度输入
r(t) = 1 t 2 2
0
K0 0
1 1+K
I
∞ K0
0
II
∞ ∞K
0
∞
∞
1
∞
K
1
0
K
1. 稳态误差与输入信号有关;与开环增益有关;与积分环节的个 数有关。
2. 减小或消除稳态误差的方法: a、增加开环放大系数K; b、提高系统的型号数;
R(s)
E(s) -
G1 ( s)
+ G2 (s) C(s)
H (s) (b)
通常,给定输入作用产生的误差为系统的给定误差
(E=R-HC),扰动作用产生的误差为扰动误差。认为扰动输入时 系统的理想输出为零,故从输出端的误差信号为:
En
= C理想
− C实际
=
−C实际
=
−Cn
= − G2 1+ G1G2 H
=
lim sv+1R(s)
s→0
lim sv + K
s→0
由上式可见, ess 与系统的型号v﹑开环增益K及输入信号
的形式及大小有关,由于工程实际上的输入信号多为阶跃信号
﹑斜坡信号(即等速度信号) ﹑抛物线信号(即等加速度信号) 或者为这三种信号的组合, 所以下面只讨论这三种信号作用 下的稳态误差问题.
Ka
m
G(s)H (s)
=
K sv
∏ (τ is +1)
i =1
n−v
∏ (Tjs +1)
《自动控制原理》第三章 35 稳态误差计算

两种定义的联系: E ' ( s ) E ( s ) H (s)
H ( s ) 1时, E ( s ) E ' ( s )
能源与动力学院 第三章 线性系统的时域分析法
3
1. 误差与稳态误差的定义…
e(t ) L1[ E (s)] L1[e (s) R (s)] L1[ R (s) ] 1 G(s)H (s)
3-6 线性系统的稳态误差计算 (Steady-state error)
稳定性 系统性能 动态性能
稳态性能 稳态误差
稳态性能
原理性误差 结构性误差 (附加稳态误差)
系统结构 输入类型、形式 摩擦,间隙 死区等非线性
能源与动力学院
第三章 线性系统的时域分析法
1
3-6 线性系统稳态误差计算
本节内容:
N(s)
C(s)
G2 (s)
H (s)
输出端误差定义
E'n
(s)
Cn(s)
G2(s)
1G1(s)G2(s)H(s)
N(s)
输入端误差定义
En(s)
Cn(s)H(s)
G2(s)H(S) 1G1(s)G2(s)H(s)
ets (t ) ess (t ) 稳态误差
ess ( )
Lim
s0
sE (s)
Lim
s0
1
sR (s) G(s)H
(s)
ess():终值误差 条件s: E(s)在右半平面及析 虚( 轴原 上点 解除外)
能源与动力学院 第三章 线性系统的时域分析法
4
1. 误差与稳态误差的定义…
例1
R(s) E(S)
误差与稳态误差的定义 系统的类型 输入作用下稳态误差计算 扰动作用下稳态误差 减小或消除稳态误差的措施
《自动控制原理》稳定性和稳态误差

7-5 离散系统的稳定性和稳定误差 回顾:线性连续系统 稳定性和稳态误差问题:线性离散系统 稳定性和稳态误差 ?分析:sT e z =,首先研究s 平面与z 平面的关系。
一.s 域到z 域的映射s 域到z 域的关系: sT e z = S → Zs 域中的任意点可表示为ωσj s +=,映射到z 域则为 T j T T j e e e z ωσωσ==+)(ωσj s += ━━━━━━━━→ T e z σ=,T z ω=∠ (7—84)问题:s 平面上的点、线、面 如何映射到 z 平面?(1) s 平面上虚轴的映射虚轴:0=σ,ω=∞-→0→∞分析:0=σ时,1==T e z σ,ω=∞-→0→∞时,T z ω=∠==∞-→0→∞ 以原点为圆心的单位圆,经沿着单位圆转过无穷多圈分析:T 采样周期,单位[sec], 采样频率,单位[1/sec] f s =1/T采样角频率 s ω,单位[rad/sec] , T s /2πω=ω=2/s ω-→0→2/s ω时,T z ω=∠=π-→0→π 正好逆时针转一圈ω=2/s ω→s ω→2/3s ω时,T z ω=∠=π→π2→π3 又逆时针转一圈由图可见:可以把s平面划分为无穷多条平行于实轴的周期带,其中从-ωs/2到ωs/2的周期带称为主要带,其余的周期带叫做次要带。
(2) 等σ线映射s 平面上的等σ垂线,映射到z 平面上是以Te z σ=为半径的圆 s 平面上的虚轴映射为z 平面上的单位圆左半s 平面上的等σ线映射为z 平面上的同心圆,在单位圆内 右半s平面上的等σ线映射为z 平面上的同心圆,在单位圆外(3) 等ω线映射在特定采样周期T 情况下,由式(7-84)可知,s 平面的等ω水平线,映射到z 平面上的轨迹,是一簇从原点出发的映射,其相角T z ω=∠从正实轴计量,如图7-36所示。
由图可见,s 平面上2/s ωω=水平线,在z 平面上正好为负实轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太原理工大学现代科技学院自动控制原理课程实验报告
专业班级信息13-1
学号201310
姓名
指导教师乔学工
实验三 控制系统的稳定性和稳态误差
一、实验目的
二、实验设备
三、 实验内容
(1)若系统的传递函数为
)
523)(1()
66(4)(232++++++=s s s s s s s s G
利用MATLAB 求其分子和分母多项式表示传递函数。
>> clear
>> num=4*[1,6,6];
>> den=conv([1,0],conv([1 1],[1,3,2,5])); >> printsys(num,den)
num/den =
4 s^2 + 24 s + 24 ---------------------------------
s^5 + 4 s^4 + 5 s^3 + 7 s^2 + 5 s
(2)利用MA TLAB 实现数学模型间的转换。
设系统的零-极点模型为:
)
3)(2)(1()
3(6+
+++
=
s s s s s G )(
用matlab 求出其用分子和分母多项式表示的传递函数。
>> clear >> K=6; >> Z=[-3]; >> P=[-1;-2;-5];
>> [num,den]=zp2tf(Z,P,K); >> printsys(num,den) num/den =
…………………………………装……………………………………订………………………………………线……………………………………………
6 s + 18 ----------------------- s^3 + 8 s^2 + 1
7 s + 10 (3)若系统的传递函数为
5
234
)(2
3+++=
s s s s G 试利用MA TLAB 表示。
>> clear
>> num=4;den=[1,3,2,5]; >> printsys(num,den)
num/den =
4 --------------------- s^3 + 3 s^2 + 2 s + 5
2.利用MATLAB 分析系统的稳定性
(1)已知系统的传递函数为
122532
423)()()(2345234B +++++++++=
=s s s s s s s s s s R s Y s G
给出系统的零极点图,并判定系统的稳定性。
>> clear
>> num=[3 2 1 4 2]; >> den=[3 5 1 2 2 1];
>> r=roots(den),pzmap(num,den) r =
-1.6067 0.4103 + 0.6801i
1.4Step Response
0.4103 - 0.6801i
-0.4403 + 0.3673i
-0.4403 - 0.3673i
(2)
)
(=
S
G
B
>> clear
num=2;
den=[1 2 2];
step(num,den)
(3)已知闭环系统的传递函数如上式,试求线性时不变系统的流量器绘制系统的单位脉冲响应曲线。
>> clear
>> num=2;
>> den=[1 2 2];
>> ex3_14=tf(num,den);
>> ltiview(ex3_14)
之后在空白窗口右键利用PLOT Types子菜
单选项,选择Implus (单位脉冲曲线)
(4)已知闭环系统的传递函数为:
)()()(==S R S Y S G B 试求该系统的单位斜坡响应。
>> clear
>> num=1;
>> den=[1 2 1]; >> t=0:0.1:8; >> r=t;
>> y=lsim(num,den,r,t);
>> plot(t,r,'--',t,y,'-')
(5)利用MA TLAB 绘制下列系统原系统和降价后二阶系统的单位阶跃响应曲线。
44
241044
)(2
3+++=
S S S S G B ,44
2410)
8.7(44)(2
3++++=
S S S S S G B >> clear
>> subplot(1,2,1); num0=44;
den0=[1 10 24 44];
step(num0,den0,'-.');hold on; num=5.78;
den=[1 2.4 5.78]; step(num,den);
legend('原系统1','降阶后2阶系统') subplot(1,2,2);num0=44*[1 7.8]; den0=[1 10 24 44];
step(num0,den0,'-');hold on; num=45.08;
den=[1 2.4 5.78];
图2-2 反馈控制系统
step(num,den);
legend('原系统2','降阶后2阶系统')
3.利用MATLAB 计算系统的稳态误差
对于图2-2所示的反馈控制系统,根据误差的输入端定义,利用拉氏变换终值定理可得稳态误差ess
)
(lim )()()(11
lim )]()([lim )(lim 00
s E s R s H s G s
s B s R s s sE e s s s s s ss →→→→=+=-==
在MA TLAB 中,利用函数dcgain( )可求取系统在给定输入下的稳态误差,其调用格式为
ess=dcgain (nume,dene)
其中,ess 为系统的给定稳态误差;nume 和dene 分别为系统在给定输入下的稳态传递函数
)
(s E s 的分子和分母多项式的
系数按降幂排列构成的系数行向量
(1) 已知单位反馈系统的开环传递函数为
121
)()(2++=
s s s H s G
试求该系统在单位阶跃和单位速度信号作用下的稳态误差。
①系统在单位阶跃和单位速度信号作用下的稳态传递函数分别为
2
21
212212)()()(11)(2
2221++++=⋅++++=+=s s s s s s s s s s s R s H s G s s E s s
s s s s s s s s s s s R s H s G s s E s 221
212212)()()(11)(2
322222++++=⋅++++=+= ②>> clear
>> nume1=[1 2 1]; dene1=[1 2 2];
ess1=dcgain (nume1,dene1) nume2=[1 2 1]; dene2=[1 2 2 0];
ess2=dcgain (nume2,dene2) ess1 =
0.5000
ess2 =
Inf。