自动控制原理实验三用MATLAB实现线性系统的频域分析
《自动控制原理》实验3.线性系统的频域分析

《自动控制原理》实验3.线性系统的频域分析实验三线性系统的频域分析一、实验目的1.掌握用MATLAB语句绘制各种频域曲线。
2.掌握控制系统的频域分析方法。
二、基础知识及MATLAB函数频域分析法是应用频域特性研究控制系统的一种经典方法。
它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。
采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。
1.频率曲线主要包括三种:Nyquist图、Bode图和Nichols图。
1)Nyquist图的绘制与分析MATLAB中绘制系统Nyquist图的函数调用格式为:nyquist(num,den) 频率响应w的范围由软件自动设定 nyquist(num,den,w) 频率响应w的范围由人工设定[Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量,不作图2s?6例4-1:已知系统的开环传递函数为G(s)?3,试绘制Nyquists?2s2?5s?2图,并判断系统的稳定性。
num=[2 6]; den=[1 2 5 2]; nyquist(num,den)极点的显示结果及绘制的Nyquist图如图4-1所示。
由于系统的开环右根数P=0,系统的Nyquist曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。
p =-0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668图4-1 开环极点的显示结果及Nyquist图若上例要求绘制??(10?2,103)间的Nyquist图,则对应的MATLAB语句为:num=[2 6]; den=[1 2 5 2];w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距离的点nyquist(num,den,w)2)Bode图的绘制与分析系统的Bode图又称为系统频率特性的对数坐标图。
Bode图有两张图,分别绘制开环频率特性的幅值和相位与角频率?的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。
《自动控制原理》MATLAB用于频域分析实验

[mag,phase,w]=bode(num,den,w)
四、实验内容及步骤
1、曲线1
k = 500;
num = [1,10];
den = conv([1,0],conv([1,1],conv([1,20],[1,50])));
《自动控制原理》MATLAB用于频域分析实验
一、实验目的
1、加深了解系统频率特性的概念。
2、学习使用Matlab软件绘制Nyquist图、
Matlab2014b版
三、实验原理
1、奈奎斯特图(幅相频率特性图)
MATLAB为用户提供了专门用于绘制奈奎斯特图的函数nyquist
五、实验原始数据记录与数据处理
六、实验结果与分析讨论
通过使用Matlab2014b版,加深了解系统频率特性的概念以及典型环节的频率特性。
七、结论
本实验验证的典型环节的频率特性。
八、实验心得体会(可略)
常用格式:
nyquist (num,den)
或nyquist (num,den,w) 表示频率范围0~w。
或nyquist (num,den,w1:p:w2) 绘出在w1~w2频率范围内,且以频率间隔p均匀取样的波形。
举例:
2、对数频率特性图(波特图)
MATLAB为用户提供了专门用于绘制波特图的函数bode
常用格式:
bode (num,den)
或bode (num,den,w) 表示频率范围0~w。
或bode (num,den,w1:p:w2) 绘出在w1~w2频率范围内,且以频率间隔p均匀取样的波形。
举例:系统开环传函为 绘制波特图。
自动控制原理MATLAB实验报告

实验一 典型环节的MATLAB 仿真一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验原理1.比例环节的传递函数为K R K R R RZ Zs G 200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK 图形如图1所示。
2.惯性环节的传递函数为uf C K R K R s C R R R Z Z s G 1,200,10012.021)(121121212===+-=+-=-=其对应的模拟电路及SIMULINK 图形如图2所示。
图1 比例环节的模拟电路及SIMULINK 图形图2惯性环节的模拟电路及SIMULINK 图形3.积分环节(I)的传递函数为ufCKRssCRZZsG1,1001.011)(111112==-=-=-=其对应的模拟电路及SIMULINK图形如图3所示。
4.微分环节(D)的传递函数为ufCKRssCRZZsG10,100)(111112==-=-=-=ufCC01.012=<<其对应的模拟电路及SIMULINK图形如图4所示。
5.比例+微分环节(PD)的传递函数为)11.0()1()(111212+-=+-=-=ssCRRRZZsGufCCufCKRR01.010,10012121=<<===其对应的模拟电路及SIMULINK图形如图5所示。
6.比例+积分环节(PI)的传递函数为图3 积分环节的模拟电路及及SIMULINK图形图4 微分环节的模拟电路及及SIMULINK图形图5比例+微分环节的模拟电路及SIMULINK图形曲线)11(1)(11212sRsCRZZsG+-=+-=-=ufCKRR10,100121===其对应的模拟电路及SIMULINK图形如图6所示。
自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
线性系统的频域分析报告MATLAB实验

1γ=50 20-=sK0原系统的伯德图:num/den =1.2347 s + 1 ------------- 0.20154 s + 1校正之后的系统开环传递函数为:num/den =6.1734 s + 5 ------------------------------------------- 0.20154 s^4 + 1.6046 s^3 + 3.4031 s^2 + 2 sP h a s e (d e g )Bode DiagramGm = Inf dB (at Inf rad/sec) , P m = 9.04 deg (at 3.14 rad/sec)-20020406080M a g n i t u d e (d B )alpha =6.1261;[il,ii]=min(abs(mag1-1/sqrt(alpha))); wc=w( ii); T=1/(wc*sqrt(alpha)); numc=[alpha*T,1]; denc=[T,1];[num,den]=series(num0,den0,numc,denc);[gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc)disp('УÕýÖ®ºóµÄϵͳ¿ª»·´«µÝº¯ÊýΪ:');printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.');grid; ylabel('·ùÖµ(db)'); title('--Go,-Gc,GoGc'); subplot(2,1,2);semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('Ïàλ(0)'); xlabel('ƵÂÊ(rad/sec)');title(['УÕýǰ£º·ùÖµÔ£Á¿=',num2str(20*log10(gm1)),'db','ÏàλԣÁ¿=',num2str(pm1),'0';'УÕýºó£º·ùÖµÔ£Á¿=',num2str(20*log10(gm)),'db','ÏàλԣÁ¿=',num2s tr(pm),'0']);10-110101102-60-40-2002040幅值(d b )--Go,-Gc,GoGc10-110101102-300-200-1000100相位(0)频率(rad/sec)矫正后系统的伯德图矫正之前系统单位阶跃响应矫正之后系统的单位阶跃响应:比较矫正前后系统的响应情况:可以看出超前矫正使系统的调节时间变短,响应更加迅速,但是超调量偏大,对改善系统的动态性能起到了巨大的作用。
实验三利用MATLAB进行系统频域分析

实验三利用MATLAB进行系统频域分析系统频域分析是指通过对系统的输入输出信号进行频域分析,从而分析系统的频率响应特性和频率域特征。
利用MATLAB进行系统频域分析可以方便地实现信号的频谱分析、滤波器设计等功能。
下面将介绍如何利用MATLAB进行系统频域分析的基本步骤。
一、信号频谱分析1. 将信号导入MATLAB环境:可以使用`load`函数导入数据文件,或者使用`audioread`函数读取音频文件。
2. 绘制信号的时域波形图:使用`plot`函数绘制信号的时域波形图,以便对信号的整体特征有一个直观的了解。
3. 计算信号的频谱:使用快速傅里叶变换(FFT)算法对信号进行频谱分析。
使用`fft`函数对信号进行频域变换,并使用`abs`函数计算频谱的幅度。
4. 绘制信号的频谱图:使用`plot`函数绘制信号的频谱图,以便对信号的频率特征有一个直观的了解。
二、滤波器设计1.确定滤波器类型和要求:根据系统的要求和信号的特性,确定滤波器的类型(如低通滤波器、高通滤波器、带通滤波器等)和相应的频率响应要求。
2. 设计滤波器:使用MATLAB中的滤波器设计函数(如`fir1`、`butter`、`cheby1`等)来设计滤波器。
这些函数可以根据指定的滤波器类型、阶数和频率响应要求等参数来生成相应的滤波器系数。
3. 应用滤波器:使用`filter`函数将滤波器系数应用到信号上,得到滤波后的信号。
三、系统频率响应分析1. 生成输入信号:根据系统的要求和实际情况,生成相应的输入信号。
可以使用MATLAB中的信号生成函数(如`square`、`sine`、`sawtooth`等)来生成基本的周期信号,或者使用`randn`函数生成高斯白噪声信号。
2.绘制输入信号的频谱图:使用前面提到的信号频谱分析方法,绘制输入信号的频谱图。
3. 输入信号与输出信号的频域分析:使用`fft`函数对输入信号和输出信号进行频谱分析,并使用`abs`函数计算频谱的幅度。
自动控制原理MATLAB仿真实验报告

实验一 典型环节的MATLAB 仿真 一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验内容① 比例环节1)(1=s G 和2)(1=s G ;Simulink 图形实现:示波器显示结果:② 惯性环节11)(1+=s s G 和15.01)(2+=s s GSimulink 图形实现:示波器显示结果:③ 积分环节s s G 1)(1Simulink 图形实现:示波器显示结果:④ 微分环节s s G )(1Simulink 图形实现:波器显示结果:⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G1)、G1(s )=s+2Simulink 图形实现:示波器显示结果:2)、G2(s)=s+1 Simulink图形实现:示波器显示结果:⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=1)、G1(1)=1+1/sSimulink 图形实现:示波器显示结果:2)G2(s)=1+1/2s Simulink图形实现:示波器显示结果:三、心得体会通过这次实验我学到了很多,对课本内容加深了理解,熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法,加深对各典型环节响应曲线的理解,这为对课程的学习打下了一定基础。
实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和nω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、实验内容1.观察函数step( )的调用格式,假设系统的传递函数模型为243237()4641s s G s s s s s ++=++++绘制出系统的阶跃响应曲线?2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标,,,,p r p s ss t t t e σ。
线性系统的频域分析-自动控制实验

自动控制原理实验报告实验题目:实验三线性系统的频域分析班级:学号:姓名:指导老师:实验时间:实验三 线性系统的频域分析一、实验目的1.掌握用MATLAB 语句绘制各种频域曲线。
2.掌握控制系统的频域分析方法。
二、实验内容1.典型二阶系统2222)(nn ns s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。
程序:6=n ω,1.0=ζnum=[0 0 36];den=[1 1.2 36] w=logspace(-2,3,100); bode(num,den,w) grid3.0=ζnum=[0 0 36]; den=[1 3.6 36] w=logspace(-2,3,100); bode(num,den,w) grid5.0=num=[0 0 36];den=[1 6 36]w=logspace(-2,3,100); bode(num,den,w)grid8.0=num=[0 0 36];den=[1 9.6 36]w=logspace(-2,3,100);bode(num,den,w)grid=2num=[0 0 36];den=[1 24 36]w=logspace(-2,3,100);bode(num,den,w)grid分析ζ对系统bode图的影响:比较上述bode图知:根据其传递函数可知为振荡环节,其谐振频率,谐振峰值,系统的幅值和相位都与ζ有关。
系统的自然频率不变,当ζ逐渐增大时,其谐振频率逐渐减小。
根据bode图中的对数幅频特性图可知,在一定的范围内,随着ζ的增大,其谐振峰值逐渐减小。
ζ也影响其相频值,在一定的范围内,随着ζ的增大,其对数相频特性图曲线越平缓。
2.系统的开环传递函数为)5)(15(10)(2+-=s s s s G)106)(15()1(8)(22++++=s s s s s s G )11.0)(105.0)(102.0()13/(4)(++++=s s s s s s G绘制系统的Nyquist 曲线、Bode 图,说明系统的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 用MATLAB 实现线性系统的频域分析
实验目的:
1.掌握MATLAB 平台下绘制典型环节及系统开环传递函数的Bode 图和Nyquis 图(极坐标图)绘制方法;
2.掌握利用Bode 图和Nyquis 图对系统性能进行分析的理论和方法。
实验要求:
1.根据内容要求,写出调试好的MATLAB 语言程序,及对应的结果。
2. 记录显示的图形,根据实验结果与各典型环节的频率曲线对比分析。
3. 记录并分析ζ对二阶系统bode 图的影响。
4.根据频域分析方法分析系统,说明频域法分析系统的优点。
5.写出实验的心得与体会。
实验内容:
1.典型二阶系统
2222)(n
n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。
Bode 图程序:
wn=6;znb=[0.1 0.3 0.5 0.8 2];
w=logspace(0,2,10000);figure(1);n=[wn^2];
for k=znb d=[1 2*k*wn wn^2];sys=tf(n,d);bode(sys,w);hold on; end
运行结果:
结果分析:
从图中可看出ζ越小,中频段振荡越剧烈。
该二阶系统是典型的振荡环节,谐振频率 )2
20(21222≤<*-*=ζζωωn r ,谐振峰值)220(121222≤<-**=ζζ
ζr M 当2202<<ζ时,r ω,r M 均为ζ的减函数,ζ越小,r M ,r ω越大,振荡幅度越大,超调量越大,过程越不平稳且系统响应速
度越慢,当12
22<<ζ时。
)(ωA 单调减小,此时无谐振峰值和谐振频率,过程较平稳。
2.系统的开环传递函数为
)5)(15(10
)(2+-=
s s s s G )106)(15()1(8)(22++++=s s s s s s G )11.0)(105.0)(102.0()13/(4)(++++=s s s s s s G 绘制系统的Nyquist 曲线、Bode 图,说明系统的稳定性。
)5)(15(10
)(2+-=s s s s G
Bode 图:
程序代码:
num=[10];
den=[5 24 -5 0 0];
w=logspace(-2,3,100);
bode(num,den,w)
grid
实验结果:
Nyquist 图:
程序代码:
num=[10];
den=[5 24 -5 0 0];
nyquist(num,den)
实验结果:
结果分析:
因为开环传递函数在S 右半平面有一个极点,即P=1,从Nyquist 曲线可看出,奈氏曲线没有包围(-1,0),即R=0,根据奈氏稳定判据,Z=P-R=1,不等于0,所以该系统不稳定,从阶跃响应曲线上也可以看出,系统不稳定。
2)106)(15()1(8)(22++++=
s s s s s s G
Bode 图:
程序代码:
num=[8 8];
den=[1 21 100 150 0 0];
w=logspace(-2,3,100);
bode(num,den,w)
grid
实验结果:
Nyquist图:
程序代码:
num=[8 8];
den=[1 21 100 150 0 0];
nyquist(num,den)
实验结果:
结果分析:
因为开环传递函数在S 右半平面没有极点,即P=0,从Nyquist 曲线可看出,奈氏曲线逆时针包围(-1,0)一圈,即R=1,根据奈氏稳定判据,Z=P-R=-1,不等于0,所以该系统不稳定,从阶跃响应曲线上也可以看出,系统不稳定。
3
)11.0)(105.0)(102.0()
13/(4)(++++=s s s s s s G Bode 图:
程序代码:
num=[4/3 4];
den=[0.0001 0.008 0.152 1 0];
w=logspace(-2,3,100);
bode(num,den,w)
grid
实验结果:
Nyquist图:
程序代码:
num=[4/3 4];
den=[0.0001 0.008 0.152 1 0];
nyquist(num,den)
实验结果:
结果分析:
因为开环传递函数在S右半平面没有极点,即P=0,从Nyquist曲线可看出,奈氏曲线没有包围(-1,0),即R=0,根据奈氏稳定判据,Z=P-R=0,所以该系统不稳定,从阶跃响应曲线上也可以看出,系统阶跃响应最终趋于稳定,所以系统稳定。
体会:本次实验内容划算简单,就是实验结果的分析有点复杂,本次实验总结有:频域分析法分析系统具有很多优点,控制系统及其元部件的频率特性可以用分析法和实验法获得,并可用多种形式的曲线表示,因而系统分析和控制器的设计可以应用图解法进行。
频域分析法不仅适用于线性定常系统,还可以推广应用于某些非线性控制系统。
通过这次实验,我学会了用MATLAB来分析系统的频域特性,频域特性的图解法主要有,Nyquist曲线、Bode图,Nyquist曲线和Bode图主要用来分析系统的开环频率特性,手工绘制Nyquist曲线、Bode图很麻烦,而高阶系统只能大概地绘出,这给我们分析系统带来了很大的不便,使用MATLAB 软件可以方便而精确地绘制出Nyquist曲线、Bode图和,使得我们分析和设计系统更加方便。
建议:希望老师在以后的实验中多增加几个课时。