自动控制原理实验六线性系统的频域分析

合集下载

长安大学:自动控制原理第五章 线性系统的频域分析

长安大学:自动控制原理第五章 线性系统的频域分析
A() 1
A () 1 0 T
() 0
() 90
V() A() sin ()
长安大学信息工程学院
自动控制理论
第五章
二、研究频率特性的意义 1、频率特性是控制系统在频域中的一种数学模型,是研究自 动控制系统的另一种工程方法。 2、根据系统的频率性能间接地揭示系统的动态特性和稳态特 性,可以简单迅速地判断某些环节或参数对系统性能的影响, 指出系统改进的方向。 3、频率特性可以由实验确定,这对于难以建立动态模型的系 统来说,很有用处。 三、频率特性的求取方法 1、已知系统的系统方程,输入正弦函数求其稳态解,取输 出稳态分量和输入正弦的复数比; 2、根椐传递函数来求取; 3、通过实验测得。

x c (t) ae jt ae jt b1es1t b2es2t ... b1esn t
A AG( j) ( s j ) | s j s 2 2 2j
( t 0)
对于稳定的系统, -s1,s2,…,sn 其有负实部
x c (t) ae jt ae jt
a G(s)
a G (s)
CHANG’AN UNIVERSITY
A AG( j) ( s j ) | s j s 2 2 2j
长安大学信息工程学院
自动控制理论
第五章
a
AG( j) 2j
AG( j) a 2j
G( j) | G( j) | e jG( j) | G( j) | e jG( j)
幅频特性 相频特性 实频特性 虚频特性
CHANG’AN UNIVERSITY
A() | G ( j) | U 2 () V 2 () 1 V() () G( j) tg U () U() A() cos()

《自动控制原理》实验3.线性系统的频域分析

《自动控制原理》实验3.线性系统的频域分析

《自动控制原理》实验3.线性系统的频域分析实验三线性系统的频域分析一、实验目的1.掌握用MATLAB语句绘制各种频域曲线。

2.掌握控制系统的频域分析方法。

二、基础知识及MATLAB函数频域分析法是应用频域特性研究控制系统的一种经典方法。

它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。

采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。

1.频率曲线主要包括三种:Nyquist图、Bode图和Nichols图。

1)Nyquist图的绘制与分析MATLAB中绘制系统Nyquist图的函数调用格式为:nyquist(num,den) 频率响应w的范围由软件自动设定 nyquist(num,den,w) 频率响应w的范围由人工设定[Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量,不作图2s?6例4-1:已知系统的开环传递函数为G(s)?3,试绘制Nyquists?2s2?5s?2图,并判断系统的稳定性。

num=[2 6]; den=[1 2 5 2]; nyquist(num,den)极点的显示结果及绘制的Nyquist图如图4-1所示。

由于系统的开环右根数P=0,系统的Nyquist曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。

p =-0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668图4-1 开环极点的显示结果及Nyquist图若上例要求绘制??(10?2,103)间的Nyquist图,则对应的MATLAB语句为:num=[2 6]; den=[1 2 5 2];w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距离的点nyquist(num,den,w)2)Bode图的绘制与分析系统的Bode图又称为系统频率特性的对数坐标图。

Bode图有两张图,分别绘制开环频率特性的幅值和相位与角频率?的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。

自动控制原理实验报告四

自动控制原理实验报告四

自动控制原理实验报告实验时间:201X年X 月X 日 地点:XXXX 实验报告人(签名):倪马 同组实验人(签名):1 实验名称:线性系统的频域分析2 实验目的:(1)掌握二阶开环系统的对数频率特性、幅相频率特性、实频特性和虚频特性;(2)掌握欠阻尼二阶闭环系统中的自然频率、阻尼比对开环参数幅值穿越频率、相位裕度的影响,以及幅值穿越频率和相位裕度的计算;(3)掌握二阶开环系统对数频率特性曲线和幅相频率特性曲线的特点及绘制方法。

3 实验内容:(1)根据实验讲义上模拟电路图和接线要求,在LabACTn 自控/计控原理实验机的对应接口上连接好线路;(2)根据实验讲义的具体要求进行“运行”操作,并观察实验曲线,根据曲线计算对应参数——一阶惯性环节的转折频率、二阶闭环系统的谐振频率r ω&谐振峰值)(r L ω,改变被测系统的各项电路参数,画出其系统模拟电路图。

4 实验步骤 4.1 实验操作4.1.1 一阶惯性环节的频率特性曲线惯性环节的频率特性测试电路见图3-2-1,改变被测系统的各项电路参数,画出其系统模拟电路图,及频率特性曲线,並计算和测量其转折频率,填入实验报告。

一阶惯性环节的转折频率:T /1=ω图3-2-1 惯性环节的频率特性测试电路图3-2-1电路的增益K=1,惯性时间常数 T=0.1,转折频率:s /1rad .0/1==T ω 实验内容及步骤(1)构造模拟电路:按图3-2-1安置短路套及插孔连线。

(2)运行、观察、记录:① 选择系统的频域分析/一阶惯性环节频率特性曲线,将弹出频率特性扫描点设置表,用户可在…频率特性扫描点‟设置表中根据需要填入各个扫描点角频率,设置完后,点击《确认》后,将弹出…频率特性曲线‟实验界面,点击《开始》,即可按表中规定的角频率值,按序自动产生多种频率信号,画出频率特性曲线。

② 测试结束后(约五分钟),将显示被测系统的对数幅频、相频特性曲线(伯德图)和幅相曲线(奈奎斯特图),界面“显示选择”选择了“伯德图”。

自动控制原理--频域分析方法估算系统的动态性能

自动控制原理--频域分析方法估算系统的动态性能

10 s 1)(
s
1)
20 100
解. 绘制L(w)曲线
wc 20
48 10
wc 48 2 96
180 j (wc )
180 arctan 96 90 arctan 96 arctan 96
10
20
100
180 84 90 78.2 43.8 52.1
查 P184 图5-56
不变 → s 不变
L(w) 右移后 wc 增大 → ts 减小
wc 1100 10
180 90 arctan10 arctan 10
1
200
90 84.3 2.86 2.8
三频段理论
L(w)
频段 低频段 中频段 高频段
对应性能
希望形状
开环增益 K 稳态误差 ess
系统型别 v
截止频率 wc 动态性能
s
0 0
相角裕度
ts
陡,高 缓,宽
系统抗高频干扰的能力
低,陡
三频段理论并没有提供设计系统的具体步骤, 但它给出了调整系统结构改善系统性能的原则和方向
关于三频段理论的说明:
① 各频段分界线没有明确的划分标准; ② 与无线电学科中的“低”、“中”、“高” 频概念不同; ③ 不能用是否以-20dB/dec过0dB线作为判定
解.(1)
G(s) s(
s
10 1)(
s
1)
0.1 20
(2) wc 0.110 1
180 90 arctan 1 arctan 1
0.1
20
90 84.3 2.86 2.8 0 稳定
(3) 将 L(w) 右移10倍频后有
G(s)
s(

线性系统的频域分析实验心得

线性系统的频域分析实验心得

线性系统的频域分析实验心得
1·熟练掌握用 MATLA语句绘制频域曲线。

2·掌握控制系统频域范围内的分析校正方法。

3掌握用频率特性法进行串联校正设计的思路和步骤
某单位负反馈控制系统的开环传递函数4为,试设计一超前校正装置,G(s)1、' s(s 1)K. 20s 150使校正后系统的静态速度误差系数,相位裕量,增益裕量20lgK10dB
绘制伯德图程序,以及计算穿越频率,相位裕量ans =相位 Inf 9.0406频率Inf 3.1425>e=5; r=50; rO=9; >>[gm1,pm1,wcg1,wcp1]=marg in(num 0,de nO);phic=(r-rO+e)*pi/180;
[gm1,pm1,wcg1,wcp1]=margi n(num 0,de nO);>>alpha=(1+s in (phic))/(1-si n(phic))[gm1,pm1,wcg1,wcp1]=margin(num 0,de n0); alpha =6.1261 [gm1,pm1,wcg1,wcp1]=marg in(num 0,de n0);lgm1,pm1,wcg1,wcp1]
通过MATLAB寸系统进行校正,可以清晰明了的显示矫正过程,以及矫正结果,方便快捷。

这种基于MATLAB的方法对于系统的设计非常实用。

值得以后再学习过程中认真领悟学习!! ! ! !。

自动控制原理课件:线性系统的频域分析

自动控制原理课件:线性系统的频域分析
曲线顺时针方向移动一周时,在 平面上的映射曲线按逆时针方向
包围坐标原点 − 周。
m
F (s)
K1 ( s z j )
j 1
n

i 1
( s pi )
24
• 02
基本概念
m
1 G ( s) H ( s) F ( s)
K1 ( s z j )
j 1
在 平面上的映射曲线 F 1 G ( j ) H ( j )将按逆时针方向
围绕坐标原点旋转 = − 周。
如果在s平面上,s沿着奈奎斯特回线顺时针方向移动一周时,
在 平面上的映射曲线围绕坐标原点按逆时针方向旋转 =
周,则系统为稳定的。
26
根据
( 1, j 0)
L( ) 20 lg K 20 lg 1 12 2 20 lg 1 22 2
( ) arctg 1 arctg 2
τ2
20dB / dec 1
2

L3 ( )
L2 ( )
40dB / dec
( )
0
L( )

90
A( ) 1, ( )
L ( ) 20 lg A( ) 0
L( )
jQ( )
L( ) 0
0
( )
1
0
1
P( )
1

0


30

60
16
5.3
系统开环频率特性图
设开环系统由n个典型环节串联组成
G(s ) G 1(s )G 2(s ) G n(s )
这意味着 的映射曲线 F 围绕原点运动的情况,相当于

《自动控制原理》Matlab求解控制系统频域分析实验

《自动控制原理》Matlab求解控制系统频域分析实验
频率分析法在自动控制系统的分析中具有许多优点,频域分析不仅可以分析线性定常系统,还可以推广到非线性系统,借助于MATLAB软件来分析系统的频率特性,可以简化分析中的大量计算,直接可以得到需要的性能参数,结合参数和相应的曲线来对系统进行分析。使用MATLAB软件可以精确地绘制出系统的bode图、nyquist曲线和Nichols曲线,使得对系统的分析带来很大的方便
《自动控制原理》Matlab求解控制系统频域分析实验
一、实验目的
1、加深了解系统频率特性的概念。
2、学习使用Matlab软件绘制Nyquist图、Bode图的基本方法。
3、掌握典型环节的频率特性。
二、实验仪器
Matlab2014b版
三、实验原理
1.奈奎斯特图(幅相频率特性图)
MATLAB为用户提供了专门用于绘制奈奎斯特图的函数nyquist
axis([-2,0.4,-1.5,1.5]);
k=500;
num=[1,10];
den=conv([1,0],conv([1,1],conv([1,20],[h,50])));
w=logspace(-1,3,200)
bode(k*num,den,w);
grid;
五、实验原始数据记录与数据处理
六、实验结果与分析讨论
范围是自动确定的。当需要指定幅值范围和相角范围时,则需用下面的功能指令:
[mag,phase,w]=bode(num,den,w)
四、实验内容及步骤
z=[]:
p=[0,-1,-2]:
k=5;
g=zpk(z,p,k):
nyquist(g);
w=0.5:0.1:10:
figure(2):
nyquist(g:w);

自动控制原理--第5章 频域分析法

自动控制原理--第5章 频域分析法
例如,惯性环节对数幅频特性和相频特性分别为
L() 20lg | G( j) | 20lg 2T 2 1
arctanT
当=0时,L()=0dB, =0, 曲线起始于坐标原点;当=1/T时, L()=-3dB, =-45;
自动控制原理
30
5-4 频域稳定性判据
一、映射定理
闭环特征函数 F(s)=1+G(s)H(s)
T
如果τ>T,则∠G(j)>0°,极坐标曲线在第Ⅰ象限变化;如果τ<T, 则∠G(j)<0°,极坐标曲线在第Ⅳ象限变化,如图所示。
自动控制原理
16
5.3.2 对数坐标图
通过半对数坐标分别表示幅频特性和相频特性的图形, 称为对数坐称图或波德(Bode)图。
1.对数坐标 对数频率特性曲线由对数幅频特性和相频特性两部分
系统的传递函数为 C(s) G(s)
R(s)
假定输入信号r(t)为
r(t) Asint
R(s) L[ Asint] A
A
s 2 2 (s j)(s j)
自动控制原理
7
G(s)
K (s z1 )(s z2 )(s zm ) (s s1 )(s s2 )(s sn )
nm
2j
AG( j) sin(t )
B sin(t )
G( j ) G( j ) e jG( j) G( j) e j

G( j) G(s) s j
这里的结论同RC网络讨论的结果是一致的。
自动控制原理
10
5.3 频率特性的图示方法
频率特性的图示方法主要有三种,即极坐标图、对数坐 标图和对数幅相图,现分述如下。
所以K=10。因此,所求开环传递函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六 线性系统的频域分析
一. 实验目的
(1)熟练掌握使用MA TLAB 命令绘制控制系统Nyquist 图的方法; (2)能够分析控制系统Nyquist 图的基本规律;
(3)加深理解控制系统乃奎斯特稳定性判据的实际应用; (4)学会利用奈氏图设计控制系统;
(5)熟练掌握运用MA TLAB 命令绘制控制系统伯德图的方法; (6)了解系统伯德图的一般规律及其频域指标的获取方法; (7)熟练掌握运用伯德图分析控制系统稳定性的方法; (8)设计超前校正环节并绘制Bode 图; (9)设计滞后校正环节并绘制Bode 图。

二. 实验原理及内容 1、频率特性函数)(ωj G 。

频率特性函数为:
n
n n n m m m m a j a j a j a b j b j b j b jw G ++⋅⋅⋅++++⋅⋅⋅++=
---)()()()()()()(1101110ωωωωωω
由下面的MATLAB 语句可直接求出G(jw)。

i=sqrt(-1) % 求取-1的平方根
GW=polyval(num ,i*w)./polyval(den ,i*w) 2、用MATLAB 作奈魁斯特图。

控制系统工具箱中提供了一个MA TLAB 函数nyquist( ),该函数可以用来直接求解Nyquist 阵列或绘制奈氏图。

当命令中不包含左端返回变量时,nyquist ()函数仅在屏幕上产生奈氏图,命令调用格式为:
nyquist(num,den) ;
作Nyquist 图,
nyquist(num,den,w);
作开环系统的奈氏曲线, 3、奈奎斯特稳定性判据(又称奈氏判据)
反馈控制系统稳定的充分必要条件是当ω从-∞变到∞时,开环系统的奈氏曲线不穿过点(-1,j0)且逆时针包围临界点(-1,j0)点的圈数R 等于开环传递函数的正实部极点数。

4、用MATLAB 作伯德图
控制系统工具箱里提供的bode()函数可以直接求取、绘制给定线性系统的伯德图。

命令的调用格式为:
[mag,phase,w]=bode(num,den) [mag,phase,w]=bode(num,den,w)
由于伯德图是半对数坐标图且幅频图和相频图要同时在一个绘图窗口中绘制,因此,要用到半对数坐标绘图函数和子图命令。

(1) 对数坐标绘图函数
利用工作空间中的向量x ,y 绘图,要调用plot 函数,若要绘制对数或半对数坐标图,只需要用相应函数名取代plot 即可,其余参数应用与plot 完全一致。

(2) 子图命令
MATLAB 允许将一个图形窗口分成多个子窗口,分别显示多个图形,这就要用到subplot()函数,其调用格式为:subplot(m ,n ,k) 5、 用MATLEB 求取稳定裕量
同前面介绍的求时域响应性能指标类似,由MATLAB 里bode()函数绘制的伯德图也可以采用游动鼠标法求取系统的幅值裕量和相位裕量。

此外,控制系统工具箱中提供了margin()函数来求取给定线性系统幅值裕量和相位裕量,该函数可以由下面格式来调用:
margin (num , den );给定开环系统的数学模型,作Bode 图,并在图上方标注幅值裕度G m 和对应频率ωg ,相位裕度P m 和对应的频率ωc 。

[Gm, Pm, Wcg, Wcp]=margin(G);
如果已知系统的频率响应数据,我们还可以由下面的格式调用此函数。

[Gm, Pm, Wcg, Wcp]=margin(mag, phase, w);
其中(mag, phase, w)分别为频率响应的幅值、相位与频率向量。

如果系统的相角裕量γ>45o ,我们一般称该系统有较好的相角裕量。

【自我实践6-1】某单位负反馈系统的开环传递函数()(1)(2)k
G s s s s =++,求(1) 当k=4时,
计算系统的增益裕度,相位裕度,在Bode 图上标注低频段斜率,高频段斜率及低频段、高
(1)低频段增益-20db/dec ,高频段-60db/dec,低频段渐进相位角为-90°,高频
段为-270°,增益裕度Gm=1.5000,相位裕度Pm= 11.4304°
【自我实践6-2】系统开环传递函数()(0.51)(0.11)
k
G s s s s =++,试分析系统的稳定性。

响应曲线
【自我实践6-3】某单位负反馈系统的开环传递函数31.6
()(0.011)(0.11)
G s s s s =
++,求(1)绘制
Bode 图,在幅频特性曲线上标出低频段斜率、高频段斜率、开环截止频率和中频段穿越频率;在幅频特性曲线标出:低频段渐近相位角、高频段渐近相位角和-180︒线的穿越频率。

(2)伯德图
【自我实践6-4】某单位负反馈系统的开环传递函数2(1)()(0.11)
k s G s s s +=
+,令k=1作bode 图,
应用频域稳定判据确定系统的稳定性,并确定使系统获得最大相位裕度的增益k 值。

【综合实践】试观察下列典型环节BODE 图形状,分析参数变化时对BODE 图的影响,填写下表。

(1) 比例环节:K (K=10、K=30) (2) 惯性环节:1
+Ts K (K=1、K=10、T=0.1、1) (3) 积分环节:
s
K (K=1、K=10)
(4) 微分环节:Ks (K=1、K=10)
(5) 二阶惯性环节:2
22
2ωξωω++s s K (K=1、K=10、ξ=0.1、ξ=1、ξ=5、ω=1)
BODE 图形
【综合实践】已知系统开环传递函数:
1) 0型系统:
)
1)(1(21++s T s T K
,(K=10、1T =1、2T =12)
2) 1型系统:)
1(1+s T s K

)
1)(1(21++s T s T s K
(K=10、1T =1、2T =15)、
)
2(22
2ωξωω++s s
s K (K=2、ξ=0.4、ω=1),
3) 2型系统:
)
1(12
+s T s K
(K=10、1T =5)
试根据Bode 图比较上述各幅频和相频特性曲线有什么变化,并计算出幅穿频率c ω、相位
三、思考题
1)典型环节有哪些?分析典型环节中的参数T、K、ω、ξ参数变化对BODE图的影响。

答:典型环节有比例环节、积分环节、微分环节、一阶微分、一阶惯性、二阶微分、二阶惯性、纯滞后等环节。

T增大,交接频率左移,T减小,交接频率右移;K增大使得幅值增加,对相频特性无影响。

2)系统类型对系统BODE图有哪些影响?对系统的相位稳定余量有什么影响?
答:系统类型的升高使得相频特性曲线坡度升高,使得相角裕度、幅值裕度减小,系统稳定性变差。

四. 实验能力要求
(1)熟练使用MA TLAB绘制控制系统Nyquist曲线的方法,掌握函数nyquist ( )的三种调用格式,并灵活运用。

(2)学会处理奈氏图形,使曲线完全显示ω从-∞变化至+∞的形状。

(3)熟练应用奈氏稳定判据,根据Nyquist图分析控制系统的稳定性。

(4)改变系统开环增益或零极点,观察系统Nyquist图发生的变化以及系统稳定性的影响。

相关文档
最新文档