《自动控制原理》第5章 控制系统的频域分析 (3)

合集下载

精品文档-自动控制原理(第二版)(千博)-第5章

精品文档-自动控制原理(第二版)(千博)-第5章
24
图 5-5 惯性环节的波德图
25
三、对数幅相图(Nichols图)
对数幅相图是以相角(°)为横坐标, 以对数幅频L(ω)(dB)
为纵坐标绘出的G(jω)曲线。频率ω为参变量。因此它与幅相
频率特性一样, 在曲线的适当位置上要标出ω的值, 并且要用
箭头表示ω增加的方向。
用对数幅频Hale Waihona Puke 性及相频特性取得数据来绘制对数幅相
第五章 频 域 分 析 法
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 关系 第九节 德图
频率特性的基本概念 频率特性的表示方法 典型环节的频率特性 系统开环频率特性 奈奎斯特稳定性判据和波德判据 稳定裕度 闭环频率特性 开环频率特性和系统阶跃响应的
利用MATLAB绘制奈奎斯特图和波
8
图 5-2 频率特性与系统描述之间的关系
9
利用频率特性曲线分析研究控制系统性能的方法称为频域 分析法。频域分析法主要有傅氏变换法和经典法。
(1) 傅氏变换法就是系统在输入信号r(t)的作用下,其输 出响应为
即把时间函数变换到频域进行计算并以此分析研究系统的方法。 (2) 经典法就是先求出系统的开环频率特性G(jω)并绘成
的对数频率
22
(1) 对数幅频特性曲线。通常用L(ω)简记对数幅频特性, 故
ω从0变化到∞时的对数幅频特性曲线如图5-3所示。
23
(2) 相频特性曲线。通常以j(ω)表示相频特性, 即 j (ω)=∠G(jω)。对于惯性环节, 有
j (ω)=-arctanTω 对不同ω值, 逐点求出相角值并绘成曲线即为相频特性曲线, 如图5-5所示。
45
图 5-11 振荡环节近似波德图

长安大学:自动控制原理第五章 线性系统的频域分析

长安大学:自动控制原理第五章 线性系统的频域分析
A() 1
A () 1 0 T
() 0
() 90
V() A() sin ()
长安大学信息工程学院
自动控制理论
第五章
二、研究频率特性的意义 1、频率特性是控制系统在频域中的一种数学模型,是研究自 动控制系统的另一种工程方法。 2、根据系统的频率性能间接地揭示系统的动态特性和稳态特 性,可以简单迅速地判断某些环节或参数对系统性能的影响, 指出系统改进的方向。 3、频率特性可以由实验确定,这对于难以建立动态模型的系 统来说,很有用处。 三、频率特性的求取方法 1、已知系统的系统方程,输入正弦函数求其稳态解,取输 出稳态分量和输入正弦的复数比; 2、根椐传递函数来求取; 3、通过实验测得。

x c (t) ae jt ae jt b1es1t b2es2t ... b1esn t
A AG( j) ( s j ) | s j s 2 2 2j
( t 0)
对于稳定的系统, -s1,s2,…,sn 其有负实部
x c (t) ae jt ae jt
a G(s)
a G (s)
CHANG’AN UNIVERSITY
A AG( j) ( s j ) | s j s 2 2 2j
长安大学信息工程学院
自动控制理论
第五章
a
AG( j) 2j
AG( j) a 2j
G( j) | G( j) | e jG( j) | G( j) | e jG( j)
幅频特性 相频特性 实频特性 虚频特性
CHANG’AN UNIVERSITY
A() | G ( j) | U 2 () V 2 () 1 V() () G( j) tg U () U() A() cos()

自动控制原理第5章频域分析法

自动控制原理第5章频域分析法
确定方法
通过分析频率响应函数的极点和零点分布,以及系统的相位和幅值 特性,利用稳定性判据判断系统在不同频率下的稳定性。
注意事项
稳定性判据的选择应根据具体系统的特性和要求而定,同时应注意 不同判据之间的适用范围和限制条件。
04
频域分析法的应用实例
04
频域分析法的应用实例
控制系统性能分析
稳定性分析
极坐标或对数坐标表示。
绘制方法
通过频率响应函数的数值计算,将 结果绘制成曲线图,以便直观地了 解系统在不同频率下的性能表现。
注意事项
绘制曲线时应选择合适的坐标轴比 例和范围,以便更好地展示系统的 性能特点。
频率特性曲线的绘制
定义
频率特性曲线是频率响应函数在 不同频率下的表现形式,通常以
极坐标或对数坐标表示。
稳定裕度。
动态性能分析
02
研究系统在不同频率下的响应,分析系统的动态性能,如超调
和调节时间等。
静态误差分析
03
分析系统在稳态下的误差,确定系统的静态误差系数,评估系
统的静态性能。
系统优化设计
参数优化
通过调整系统参数,优化 系统的频率响应,提高系 统的性能指标。
结构优化
根据系统频率响应的特点, 对系统结构进行优化,改 善系统的整体性能。
05
总结与展望
05
总结与展望
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。
通过频率响应曲线,可以方便地比较不同系统或同一 系统不同参数下的性能。
频域分析法的优缺点
02
01
03
优点
频域分析法能够直观地揭示系统的频率特性,帮助理 解系统的稳定性和性能。

自动控制原理第五章频域分析法

自动控制原理第五章频域分析法
mn 122
谐振峰值
Am(m) 2
1
12
振荡环节的对数频率特性
L ()2l0 oG g (j) 2l0 o(g 1 n 2 2)24 2 n 2 2
n L()0低频渐近线是零分贝线。
n L ( ) 4 0lo g (/ n) 4 0lo g (T ) n 1 /T
高频段是一条斜率为- 40/dB的直线,和零分
幅频特性的谐振峰值和谐振角频率:
G(ju)
1
(1u2)242u2
d G d (j) u u 0 ,u r 1 22 ( 1 /2 0 .7)0
r n12 2 ( 1/ 20 .7) 0
幅频特性的谐振角频率和谐振峰值:
rn1 22, M r G (jr) 1 /21 2
谐振频率
1 / T , L () 2l0 o1 g2 T 2 2l0 o 1 0 g ( d)B
在频率很低时,对数幅频曲线可用0分贝线近似。
1 / T , L ( ) 2l0 o1 g 2 T 2 2l0 o T g
当频率很高时,对数幅频曲线可用一条直线近似,直
线斜率为-20dB/dec,与零分贝线相交的角频率为 1/T 。
( )
0 0.1 1 10
0 o 0.1 1 10
45o
20
90o
对数坐标刻度图
注意:
➢纵坐标是以幅值对数分贝数刻度的,是均匀的;横 ➢ 坐标按频率对数标尺刻度,但标出的是实际的值, ➢ 是不均匀的。 ——这种坐标系称为半对数坐标系。 ➢在横轴上,对应于频率每增大10倍的范围,称为十 ➢ 倍频程(dec),如1-10,5-50,而轴上所有十倍频 程 ➢ 的长度都是相等的。 ➢为了说明对数幅频特性的特点,引进斜率的概念, ➢ 即横坐标每变化十倍频程〔即变化〕所对应的纵 坐

自动控制原理第5章-频域分析

自动控制原理第5章-频域分析
(4)频率特性主要适用于线性定常系统,也可以有条件 地推广应用到非线性系统中。
第5章 控制系统的频域分析
§5.1 频 率 特 性
一、频率特性概述
1、 RC网络的频率特性
T
du0 (t) dt
u0 (t)
ui (t)
其传递函数为:
G(s) U0(s) 1 Ui (s) Ts 1
在复数域内讨论RC网络,并求输出电压
(T)2 1
——RC网络的频率特性
G( j)
1
(T)2 1 —幅频特性
() arctan T —相频特性
第5章 控制系统的频域分析
比较
G( j)
1
jT 1

G(s) 1 Ts 1
可见,只要用jω代替该网络的传递函数G(s)中的复变 量S,便可得其频率特性G(jω)。结论具有一般性。
2、线性定常系统的频率特性
设 ui (t) Um sin t
U U e •
j00 复阻抗 Z R 1 jRC 1
i
m
第5章 控制系统的频域分析
jC
jC



U0
1

I
jC
1 Ui
jC Z
1
jC
jCUi jCR 1
1
jT

U 1
i
于是有:

U0

Ui
1
jT 1

(T RC)
G( j)
U0

Ui
1
e j () G( j) e j ()
第5章 控制系统的频域分析
5.2.2 典型环节的频率特性
1、积分环节
传递函数: G(s) 1

自动控制原理第五章

自动控制原理第五章

•表5-1 RC网络的幅频特性和相频特性数据

A( )
( )
0 1 0
1 0.707
45
2 0.45
5 0.196

0
63.4 78.69 90
图5-2 RC网络的幅频和相频特性
图5-3 RC网络频率特性的幅相曲线
对数频率特性图又称伯德图(Bode图),包 括对数幅频特性和对数相频特性两条曲线, 其中,幅频特性曲线可以表示一个线性系 统或环节对不同频率正弦输入信号的稳态 增益;而相频特性曲线则可以表示一个线 性系统或环节对不同频率正弦输入信号的 相位差。对数频率特性图通常绘制在半对 数坐标纸上,也称单对数坐标纸。
图5-20控制系统结构图
将系统的开环频率特性函数按典型环节划分, 可以分解为: ( j 1) ( ( j ) 2 ( j ) 1) k
m1 m2
G ( j ) H ( j )
k
2 l
2
l l
( j )
0
k 1 n1
( i s 1) ( 2 ( j ) 2 2 j j ( j ) 1) j
图5-19 Ⅱ型三阶系统幅相频率特性图
讨论更一般的情况,对于如图5-20所示的闭 环控制系统结构图,其开环传递函数为 G( s) H ( s) ,可以把系统的开环频率特性写作如 下的极坐标形式或直角坐标形式:
G( j)H ( j) G( j)H ( j) e j () P() jQ()
•图5-6积分环节频率特性的极坐标图
在伯德图上,积分环节的对数频率特性为
L( ) lg A( ) lg G( j ) lg ( ) 2
图5-7积分环节的伯德图

自动控制原理--第5章 频域分析法

自动控制原理--第5章 频域分析法
例如,惯性环节对数幅频特性和相频特性分别为
L() 20lg | G( j) | 20lg 2T 2 1
arctanT
当=0时,L()=0dB, =0, 曲线起始于坐标原点;当=1/T时, L()=-3dB, =-45;
自动控制原理
30
5-4 频域稳定性判据
一、映射定理
闭环特征函数 F(s)=1+G(s)H(s)
T
如果τ>T,则∠G(j)>0°,极坐标曲线在第Ⅰ象限变化;如果τ<T, 则∠G(j)<0°,极坐标曲线在第Ⅳ象限变化,如图所示。
自动控制原理
16
5.3.2 对数坐标图
通过半对数坐标分别表示幅频特性和相频特性的图形, 称为对数坐称图或波德(Bode)图。
1.对数坐标 对数频率特性曲线由对数幅频特性和相频特性两部分
系统的传递函数为 C(s) G(s)
R(s)
假定输入信号r(t)为
r(t) Asint
R(s) L[ Asint] A
A
s 2 2 (s j)(s j)
自动控制原理
7
G(s)
K (s z1 )(s z2 )(s zm ) (s s1 )(s s2 )(s sn )
nm
2j
AG( j) sin(t )
B sin(t )
G( j ) G( j ) e jG( j) G( j) e j

G( j) G(s) s j
这里的结论同RC网络讨论的结果是一致的。
自动控制原理
10
5.3 频率特性的图示方法
频率特性的图示方法主要有三种,即极坐标图、对数坐 标图和对数幅相图,现分述如下。
所以K=10。因此,所求开环传递函数

自动控制原理第5章_线性控制系统的频率特性分析法

自动控制原理第5章_线性控制系统的频率特性分析法

5. 2控制系统开环传递函数的对数频率特性
5.2.2 系统伯德图的绘制
开环对数幅频渐近特性曲线的绘制步骤: (1)把系统开环传递函数化为标准形式,即化为典型环节的传递函
数乘积,分析它的组成环节; (2)确定一阶环节、二阶环节的转折频率,由小到大将各转折频率
标注在半对数坐标图的频率轴上; (3)绘制低频段渐近特性线; (4)以低频段为起始段,从它开始每到一个转折频率,折线发生转
开环极点的个数。
5. 4 频域稳定判据与系统稳定性
5.4.4 控制系统的相对稳定性
开环频率特性 G( j)H( j)在剪切频率 c处所对应的相角与 180 之差称为相角裕度,记为 ,按下式计算
(c ) (180 ) 180 (c )
开环频率特性 G( j)H的( 相j)角等于 时所1对80应的角频率称为相
闭环系统稳定的充要条件是,当 由 0 时0,开 环奈奎斯 特曲线逆时针方向包围( )点 周1, j。0 是具P有2 正实部P 的开 环极点的个数。 需注意,若开环传递函数含有 v 个积分环节,所谓 由 0 0 ,指的 是由 0 0 0 ,此时奈 奎斯特曲线需顺时针增补 v 角度的无穷大半径的圆弧。
5. 4 频域稳定判据与系统稳定性
5.4.1 奈奎斯特稳定判据
若闭环系统在[ s]右半平面上有 个P开环极点,当 从 变化到
时,奈奎斯特曲线 G( j对)H点( j) 的包围1周, j数0 为 ( 为逆时N针,
为顺N 时 0针),则系统N<在0[ ]右半平面上的闭环极点s的个数为 。
折,斜率变化规律取决于该转折频率对应的典型环节的种类; (5)如有必要,可对上述折线渐近线加以修正,一般在转折频率处
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

mm
KK((jTi sTi++1)1)
G( jG()s=) =
i =i =11 n −nv− v
(K( K 0)0)
( jsv)v (T( jjs +T1j )+ 1)
j =j1=1
G(
j )
=
(
K
j )n−m
| G( j ) |= 0
( ) = − 90 (n − m)
52
②绘制终点ω→+∞ 非最小相位系统
否则为非最小相位环节。
45
2、非最小相位环节
思考:非最小相位环节与最小相位环节极坐标图、Bode图的
对称关系?
比例环节 G(s) = K(K 0)
惯性环节 G(s) = 1 (T 0) − Ts + 1
一阶微分环节 G(s) = −Ts + 1(T 0)
二阶振荡环节
1
G(s) = T2s2 − 2Ts + 1 (T 0)
( )
90
0 −90
微分环节 积分环节
21
三、微分环节 G(s) = s G( j) = j
G( j) = 0 + j
幅值 | G( j) |= 幅角() = 90
1.幅相曲线: 2.Bode图:
每10倍频程增加 20dB
L() = 20lg | G( j) |= 20lg () = 90
22
( ) = − arctan T
1.幅相曲线:
2.Bode图:
Im
ω=∞
ω=0 -45o
ω=1/T
24
L(dB) 60 40 20 0
−20 −40 −60 ( ) 90
0
−90
一阶比例微分环节 20dB / dec
惯性环节 − 20dB / dec
一阶比例微分环节
惯性环节
25
| G( j ) |=
1.幅相曲线: → 0, → +
19
幅值 | G( j ) |= 1
2.Bode图:
幅角( ) = −90
每10倍频程衰减 20dB
L() = 20lg | G( j) |= −20lg () = −90
20
L(dB) 40
积分环节
20dB / dec
0
微分环节
− 20dB / dec
−40
m
K (Ti s +1)
G(s) =
i =1 n−v
(K 0)
sv (Tj s +1)
j =1
A()
( )
[G] P()
11
例5.1中的RC网络:G(s) = 1 Ts + 1
G(
j )
=
1+
1
jT
=
1
1 + T 2 2

j
T 1 + T 2 2
=
1
e − j arctan T
1 + 2T 2
A( )
() = − arctanT
12
G(
j )
=
1
1 + T 2 2

j
T 1 + T 2 2
1
( ) = − arctan T
1 + 2T 2
•对数幅频特性曲线 L( ) = −20 lg 1 + 2T 2
用高频段和低频段的渐近线表示对数幅频曲线; 交接频率(转折频率)
T 1, L( ) 0; T 1, L( ) −20lgT
•对数幅频渐近特性特性:
La
(
)
=
0,
1;
T
− 20 lgT ,
实部 1
0
0
虚部 0

1
2
0
( ) 0 − 90 − 180
32
u = T
另外:
A(0) = 1, A() = 0.
求A( )的极值。
dA( )
=


2
2 n
(1 −
2
2 n
)
+
4
2
2 n
=
0
d
(1

2
2 n
)2
+
4
2
2
2 n
2 n2
= 1 − 2
2
所以谐振频率和相应谐振峰值:
r = n
对数相频特性:单位是度 ( )
16
2. Bode图的优点
(1)扩大频带;
(2)化幅值乘除为叠加做图;
(3)
G2 (
j
)
=
1
G1( j
)
Bode图关于0dB线和0。线对称
17
5.3 开环系统典型环节频率特性图
一、比例环节 G(s) = K(K 0) G( j) = K
G( j) = K + j0 = Ke j0
2
一、频率特性
1、频率特性定义:
例: R
输入:x(t ) = Asint
输出:y(t) = B sin(t + )
x(t)
C
y(t)
微分方程: Ty(t) + y(t) = x(t) T = RC 传递函数: Y(s) = 1
X (s) Ts + 1
3
输入:x(t ) = Asint
稳态输出:y(t ) = B sin(t + )
第五章 控制系统的频域分析
(Frequency-Response analysis)
1
5.1 概述
x(t)
系统 y(t)
sin(t + )或
n
x(t) = Aisin(it + i ) i=1
或i从0 → 变化时, y(t)如何变化?
6
2、说明
7
传递函数、微分方程、频率特性的关系:
s= p
微分方程
传递函数
系统
s = j
频率特性
j = p
8
二、频域分析法
1. 频域分析法: 应用频率特性研究线性系统的方法。
2. 频域分析法特点: (1)可用于无法获得系统微分方程的场合; (2)用图形分析系统,易于工程应用; (3)物理意义明确,对系统理解更直观; (4)易于研究高频系统; (5)频域指标和时域指标有对应的关系。

=
n时, (n )
=
−90o,A(n )
=
1
2

表明振荡环节与虚轴的交点为− j 1 .
2
1.幅相曲线: G(
j )
=
1
1 − T2 2 +
j2T
G(
j )
=
1 − T2 2 (1 − T2 2 )2 + (2T )2
+
j (1 −
− 2T T2 2 )2 + (2T )2
分析:T = 0 T = 1 T →
幅值 | G( j) |= K 幅角() = 0
1.幅相曲线: 2.Bode图: L() = 20lg | G( j) |= 20lg K
() = 0
18
二、积分环节 G(s) = 1
s
G( j ) = 1 j
G( j ) = 0 − j 1
幅值 | G( j ) |= 1
幅角( ) = −90
二阶微分环节 G(s) = T2s2 − 2Ts + 1(T 0)
46
非最小相位环节与最小相位环节极坐标图、 Bode图的对称关系。
(1)幅频特性相同,相频特性符号相反;
(关于实轴对称)
(2)对数幅频曲线相同,对数相频曲线关于 0度线对称。
5.4 复杂系统频率特性图绘制
一、串联系统频率特性 G(s) = G1(s)G2 (s)
9
5.2 频率特性几何表示 一、极坐标图(幅相曲线、Nyquist图)
G( j ) = A( )ej ( ) = G(j ) ejG(j)
= Re[G( j)] + j Im[G( j)]
= P() + jQ()
当从0 → +时, P( )和Q( )变化的曲线。如图:
10
G( j) = P() + jQ() Q()
B=
A
1 + T 2 2
( ) = − arctan T
幅值比A( ) = B ,
A
相位差 ( ) =
4
频率特性定义一
对于稳定的线性定常系统,
若输入为Asint,稳态输出为B sin(t + ), 则称幅值比A( ) = B 为幅频特性,
A
相位差( )为相频特性.
5
频率特性定义二
G(s) = G( j ) s= j = A( )ej ( ) = G(j ) ejG(j )
(2)极坐标图用于稳定性分析
14
二、对数频率特性曲线(Bode图)
1.坐标的选取: 横坐标: 对数坐标
= lg
单位是rad/s (弧度/秒)
线性刻度
0.01 0.1 1
10 100 1000 10000
十倍频程
15
1.坐标的选取: 纵坐标: 对数幅频特性:单位是分贝(dB)
L() = 20lg A() = 20lg | G( j) |
L(dB) 40
积分环节
20dB / dec
0
微分环节
− 20dB / dec
−40
( )
90
0 −90
微分环节 积分环节
相关文档
最新文档